Commit 1f0670e5 authored by ppwwyyxx's avatar ppwwyyxx

fix scripts on new config

parent c5df0501
......@@ -83,7 +83,7 @@ def get_config():
dataset_train = FakeData([(227,227,3), tuple()], 10)
dataset_train = BatchData(dataset_train, 10)
step_per_epoch = 3
step_per_epoch = 1
sess_config = get_default_sess_config()
sess_config.gpu_options.per_process_gpu_memory_fraction = 0.5
......@@ -105,12 +105,12 @@ def get_config():
decay_rate=0.1, staircase=True, name='learning_rate')
tf.scalar_summary('learning_rate', lr)
param_dict = np.load('alexnet1.npy').item()
param_dict = np.load('alexnet.npy').item()
return TrainConfig(
dataset=dataset_train,
optimizer=tf.train.AdamOptimizer(lr),
callback=Callbacks([
callbacks=Callbacks([
SummaryWriter(),
PeriodicSaver(),
#ValidationError(dataset_test, prefix='test'),
......@@ -162,4 +162,4 @@ if __name__ == '__main__':
#start_train(get_config())
# run alexnet with given model (in npy format)
run_test('alexnet.npy')
run_test('alexnet-tuned.npy')
......@@ -23,10 +23,9 @@ args = parser.parse_args()
get_config_func = imp.load_source('config_script', args.config).get_config
with tf.Graph().as_default() as G:
global_step_var = tf.Variable(
0, trainable=False, name=GLOBAL_STEP_OP_NAME)
global_step_var = get_global_step_var()
config = get_config_func()
config['get_model_func'](config['inputs'], is_training=False)
config.get_model_func(config.inputs, is_training=False)
init = sessinit.SaverRestore(args.model)
sess = tf.Session()
init.init(sess)
......
......@@ -12,7 +12,7 @@ import imp
from tensorpack.utils import *
from tensorpack.utils import sessinit
from tensorpack.dataflow import *
from tensorpack.predict import DatasetPredictor
from tensorpack.predict import PredictConfig, DatasetPredictor
parser = argparse.ArgumentParser()
......@@ -27,11 +27,14 @@ args = parser.parse_args()
get_config_func = imp.load_source('config_script', args.config).get_config
with tf.Graph().as_default() as G:
global_step_var = tf.Variable(
0, trainable=False, name=GLOBAL_STEP_OP_NAME)
config = get_config_func()
config['session_init'] = sessinit.SaverRestore(args.model)
config['output_var'] = 'output:0'
train_config = get_config_func()
config = PredictConfig(
inputs=train_config.inputs,
input_dataset_mapping=[train_config.inputs[0]], # assume first component is image
get_model_func=train_config.get_model_func,
session_init=sessinit.SaverRestore(args.model),
output_var_names=['output:0']
)
ds = ImageFromFile(args.images, 3, resize=(227, 227))
predictor = DatasetPredictor(config, ds, batch=128)
......@@ -39,7 +42,7 @@ with tf.Graph().as_default() as G:
if args.output_type == 'label':
for r in res:
print r.argsort()[-top:][::-1]
print r[0].argsort(axis=1)[:,-args.top:][:,::-1]
elif args.output_type == 'label_prob':
raise NotImplementedError
elif args.output_type == 'raw':
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment