Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
3e61aacd
Commit
3e61aacd
authored
Feb 22, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
standardize the name "predictor" instead of "predict_func"
parent
088521fc
Changes
13
Show whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
41 additions
and
31 deletions
+41
-31
docs/casestudies/colorize.md
docs/casestudies/colorize.md
+3
-3
examples/A3C-Gym/train-atari.py
examples/A3C-Gym/train-atari.py
+2
-2
examples/DeepQNetwork/common.py
examples/DeepQNetwork/common.py
+3
-3
examples/DeepQNetwork/expreplay.py
examples/DeepQNetwork/expreplay.py
+1
-1
examples/DoReFa-Net/alexnet-dorefa.py
examples/DoReFa-Net/alexnet-dorefa.py
+2
-2
examples/HED/hed.py
examples/HED/hed.py
+2
-2
examples/Saliency/saliency-maps.py
examples/Saliency/saliency-maps.py
+2
-2
examples/load-alexnet.py
examples/load-alexnet.py
+2
-2
tensorpack/callbacks/inference_runner.py
tensorpack/callbacks/inference_runner.py
+2
-2
tensorpack/callbacks/param.py
tensorpack/callbacks/param.py
+3
-2
tensorpack/predict/base.py
tensorpack/predict/base.py
+2
-1
tensorpack/train/base.py
tensorpack/train/base.py
+17
-8
tensorpack/train/predict.py
tensorpack/train/predict.py
+0
-1
No files found.
docs/casestudies/colorize.md
View file @
3e61aacd
...
@@ -349,7 +349,7 @@ class OnlineExport(Callback):
...
@@ -349,7 +349,7 @@ class OnlineExport(Callback):
self
.
example_input
=
color
.
rgb2lab
(
cv2
.
imread
(
'myimage.jpg'
)[:,
:,
::
-
1
])[:,
:,
0
]
# read rgb image and extract luminance
self
.
example_input
=
color
.
rgb2lab
(
cv2
.
imread
(
'myimage.jpg'
)[:,
:,
::
-
1
])[:,
:,
0
]
# read rgb image and extract luminance
def
_setup_graph
(
self
):
def
_setup_graph
(
self
):
self
.
predictor
=
self
.
trainer
.
get_predict
_func
([
'luminance'
],
[
'prediction/output'
])
self
.
predictor
=
self
.
trainer
.
get_predict
or
([
'luminance'
],
[
'prediction/output'
])
def
_trigger_epoch
(
self
):
def
_trigger_epoch
(
self
):
pass
pass
...
@@ -367,7 +367,7 @@ you can simply `print(prediction)` to find out the name.
...
@@ -367,7 +367,7 @@ you can simply `print(prediction)` to find out the name.
These two names allows us to build the inference part of the network in
These two names allows us to build the inference part of the network in
```
python
```
python
self
.
trainer
.
get_predict
_func
([
'luminance'
,
'prediction/output'
])
self
.
trainer
.
get_predict
or
([
'luminance'
,
'prediction/output'
])
```
```
This is very convenient because in the
`_tigger_epoch`
we can use:
This is very convenient because in the
`_tigger_epoch`
we can use:
...
@@ -385,7 +385,7 @@ class OnlineExport(Callback):
...
@@ -385,7 +385,7 @@ class OnlineExport(Callback):
self
.
example_input
=
color
.
rgb2lab
(
cv2
.
imread
(
'myimage.jpg'
)[:,
:,
[
2
,
1
,
0
]])[:,
:,
0
]
self
.
example_input
=
color
.
rgb2lab
(
cv2
.
imread
(
'myimage.jpg'
)[:,
:,
[
2
,
1
,
0
]])[:,
:,
0
]
def
_setup_graph
(
self
):
def
_setup_graph
(
self
):
self
.
trainer
.
get_predict
_func
([
'luminance'
,
'prediction/output'
])
self
.
trainer
.
get_predict
or
([
'luminance'
,
'prediction/output'
])
def
_trigger_epoch
(
self
):
def
_trigger_epoch
(
self
):
hopefully_cool_rgb
=
self
.
pred
([[
self
.
example_input
]])[
0
][
0
]
hopefully_cool_rgb
=
self
.
pred
([[
self
.
example_input
]])[
0
][
0
]
...
...
examples/A3C-Gym/train-atari.py
View file @
3e61aacd
...
@@ -151,7 +151,7 @@ class MySimulatorMaster(SimulatorMaster, Callback):
...
@@ -151,7 +151,7 @@ class MySimulatorMaster(SimulatorMaster, Callback):
def
_setup_graph
(
self
):
def
_setup_graph
(
self
):
self
.
async_predictor
=
MultiThreadAsyncPredictor
(
self
.
async_predictor
=
MultiThreadAsyncPredictor
(
self
.
trainer
.
get_predict
_func
s
([
'state'
],
[
'logitsT'
,
'pred_value'
],
self
.
trainer
.
get_predict
or
s
([
'state'
],
[
'logitsT'
,
'pred_value'
],
PREDICTOR_THREAD
),
batch_size
=
15
)
PREDICTOR_THREAD
),
batch_size
=
15
)
def
_before_train
(
self
):
def
_before_train
(
self
):
...
...
examples/DeepQNetwork/common.py
View file @
3e61aacd
...
@@ -38,7 +38,7 @@ def play_model(cfg):
...
@@ -38,7 +38,7 @@ def play_model(cfg):
print
(
"Total:"
,
score
)
print
(
"Total:"
,
score
)
def
eval_with_funcs
(
predict
_func
s
,
nr_eval
):
def
eval_with_funcs
(
predict
or
s
,
nr_eval
):
class
Worker
(
StoppableThread
,
ShareSessionThread
):
class
Worker
(
StoppableThread
,
ShareSessionThread
):
def
__init__
(
self
,
func
,
queue
):
def
__init__
(
self
,
func
,
queue
):
super
(
Worker
,
self
)
.
__init__
()
super
(
Worker
,
self
)
.
__init__
()
...
@@ -62,7 +62,7 @@ def eval_with_funcs(predict_funcs, nr_eval):
...
@@ -62,7 +62,7 @@ def eval_with_funcs(predict_funcs, nr_eval):
self
.
queue_put_stoppable
(
self
.
q
,
score
)
self
.
queue_put_stoppable
(
self
.
q
,
score
)
q
=
queue
.
Queue
()
q
=
queue
.
Queue
()
threads
=
[
Worker
(
f
,
q
)
for
f
in
predict
_func
s
]
threads
=
[
Worker
(
f
,
q
)
for
f
in
predict
or
s
]
for
k
in
threads
:
for
k
in
threads
:
k
.
start
()
k
.
start
()
...
@@ -103,7 +103,7 @@ class Evaluator(Triggerable):
...
@@ -103,7 +103,7 @@ class Evaluator(Triggerable):
def
_setup_graph
(
self
):
def
_setup_graph
(
self
):
NR_PROC
=
min
(
multiprocessing
.
cpu_count
()
//
2
,
20
)
NR_PROC
=
min
(
multiprocessing
.
cpu_count
()
//
2
,
20
)
self
.
pred_funcs
=
[
self
.
trainer
.
get_predict
_func
(
self
.
pred_funcs
=
[
self
.
trainer
.
get_predict
or
(
self
.
input_names
,
self
.
output_names
)]
*
NR_PROC
self
.
input_names
,
self
.
output_names
)]
*
NR_PROC
def
_trigger
(
self
):
def
_trigger
(
self
):
...
...
examples/DeepQNetwork/expreplay.py
View file @
3e61aacd
...
@@ -229,7 +229,7 @@ class ExpReplay(DataFlow, Callback):
...
@@ -229,7 +229,7 @@ class ExpReplay(DataFlow, Callback):
return
[
state
,
action
,
reward
,
isOver
]
return
[
state
,
action
,
reward
,
isOver
]
def
_setup_graph
(
self
):
def
_setup_graph
(
self
):
self
.
predictor
=
self
.
trainer
.
get_predict
_func
(
*
self
.
predictor_io_names
)
self
.
predictor
=
self
.
trainer
.
get_predict
or
(
*
self
.
predictor_io_names
)
def
_before_train
(
self
):
def
_before_train
(
self
):
self
.
_init_memory
()
self
.
_init_memory
()
...
...
examples/DoReFa-Net/alexnet-dorefa.py
View file @
3e61aacd
...
@@ -258,7 +258,7 @@ def run_image(model, sess_init, inputs):
...
@@ -258,7 +258,7 @@ def run_image(model, sess_init, inputs):
input_names
=
[
'input'
],
input_names
=
[
'input'
],
output_names
=
[
'output'
]
output_names
=
[
'output'
]
)
)
predict
_func
=
OfflinePredictor
(
pred_config
)
predict
or
=
OfflinePredictor
(
pred_config
)
meta
=
dataset
.
ILSVRCMeta
()
meta
=
dataset
.
ILSVRCMeta
()
pp_mean
=
meta
.
get_per_pixel_mean
()
pp_mean
=
meta
.
get_per_pixel_mean
()
pp_mean_224
=
pp_mean
[
16
:
-
16
,
16
:
-
16
,
:]
pp_mean_224
=
pp_mean
[
16
:
-
16
,
16
:
-
16
,
:]
...
@@ -282,7 +282,7 @@ def run_image(model, sess_init, inputs):
...
@@ -282,7 +282,7 @@ def run_image(model, sess_init, inputs):
assert
img
is
not
None
assert
img
is
not
None
img
=
transformers
.
augment
(
img
)[
np
.
newaxis
,
:,
:,
:]
img
=
transformers
.
augment
(
img
)[
np
.
newaxis
,
:,
:,
:]
outputs
=
predict
_func
([
img
])[
0
]
outputs
=
predict
or
([
img
])[
0
]
prob
=
outputs
[
0
]
prob
=
outputs
[
0
]
ret
=
prob
.
argsort
()[
-
10
:][::
-
1
]
ret
=
prob
.
argsort
()[
-
10
:][::
-
1
]
...
...
examples/HED/hed.py
View file @
3e61aacd
...
@@ -192,11 +192,11 @@ def run(model_path, image_path, output):
...
@@ -192,11 +192,11 @@ def run(model_path, image_path, output):
session_init
=
get_model_loader
(
model_path
),
session_init
=
get_model_loader
(
model_path
),
input_names
=
[
'image'
],
input_names
=
[
'image'
],
output_names
=
[
'output'
+
str
(
k
)
for
k
in
range
(
1
,
7
)])
output_names
=
[
'output'
+
str
(
k
)
for
k
in
range
(
1
,
7
)])
predict
_func
=
OfflinePredictor
(
pred_config
)
predict
or
=
OfflinePredictor
(
pred_config
)
im
=
cv2
.
imread
(
image_path
)
im
=
cv2
.
imread
(
image_path
)
assert
im
is
not
None
assert
im
is
not
None
im
=
cv2
.
resize
(
im
,
(
im
.
shape
[
1
]
//
16
*
16
,
im
.
shape
[
0
]
//
16
*
16
))
im
=
cv2
.
resize
(
im
,
(
im
.
shape
[
1
]
//
16
*
16
,
im
.
shape
[
0
]
//
16
*
16
))
outputs
=
predict
_func
([[
im
.
astype
(
'float32'
)]])
outputs
=
predict
or
([[
im
.
astype
(
'float32'
)]])
if
output
is
None
:
if
output
is
None
:
for
k
in
range
(
6
):
for
k
in
range
(
6
):
pred
=
outputs
[
k
][
0
]
pred
=
outputs
[
k
][
0
]
...
...
examples/Saliency/saliency-maps.py
View file @
3e61aacd
...
@@ -30,7 +30,7 @@ class Model(tp.ModelDesc):
...
@@ -30,7 +30,7 @@ class Model(tp.ModelDesc):
def
run
(
model_path
,
image_path
):
def
run
(
model_path
,
image_path
):
predict
_func
=
tp
.
OfflinePredictor
(
tp
.
PredictConfig
(
predict
or
=
tp
.
OfflinePredictor
(
tp
.
PredictConfig
(
model
=
Model
(),
model
=
Model
(),
session_init
=
tp
.
get_model_loader
(
model_path
),
session_init
=
tp
.
get_model_loader
(
model_path
),
input_names
=
[
'image'
],
input_names
=
[
'image'
],
...
@@ -42,7 +42,7 @@ def run(model_path, image_path):
...
@@ -42,7 +42,7 @@ def run(model_path, image_path):
im
=
cv2
.
resize
(
im
,
(
IMAGE_SIZE
,
IMAGE_SIZE
))
im
=
cv2
.
resize
(
im
,
(
IMAGE_SIZE
,
IMAGE_SIZE
))
im
=
im
.
astype
(
np
.
float32
)[:,
:,
::
-
1
]
im
=
im
.
astype
(
np
.
float32
)[:,
:,
::
-
1
]
saliency_images
=
predict
_func
([
im
])[
0
]
saliency_images
=
predict
or
([
im
])[
0
]
abs_saliency
=
np
.
abs
(
saliency_images
)
.
max
(
axis
=-
1
)
abs_saliency
=
np
.
abs
(
saliency_images
)
.
max
(
axis
=-
1
)
pos_saliency
=
np
.
maximum
(
0
,
saliency_images
)
pos_saliency
=
np
.
maximum
(
0
,
saliency_images
)
...
...
examples/load-alexnet.py
View file @
3e61aacd
...
@@ -54,7 +54,7 @@ class Model(ModelDesc):
...
@@ -54,7 +54,7 @@ class Model(ModelDesc):
def
run_test
(
path
,
input
):
def
run_test
(
path
,
input
):
param_dict
=
np
.
load
(
path
,
encoding
=
'latin1'
)
.
item
()
param_dict
=
np
.
load
(
path
,
encoding
=
'latin1'
)
.
item
()
predict
_func
=
OfflinePredictor
(
PredictConfig
(
predict
or
=
OfflinePredictor
(
PredictConfig
(
model
=
Model
(),
model
=
Model
(),
session_init
=
ParamRestore
(
param_dict
),
session_init
=
ParamRestore
(
param_dict
),
input_names
=
[
'input'
],
input_names
=
[
'input'
],
...
@@ -65,7 +65,7 @@ def run_test(path, input):
...
@@ -65,7 +65,7 @@ def run_test(path, input):
assert
im
is
not
None
,
input
assert
im
is
not
None
,
input
im
=
cv2
.
resize
(
im
,
(
227
,
227
))[:,
:,
::
-
1
]
.
reshape
(
im
=
cv2
.
resize
(
im
,
(
227
,
227
))[:,
:,
::
-
1
]
.
reshape
(
(
1
,
227
,
227
,
3
))
.
astype
(
'float32'
)
-
110
(
1
,
227
,
227
,
3
))
.
astype
(
'float32'
)
-
110
outputs
=
predict
_func
([
im
])[
0
]
outputs
=
predict
or
([
im
])[
0
]
prob
=
outputs
[
0
]
prob
=
outputs
[
0
]
ret
=
prob
.
argsort
()[
-
10
:][::
-
1
]
ret
=
prob
.
argsort
()[
-
10
:][::
-
1
]
print
(
"Top10 predictions:"
,
ret
)
print
(
"Top10 predictions:"
,
ret
)
...
...
tensorpack/callbacks/inference_runner.py
View file @
3e61aacd
...
@@ -92,7 +92,7 @@ class InferenceRunner(Triggerable):
...
@@ -92,7 +92,7 @@ class InferenceRunner(Triggerable):
def
_setup_graph
(
self
):
def
_setup_graph
(
self
):
self
.
_find_input_tensors
()
# these are all tensor names
self
.
_find_input_tensors
()
# these are all tensor names
self
.
_find_output_tensors
()
# may be either tensor name or op name
self
.
_find_output_tensors
()
# may be either tensor name or op name
self
.
pred
_func
=
self
.
trainer
.
get_predict_func
(
self
.
pred
ictor
=
self
.
trainer
.
get_predictor
(
self
.
input_tensors
,
self
.
output_tensors
)
self
.
input_tensors
,
self
.
output_tensors
)
def
_find_input_tensors
(
self
):
def
_find_input_tensors
(
self
):
...
@@ -135,7 +135,7 @@ class InferenceRunner(Triggerable):
...
@@ -135,7 +135,7 @@ class InferenceRunner(Triggerable):
self
.
ds
.
reset_state
()
self
.
ds
.
reset_state
()
with
get_tqdm
(
total
=
self
.
ds
.
size
())
as
pbar
:
with
get_tqdm
(
total
=
self
.
ds
.
size
())
as
pbar
:
for
dp
in
self
.
ds
.
get_data
():
for
dp
in
self
.
ds
.
get_data
():
outputs
=
self
.
pred
_func
(
dp
)
outputs
=
self
.
pred
ictor
(
dp
)
for
inf
,
tensormap
in
zip
(
self
.
infs
,
self
.
inf_to_tensors
):
for
inf
,
tensormap
in
zip
(
self
.
infs
,
self
.
inf_to_tensors
):
inf_output
=
[(
outputs
if
k
.
isOutput
else
dp
)[
k
.
index
]
inf_output
=
[(
outputs
if
k
.
isOutput
else
dp
)[
k
.
index
]
for
k
in
tensormap
]
for
k
in
tensormap
]
...
...
tensorpack/callbacks/param.py
View file @
3e61aacd
...
@@ -218,8 +218,8 @@ class ScheduledHyperParamSetter(HyperParamSetter):
...
@@ -218,8 +218,8 @@ class ScheduledHyperParamSetter(HyperParamSetter):
param: same as in :class:`HyperParamSetter`.
param: same as in :class:`HyperParamSetter`.
schedule (list): with the format ``[(epoch1, val1), (epoch2, val2), (epoch3, val3)]``.
schedule (list): with the format ``[(epoch1, val1), (epoch2, val2), (epoch3, val3)]``.
Each ``(ep, val)`` pair means to set the param
Each ``(ep, val)`` pair means to set the param
to "val"
after
the completion of `ep` th epoch.
to "val"
__after__
the completion of `ep` th epoch.
If ep == 0, the value will be set before t
raining
.
If ep == 0, the value will be set before t
he first epoch
.
interp: None: no interpolation. 'linear': linear interpolation
interp: None: no interpolation. 'linear': linear interpolation
Example:
Example:
...
@@ -263,6 +263,7 @@ class HyperParamSetterWithFunc(HyperParamSetter):
...
@@ -263,6 +263,7 @@ class HyperParamSetterWithFunc(HyperParamSetter):
Args:
Args:
param: same as in :class:`HyperParamSetter`.
param: same as in :class:`HyperParamSetter`.
func: ``param`` will be set by ``new_value = func(epoch_num, old_value)``.
func: ``param`` will be set by ``new_value = func(epoch_num, old_value)``.
``epoch_num`` is the number of epochs that have finished.
Example:
Example:
Decrease by a factor of 0.9 every two epochs:
Decrease by a factor of 0.9 every two epochs:
...
...
tensorpack/predict/base.py
View file @
3e61aacd
...
@@ -7,7 +7,7 @@ from abc import abstractmethod, ABCMeta
...
@@ -7,7 +7,7 @@ from abc import abstractmethod, ABCMeta
import
tensorflow
as
tf
import
tensorflow
as
tf
import
six
import
six
from
..utils
import
logger
from
..utils
import
logger
,
deprecated
from
..utils.argtools
import
memoized
from
..utils.argtools
import
memoized
from
..utils.naming
import
SUMMARY_BACKUP_KEYS
from
..utils.naming
import
SUMMARY_BACKUP_KEYS
from
..tfutils
import
get_tensors_by_names
,
TowerContext
from
..tfutils
import
get_tensors_by_names
,
TowerContext
...
@@ -146,6 +146,7 @@ class OfflinePredictor(OnlinePredictor):
...
@@ -146,6 +146,7 @@ class OfflinePredictor(OnlinePredictor):
input_tensors
,
output_tensors
,
config
.
return_input
,
sess
)
input_tensors
,
output_tensors
,
config
.
return_input
,
sess
)
@
deprecated
(
"Use OfflinePredictor instead!"
,
"2017-05-20"
)
def
get_predict_func
(
config
):
def
get_predict_func
(
config
):
"""
"""
Equivalent to ``OfflinePredictor(config)``.
Equivalent to ``OfflinePredictor(config)``.
...
...
tensorpack/train/base.py
View file @
3e61aacd
...
@@ -189,7 +189,7 @@ class Trainer(object):
...
@@ -189,7 +189,7 @@ class Trainer(object):
self
.
summary_writer
.
close
()
self
.
summary_writer
.
close
()
self
.
monitored_sess
.
close
()
self
.
monitored_sess
.
close
()
def
get_predict
_func
(
self
,
input_names
,
output_names
,
tower
=
0
):
def
get_predict
or
(
self
,
input_names
,
output_names
,
tower
=
0
):
"""
"""
Args:
Args:
input_names (list), output_names(list): list of names
input_names (list), output_names(list): list of names
...
@@ -200,16 +200,25 @@ class Trainer(object):
...
@@ -200,16 +200,25 @@ class Trainer(object):
"""
"""
if
not
hasattr
(
self
,
'_predictor_factory'
):
if
not
hasattr
(
self
,
'_predictor_factory'
):
self
.
_predictor_factory
=
PredictorFactory
(
self
)
self
.
_predictor_factory
=
PredictorFactory
(
self
)
nr_tower
=
len
(
self
.
config
.
predict_tower
)
if
nr_tower
<
tower
:
logger
.
warn
(
"Requested the {}th predictor but only have {} predict towers! "
"Predictors will be assigned to GPUs in round-robin."
.
format
(
tower
,
nr_tower
))
tower
=
tower
%
nr_tower
return
self
.
_predictor_factory
.
get_predictor
(
input_names
,
output_names
,
tower
)
return
self
.
_predictor_factory
.
get_predictor
(
input_names
,
output_names
,
tower
)
def
get_predict
_func
s
(
self
,
input_names
,
output_names
,
n
):
def
get_predict
or
s
(
self
,
input_names
,
output_names
,
n
):
""" Return n predictors. """
""" Return n predictors. """
nr_tower
=
len
(
self
.
config
.
predict_tower
)
return
[
self
.
get_predictor
(
input_names
,
output_names
,
k
)
for
k
in
range
(
n
)]
if
nr_tower
<
n
:
logger
.
warn
(
@
deprecated
(
"Use get_predictor instead!"
,
"2017-05-20"
)
"Requested {} predictor but only have {} predict towers! "
def
get_predict_func
(
self
,
input_names
,
output_names
,
tower
=
0
):
"Predictors will be assigned to GPUs in round-robin."
.
format
(
n
,
nr_tower
))
return
self
.
get_predictor
(
input_names
,
output_names
,
tower
)
return
[
self
.
get_predict_func
(
input_names
,
output_names
,
k
%
nr_tower
)
for
k
in
range
(
n
)]
@
deprecated
(
"Use get_predictors instead!"
,
"2017-05-20"
)
def
get_predict_funcs
(
self
,
input_names
,
output_names
,
n
):
return
self
.
get_predictors
(
input_names
,
output_names
,
n
)
@
deprecated
(
"Don't need to call it any more!"
,
"2017-03-20"
)
@
deprecated
(
"Don't need to call it any more!"
,
"2017-03-20"
)
def
_setup_predictor_factory
(
self
):
def
_setup_predictor_factory
(
self
):
...
...
tensorpack/train/predict.py
View file @
3e61aacd
...
@@ -26,7 +26,6 @@ class PredictorFactory(object):
...
@@ -26,7 +26,6 @@ class PredictorFactory(object):
self
.
_tower_builder
=
PredictorTowerBuilder
(
fn
)
self
.
_tower_builder
=
PredictorTowerBuilder
(
fn
)
assert
isinstance
(
self
.
towers
,
list
)
assert
isinstance
(
self
.
towers
,
list
)
# TODO sess option
def
get_predictor
(
self
,
input_names
,
output_names
,
tower
):
def
get_predictor
(
self
,
input_names
,
output_names
,
tower
):
"""
"""
Args:
Args:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment