Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
2efc98f7
Commit
2efc98f7
authored
Aug 23, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[MaskRCNN] score was improved by
8f4a27f0
. rerun evaluation.
parent
99ba595d
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
10 additions
and
10 deletions
+10
-10
examples/FasterRCNN/README.md
examples/FasterRCNN/README.md
+5
-5
examples/FasterRCNN/eval.py
examples/FasterRCNN/eval.py
+2
-2
examples/keras/README.md
examples/keras/README.md
+3
-3
No files found.
examples/FasterRCNN/README.md
View file @
2efc98f7
...
...
@@ -79,14 +79,14 @@ MaskRCNN results contain both box and mask mAP.
| R50-C4 | 33.1 | | 18h |
<details><summary>
super quick
</summary>
`MODE_MASK=False FRCNN.BATCH_PER_IM=64`
<br/>
`PREPROC.SHORT_EDGE_SIZE=600 PREPROC.MAX_SIZE=1024`
<br/>
`TRAIN.LR_SCHEDULE=[150000,230000,280000]`
</details>
|
| R50-C4 | 36.6 | 36.5 | 44h |
<details><summary>
standard
</summary>
`MODE_MASK=False`
</details>
|
| R50-FPN | 37.4 | 37.9 | 30h |
<details><summary>
standard
</summary>
`MODE_MASK=False MODE_FPN=True`
</details>
|
| R50-C4 | 3
7.8;33.1
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R50C4-MaskRCNN-Standard.npz
)
| 37.8;32.8 | 49h |
<details><summary>
standard
</summary>
`MODE_MASK=True`
</details>
|
| R50-FPN | 38.
2;34.9
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R50FPN-MaskRCNN-Standard.npz
)
| 38.6;34.5 | 32h |
<details><summary>
standard
</summary>
`MODE_MASK=True MODE_FPN=True`
</details>
|
| R50-C4 | 3
8.2;33.3
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R50C4-MaskRCNN-Standard.npz
)
| 37.8;32.8 | 49h |
<details><summary>
standard
</summary>
`MODE_MASK=True`
</details>
|
| R50-FPN | 38.
5;35.2
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R50FPN-MaskRCNN-Standard.npz
)
| 38.6;34.5 | 32h |
<details><summary>
standard
</summary>
`MODE_MASK=True MODE_FPN=True`
</details>
|
| R50-FPN | 39.1;35.2 | 38.6;34.5 | 32h |
<details><summary>
better params
</summary>
`MODE_MASK=True MODE_FPN=True`
<br/>
`TEST.RESULT_SCORE_THRESH=1e-4`
<br/>
`FRCNN.BBOX_REG_WEIGHTS=[20,20,10,10]`
</details>
|
| R50-FPN | 39.5;35.2 | 39.5;34.4
<sup>
[
2
](
#ft2
)
</sup>
| 34h |
<details><summary>
standard+ConvGNHead
</summary>
`MODE_MASK=True MODE_FPN=True`
<br/>
`FPN.FRCNN_HEAD_FUNC=fastrcnn_4conv1fc_gn_head`
</details>
|
| R50-FPN | 40.0;36.
1
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R50FPN-MaskRCNN-StandardGN.npz
)
| 40.3;35.7 | 44h |
<details><summary>
standard+GN
</summary>
`MODE_MASK=True MODE_FPN=True`
<br/>
`FPN.NORM=GN BACKBONE.NORM=GN`
<br/>
`FPN.FRCNN_HEAD_FUNC=fastrcnn_4conv1fc_gn_head`
<br/>
`FPN.MRCNN_HEAD_FUNC=maskrcnn_up4conv_gn_head`
|
| R101-C4 | 4
0.8;35.1
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R101C4-MaskRCNN-Standard.npz
)
| | 63h |
<details><summary>
standard
</summary>
`MODE_MASK=True `
<br/>
`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]`
</details>
|
| R50-FPN | 40.0;36.
2
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R50FPN-MaskRCNN-StandardGN.npz
)
| 40.3;35.7 | 44h |
<details><summary>
standard+GN
</summary>
`MODE_MASK=True MODE_FPN=True`
<br/>
`FPN.NORM=GN BACKBONE.NORM=GN`
<br/>
`FPN.FRCNN_HEAD_FUNC=fastrcnn_4conv1fc_gn_head`
<br/>
`FPN.MRCNN_HEAD_FUNC=maskrcnn_up4conv_gn_head`
|
| R101-C4 | 4
1.4;35.2
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R101C4-MaskRCNN-Standard.npz
)
| | 63h |
<details><summary>
standard
</summary>
`MODE_MASK=True `
<br/>
`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]`
</details>
|
| R101-FPN | 40.4;36.6
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R101FPN-MaskRCNN-Standard.npz
)
| 40.9;36.4 | 40h |
<details><summary>
standard
</summary>
`MODE_MASK=True MODE_FPN=True`
<br/>
`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]`
</details>
|
| R101-FPN | 41.
0
;36.6
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R101FPN-MaskRCNN-BetterParams.npz
)
| 40.9;36.4 | 40h |
<details><summary>
better params
</summary>
`MODE_MASK=True MODE_FPN=True`
<br/>
`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]`
<br/>
`TEST.RESULT_SCORE_THRESH=1e-4`
<br/>
`FRCNN.BBOX_REG_WEIGHTS=[20,20,10,10]`
</details>
|
| R101-FPN | 41.
1
;36.6
[
:arrow_down:
](
http://models.tensorpack.com/FasterRCNN/COCO-R101FPN-MaskRCNN-BetterParams.npz
)
| 40.9;36.4 | 40h |
<details><summary>
better params
</summary>
`MODE_MASK=True MODE_FPN=True`
<br/>
`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]`
<br/>
`TEST.RESULT_SCORE_THRESH=1e-4`
<br/>
`FRCNN.BBOX_REG_WEIGHTS=[20,20,10,10]`
</details>
|
<a
id=
"ft1"
>
1
</a>
: Here we comapre models that have identical training & inference cost between the two implementation. However their numbers are different due to many small implementation details.
...
...
examples/FasterRCNN/eval.py
View file @
2efc98f7
...
...
@@ -120,8 +120,8 @@ def eval_coco(df, detect_func, tqdm_bar=None):
res
=
{
'image_id'
:
img_id
,
'category_id'
:
cat_id
,
'bbox'
:
list
(
map
(
lambda
x
:
round
(
float
(
x
),
2
),
box
)),
'score'
:
round
(
float
(
r
.
score
),
3
),
'bbox'
:
list
(
map
(
lambda
x
:
round
(
float
(
x
),
3
),
box
)),
'score'
:
round
(
float
(
r
.
score
),
4
),
}
# also append segmentation to results
...
...
examples/keras/README.md
View file @
2efc98f7
...
...
@@ -34,9 +34,9 @@ It has:
### Note:
Keras
support is __not official__. Keras
does not respect variable scopes or variable
collections, which contradicts with
TensorFlow conventions and
tensorpack trainers.
Therefore
, the support in tensorpack is experimental.
Keras does not respect variable scopes or variable
collections, which contradicts with tensorpack trainers.
Therefore
Keras support is __experimental__.
These simple examples can run within tensorpack smoothly, but note that a future version
of Keras may break them (unlikely, though).
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment