Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
3e30bda4
Commit
3e30bda4
authored
Nov 07, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Use fewer `prediction_incorrect`.
parent
bf9da6d5
Changes
10
Show whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
57 additions
and
68 deletions
+57
-68
examples/DoReFa-Net/resnet-dorefa.py
examples/DoReFa-Net/resnet-dorefa.py
+8
-27
examples/ResNet/cifar10-resnet.py
examples/ResNet/cifar10-resnet.py
+2
-2
examples/ResNet/imagenet_utils.py
examples/ResNet/imagenet_utils.py
+3
-2
examples/ResNet/load-resnet.py
examples/ResNet/load-resnet.py
+2
-4
examples/SpatialTransformer/mnist-addition.py
examples/SpatialTransformer/mnist-addition.py
+1
-2
examples/svhn-digit-convnet.py
examples/svhn-digit-convnet.py
+16
-26
tensorpack/callbacks/inference.py
tensorpack/callbacks/inference.py
+3
-3
tensorpack/tfutils/distributed.py
tensorpack/tfutils/distributed.py
+4
-1
tensorpack/tfutils/tower.py
tensorpack/tfutils/tower.py
+9
-1
tensorpack/train/tower.py
tensorpack/train/tower.py
+9
-0
No files found.
examples/DoReFa-Net/resnet-dorefa.py
View file @
3e30bda4
...
...
@@ -14,6 +14,8 @@ from tensorpack.dataflow import dataset
from
tensorpack.tfutils.symbolic_functions
import
*
from
tensorpack.utils.stats
import
RatioCounter
from
tensorpack.tfutils.varreplace
import
remap_variables
from
imagenet_utils
import
ImageNetModel
,
eval_on_ILSVRC12
,
fbresnet_augmentor
from
dorefa
import
get_dorefa
"""
...
...
@@ -110,15 +112,11 @@ class Model(ModelDesc):
.
tf
.
multiply
(
49
)
# this is due to a bug in our model design
.
FullyConnected
(
'fct'
,
1000
)())
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
wrong
=
prediction_incorrect
(
logits
,
label
,
1
,
name
=
'wrong-top1'
)
wrong
=
prediction_incorrect
(
logits
,
label
,
5
,
name
=
'wrong-top5'
)
ImageNetModel
.
compute_loss_and_error
(
logits
,
label
)
def
get_inference_augmentor
():
return
imgaug
.
AugmentorList
([
imgaug
.
ResizeShortestEdge
(
256
),
imgaug
.
CenterCrop
(
224
),
])
return
fbresnet_augmentor
(
False
)
def
run_image
(
model
,
sess_init
,
inputs
):
...
...
@@ -148,26 +146,6 @@ def run_image(model, sess_init, inputs):
print
(
list
(
zip
(
names
,
prob
[
ret
])))
def
eval_on_ILSVRC12
(
model_path
,
data_dir
):
ds
=
dataset
.
ILSVRC12
(
data_dir
,
'val'
,
shuffle
=
False
)
ds
=
AugmentImageComponent
(
ds
,
get_inference_augmentor
())
ds
=
BatchData
(
ds
,
192
,
remainder
=
True
)
pred_config
=
PredictConfig
(
model
=
Model
(),
session_init
=
get_model_loader
(
model_path
),
input_names
=
[
'input'
,
'label'
],
output_names
=
[
'wrong-top1'
,
'wrong-top5'
]
)
pred
=
SimpleDatasetPredictor
(
pred_config
,
ds
)
acc1
,
acc5
=
RatioCounter
(),
RatioCounter
()
for
o
in
pred
.
get_result
():
batch_size
=
o
[
0
]
.
shape
[
0
]
acc1
.
feed
(
o
[
0
]
.
sum
(),
batch_size
)
acc5
.
feed
(
o
[
1
]
.
sum
(),
batch_size
)
print
(
"Top1 Error: {}"
.
format
(
acc1
.
ratio
))
print
(
"Top5 Error: {}"
.
format
(
acc5
.
ratio
))
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--gpu'
,
help
=
'the physical ids of GPUs to use'
)
...
...
@@ -187,7 +165,10 @@ if __name__ == '__main__':
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
if
args
.
eval
:
eval_on_ILSVRC12
(
args
.
load
,
args
.
data
)
ds
=
dataset
.
ILSVRC12
(
args
.
data
,
'val'
,
shuffle
=
False
)
ds
=
AugmentImageComponent
(
ds
,
get_inference_augmentor
())
ds
=
BatchData
(
ds
,
192
,
remainder
=
True
)
eval_on_ILSVRC12
(
Model
(),
get_model_loader
(
args
.
load
),
ds
)
elif
args
.
run
:
assert
args
.
load
.
endswith
(
'.npy'
)
run_image
(
Model
(),
DictRestore
(
...
...
examples/ResNet/cifar10-resnet.py
View file @
3e30bda4
...
...
@@ -102,7 +102,7 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
wrong
=
prediction_incorrect
(
logits
,
label
)
wrong
=
tf
.
to_float
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)),
name
=
'wrong_vector'
)
# monitor training error
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
...
...
@@ -167,7 +167,7 @@ if __name__ == '__main__':
callbacks
=
[
ModelSaver
(),
InferenceRunner
(
dataset_test
,
[
ScalarStats
(
'cost'
),
ClassificationError
()]),
[
ScalarStats
(
'cost'
),
ClassificationError
(
'wrong_vector'
)]),
ScheduledHyperParamSetter
(
'learning_rate'
,
[(
1
,
0.1
),
(
82
,
0.01
),
(
123
,
0.001
),
(
300
,
0.0002
)])
],
...
...
examples/ResNet/imagenet_utils.py
View file @
3e30bda4
...
...
@@ -157,7 +157,7 @@ class ImageNetModel(ModelDesc):
image
=
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
logits
=
self
.
get_logits
(
image
)
loss
=
self
.
compute_loss_and_error
(
logits
,
label
)
loss
=
ImageNetModel
.
compute_loss_and_error
(
logits
,
label
)
wd_loss
=
regularize_cost
(
'.*/W'
,
tf
.
contrib
.
layers
.
l2_regularizer
(
self
.
weight_decay
),
name
=
'l2_regularize_loss'
)
add_moving_summary
(
loss
,
wd_loss
)
...
...
@@ -194,7 +194,8 @@ class ImageNetModel(ModelDesc):
image
=
(
image
-
image_mean
)
/
image_std
return
image
def
compute_loss_and_error
(
self
,
logits
,
label
):
@
staticmethod
def
compute_loss_and_error
(
logits
,
label
):
loss
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
loss
=
tf
.
reduce_mean
(
loss
,
name
=
'xentropy-loss'
)
...
...
examples/ResNet/load-resnet.py
View file @
3e30bda4
...
...
@@ -18,11 +18,10 @@ from tensorflow.contrib.layers import variance_scaling_initializer
from
tensorpack
import
*
from
tensorpack.utils
import
logger
from
tensorpack.utils.stats
import
RatioCounter
from
tensorpack.tfutils.symbolic_functions
import
*
from
tensorpack.tfutils.summary
import
*
from
tensorpack.dataflow.dataset
import
ILSVRCMeta
,
ILSVRC12
from
imagenet_utils
import
eval_on_ILSVRC12
,
get_imagenet_dataflow
from
imagenet_utils
import
eval_on_ILSVRC12
,
get_imagenet_dataflow
,
ImageNetModel
from
resnet_model
import
resnet_group
,
resnet_bottleneck
DEPTH
=
None
...
...
@@ -62,8 +61,7 @@ class Model(ModelDesc):
.
GlobalAvgPooling
(
'gap'
)
.
FullyConnected
(
'linear'
,
1000
,
nl
=
tf
.
identity
)())
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
prediction_incorrect
(
logits
,
label
,
name
=
'wrong-top1'
)
prediction_incorrect
(
logits
,
label
,
5
,
name
=
'wrong-top5'
)
ImageNetModel
.
compute_loss_and_error
(
logits
,
label
)
def
get_inference_augmentor
():
...
...
examples/SpatialTransformer/mnist-addition.py
View file @
3e30bda4
...
...
@@ -14,7 +14,6 @@ os.environ['TENSORPACK_TRAIN_API'] = 'v2' # will become default soon
from
tensorpack
import
*
from
tensorpack.dataflow
import
dataset
from
tensorpack.tfutils
import
sesscreate
,
optimizer
,
summary
import
tensorpack.tfutils.symbolic_functions
as
symbf
IMAGE_SIZE
=
42
WARP_TARGET_SIZE
=
28
...
...
@@ -81,7 +80,7 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
wrong
=
symbf
.
prediction_incorrect
(
logits
,
label
)
wrong
=
tf
.
to_float
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)),
name
=
'incorrect_vector'
)
summary
.
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
...
...
examples/svhn-digit-convnet.py
View file @
3e30bda4
...
...
@@ -47,10 +47,8 @@ class Model(ModelDesc):
.
FullyConnected
(
'linear'
,
out_dim
=
10
,
nl
=
tf
.
identity
)())
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
# compute the number of failed samples, for ClassificationError to use at test time
wrong
=
prediction_incorrect
(
logits
,
label
)
# monitor training error
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
acc
=
tf
.
to_float
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
))
add_moving_summary
(
tf
.
reduce_mean
(
accuracy
,
name
=
'accuracy'
))
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
...
...
@@ -95,21 +93,6 @@ def get_data():
return
data_train
,
data_test
def
get_config
():
data_train
,
data_test
=
get_data
()
return
TrainConfig
(
model
=
Model
(),
data
=
QueueInput
(
data_train
),
callbacks
=
[
ModelSaver
(),
InferenceRunner
(
data_test
,
[
ScalarStats
(
'cost'
),
ClassificationError
()])
],
max_epoch
=
350
,
)
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--gpu'
,
help
=
'comma separated list of GPU(s) to use.'
)
...
...
@@ -118,12 +101,19 @@ if __name__ == '__main__':
if
args
.
gpu
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
else
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
logger
.
auto_set_dir
()
with
tf
.
Graph
()
.
as_default
():
config
=
get_config
()
if
args
.
load
:
config
.
session_init
=
SaverRestore
(
args
.
load
)
data_train
,
data_test
=
get_data
()
config
=
TrainConfig
(
model
=
Model
(),
data
=
QueueInput
(
data_train
),
callbacks
=
[
ModelSaver
(),
InferenceRunner
(
data_test
,
ScalarStats
([
'cost'
,
'accuracy'
]))
],
max_epoch
=
350
,
session_init
=
SaverRestore
(
args
.
load
)
if
args
.
load
else
None
)
launch_train_with_config
(
config
,
SimpleTrainer
())
tensorpack/callbacks/inference.py
View file @
3e30bda4
...
...
@@ -133,7 +133,7 @@ class ScalarStats(Inferencer):
class
ClassificationError
(
Inferencer
):
"""
Compute classification error in batch mode, from a ``wrong`` tensor.
Compute
__true__
classification error in batch mode, from a ``wrong`` tensor.
The ``wrong`` tensor is supposed to be an binary vector containing
whether each sample in the batch is *incorrectly* classified.
...
...
@@ -145,14 +145,14 @@ class ClassificationError(Inferencer):
testing (because the size of test set might not be a multiple of batch size).
Therefore the result can be different from averaging the error rate of each batch.
You can also use the "correct prediction" tensor,
so
this inferencer will
You can also use the "correct prediction" tensor,
then
this inferencer will
give you "classification accuracy" instead of error.
"""
def
__init__
(
self
,
wrong_tensor_name
=
'incorrect_vector'
,
summary_name
=
'validation_error'
):
"""
Args:
wrong_tensor_name(str): name of the ``wrong`` tensor.
wrong_tensor_name(str): name of the ``wrong``
binary vector
tensor.
summary_name(str): the name to log the error with.
"""
self
.
wrong_tensor_name
=
wrong_tensor_name
...
...
tensorpack/tfutils/distributed.py
View file @
3e30bda4
...
...
@@ -36,6 +36,9 @@ def get_distributed_session_creator(server):
if
is_chief
:
return
sm
.
prepare_session
(
master
=
server
.
target
,
init_op
=
init_op
)
else
:
return
sm
.
wait_for_session
(
master
=
server
.
target
)
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
# print message about uninitialized vars
ret
=
sm
.
wait_for_session
(
master
=
server
.
target
)
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
WARN
)
return
ret
return
_Creator
()
tensorpack/tfutils/tower.py
View file @
3e30bda4
...
...
@@ -238,11 +238,19 @@ class TowerTensorHandles(object):
def
training
(
self
):
"""
Returns:
Still a
:class:`TowerTensorHandles`, containing only the training towers.
A
:class:`TowerTensorHandles`, containing only the training towers.
"""
handles
=
[
h
for
h
in
self
.
_handles
if
h
.
is_training
]
return
TowerTensorHandles
(
handles
)
def
inference
(
self
):
"""
Returns:
A :class:`TowerTensorHandles`, containing only the inference towers.
"""
handles
=
[
h
for
h
in
self
.
_handles
if
not
h
.
is_training
]
return
TowerTensorHandles
(
handles
)
class
TowerTensorHandle
(
object
):
"""
...
...
tensorpack/train/tower.py
View file @
3e30bda4
...
...
@@ -50,6 +50,15 @@ class TowerTrainer(Trainer):
"""
return
self
.
tower_func
.
inputs_desc
@
property
def
towers
(
self
):
"""
Returns:
a :class:`TowerTensorHandles` object, to
access the tower handles by either indices or names.
"""
return
self
.
tower_func
.
towers
def
get_predictor
(
self
,
input_names
,
output_names
,
device
=
0
):
"""
Returns a callable predictor built under ``TowerContext(is_training=False)``.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment