Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
1db8e2b4
Commit
1db8e2b4
authored
Nov 09, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
more on trainers
parent
efc74f2d
Changes
7
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
62 additions
and
48 deletions
+62
-48
tensorpack/tfutils/sessinit.py
tensorpack/tfutils/sessinit.py
+2
-2
tensorpack/tfutils/summary.py
tensorpack/tfutils/summary.py
+10
-8
tensorpack/tfutils/varmanip.py
tensorpack/tfutils/varmanip.py
+2
-2
tensorpack/train/base.py
tensorpack/train/base.py
+1
-1
tensorpack/train/multigpu.py
tensorpack/train/multigpu.py
+26
-18
tensorpack/train/queue.py
tensorpack/train/queue.py
+6
-16
tensorpack/train/trainer.py
tensorpack/train/trainer.py
+15
-1
No files found.
tensorpack/tfutils/sessinit.py
View file @
1db8e2b4
...
@@ -12,7 +12,7 @@ import six
...
@@ -12,7 +12,7 @@ import six
from
..utils
import
logger
from
..utils
import
logger
from
.common
import
get_op_var_name
from
.common
import
get_op_var_name
from
.varmanip
import
SessionUpdate
,
get_savename_from_varname
,
is_training_
specific_
name
from
.varmanip
import
SessionUpdate
,
get_savename_from_varname
,
is_training_name
__all__
=
[
'SessionInit'
,
'NewSession'
,
'SaverRestore'
,
__all__
=
[
'SessionInit'
,
'NewSession'
,
'SaverRestore'
,
'ParamRestore'
,
'ChainInit'
,
'ParamRestore'
,
'ChainInit'
,
...
@@ -129,7 +129,7 @@ class SaverRestore(SessionInit):
...
@@ -129,7 +129,7 @@ class SaverRestore(SessionInit):
var_dict
[
name
]
.
append
(
v
)
var_dict
[
name
]
.
append
(
v
)
chkpt_vars_used
.
add
(
name
)
chkpt_vars_used
.
add
(
name
)
else
:
else
:
if
not
is_training_
specific_
name
(
v
.
op
.
name
):
if
not
is_training_name
(
v
.
op
.
name
):
logger
.
warn
(
"Variable {} in the graph not found in checkpoint!"
.
format
(
v
.
op
.
name
))
logger
.
warn
(
"Variable {} in the graph not found in checkpoint!"
.
format
(
v
.
op
.
name
))
if
len
(
chkpt_vars_used
)
<
len
(
vars_available
):
if
len
(
chkpt_vars_used
)
<
len
(
vars_available
):
unused
=
vars_available
-
chkpt_vars_used
unused
=
vars_available
-
chkpt_vars_used
...
...
tensorpack/tfutils/summary.py
View file @
1db8e2b4
...
@@ -101,19 +101,21 @@ def add_moving_summary(v, *args):
...
@@ -101,19 +101,21 @@ def add_moving_summary(v, *args):
assert
x
.
get_shape
()
.
ndims
==
0
assert
x
.
get_shape
()
.
ndims
==
0
tf
.
add_to_collection
(
MOVING_SUMMARY_VARS_KEY
,
x
)
tf
.
add_to_collection
(
MOVING_SUMMARY_VARS_KEY
,
x
)
def
summary_moving_average
():
def
summary_moving_average
(
tensors
=
None
):
""" Create a MovingAverage op and summary for all variables in MOVING_SUMMARY_VARS_KEY.
"""
Create a MovingAverage op and summary for tensors
:param tensors: list of tf.Tensor to summary. default to the collection MOVING_SUMMARY_VARS_KEY
:returns: a op to maintain these average.
:returns: a op to maintain these average.
"""
"""
if
tensors
is
None
:
tensors
=
tf
.
get_collection
(
MOVING_SUMMARY_VARS_KEY
)
with
tf
.
name_scope
(
'EMA_summary'
):
with
tf
.
name_scope
(
'EMA_summary'
):
# TODO will produce EMA_summary/tower0/xxx. not elegant
# TODO will produce EMA_summary/tower0/xxx. not elegant
global_step_var
=
get_global_step_var
()
with
tf
.
name_scope
(
None
):
with
tf
.
name_scope
(
None
):
averager
=
tf
.
train
.
ExponentialMovingAverage
(
averager
=
tf
.
train
.
ExponentialMovingAverage
(
0.99
,
num_updates
=
global_step_var
,
name
=
'EMA'
)
0.99
,
num_updates
=
get_global_step_var
(),
name
=
'EMA'
)
vars_to_summary
=
tf
.
get_collection
(
MOVING_SUMMARY_VARS_KEY
)
avg_maintain_op
=
averager
.
apply
(
tensors
)
avg_maintain_op
=
averager
.
apply
(
vars_to_summary
)
for
idx
,
c
in
enumerate
(
tensors
):
for
idx
,
c
in
enumerate
(
vars_to_summary
):
name
=
re
.
sub
(
'tower[p0-9]+/'
,
''
,
c
.
op
.
name
)
name
=
re
.
sub
(
'tower[p0-9]+/'
,
''
,
c
.
op
.
name
)
tf
.
scalar_summary
(
name
,
averager
.
average
(
c
))
tf
.
scalar_summary
(
name
,
averager
.
average
(
c
))
return
avg_maintain_op
return
avg_maintain_op
...
...
tensorpack/tfutils/varmanip.py
View file @
1db8e2b4
...
@@ -13,7 +13,7 @@ from ..utils.naming import *
...
@@ -13,7 +13,7 @@ from ..utils.naming import *
from
.common
import
get_op_tensor_name
from
.common
import
get_op_tensor_name
__all__
=
[
'SessionUpdate'
,
'dump_session_params'
,
'dump_chkpt_vars'
,
__all__
=
[
'SessionUpdate'
,
'dump_session_params'
,
'dump_chkpt_vars'
,
'get_savename_from_varname'
,
'is_training_
specific_
name'
]
'get_savename_from_varname'
,
'is_training_name'
]
def
get_savename_from_varname
(
def
get_savename_from_varname
(
varname
,
varname_prefix
=
None
,
varname
,
varname_prefix
=
None
,
...
@@ -97,7 +97,7 @@ def dump_chkpt_vars(model_path):
...
@@ -97,7 +97,7 @@ def dump_chkpt_vars(model_path):
result
[
n
]
=
reader
.
get_tensor
(
n
)
result
[
n
]
=
reader
.
get_tensor
(
n
)
return
result
return
result
def
is_training_
specific_
name
(
name
):
def
is_training_name
(
name
):
"""
"""
This is only used to improve logging.
This is only used to improve logging.
:returns: guess whether this tensor is something only used in training.
:returns: guess whether this tensor is something only used in training.
...
...
tensorpack/train/base.py
View file @
1db8e2b4
...
@@ -139,7 +139,7 @@ class Trainer(object):
...
@@ -139,7 +139,7 @@ class Trainer(object):
if
self
.
coord
.
should_stop
():
if
self
.
coord
.
should_stop
():
return
return
self
.
run_step
()
# implemented by subclass
self
.
run_step
()
# implemented by subclass
#
callbacks.trigger_step() # not useful?
callbacks
.
trigger_step
()
# not useful?
self
.
trigger_epoch
()
self
.
trigger_epoch
()
except
StopTraining
:
except
StopTraining
:
logger
.
info
(
"Training was stopped."
)
logger
.
info
(
"Training was stopped."
)
...
...
tensorpack/train/multigpu.py
View file @
1db8e2b4
...
@@ -15,30 +15,26 @@ from ..tfutils import (backup_collection, restore_collection,
...
@@ -15,30 +15,26 @@ from ..tfutils import (backup_collection, restore_collection,
get_global_step_var
,
TowerContext
)
get_global_step_var
,
TowerContext
)
from
..tfutils.gradproc
import
apply_grad_processors
,
ScaleGradient
from
..tfutils.gradproc
import
apply_grad_processors
,
ScaleGradient
from
.trainer
import
FeedlessTrainer
from
.trainer
import
FeedlessTrainer
,
SingleCostFeedlessTrainer
from
.queue
import
QueueInputTrainer
from
.queue
import
QueueInputTrainer
,
QueueInputTrainerBase
__all__
=
[
'AsyncMultiGPUTrainer'
,
'SyncMultiGPUTrainer'
]
__all__
=
[
'AsyncMultiGPUTrainer'
,
'SyncMultiGPUTrainer'
]
class
MultiGPUTrainer
(
FeedlessTrainer
):
class
MultiGPUTrainer
(
FeedlessTrainer
):
""" Base class for multi-gpu training"""
""" Base class for multi-gpu training"""
def
_multi_tower_grads
(
self
):
@
staticmethod
logger
.
info
(
"Training a model of {} tower"
.
format
(
len
(
self
.
config
.
tower
)))
def
_multi_tower_grads
(
towers
,
get_tower_grad_func
):
logger
.
info
(
"Training a model of {} tower"
.
format
(
len
(
towers
)))
grad_list
=
[]
grad_list
=
[]
global_scope
=
tf
.
get_variable_scope
()
global_scope
=
tf
.
get_variable_scope
()
for
idx
,
t
in
enumerate
(
self
.
config
.
tower
):
for
idx
,
t
in
enumerate
(
towers
):
with
tf
.
device
(
'/gpu:{}'
.
format
(
t
)),
\
with
tf
.
device
(
'/gpu:{}'
.
format
(
t
)),
\
tf
.
variable_scope
(
global_scope
,
reuse
=
idx
>
0
),
\
tf
.
variable_scope
(
global_scope
,
reuse
=
idx
>
0
),
\
TowerContext
(
'tower{}'
.
format
(
idx
))
as
scope
:
TowerContext
(
'tower{}'
.
format
(
idx
))
as
scope
:
logger
.
info
(
"Building graph for training tower {}..."
.
format
(
idx
))
logger
.
info
(
"Building graph for training tower {}..."
.
format
(
idx
))
model_inputs
=
self
.
_get_input_tensors_noreuse
()
self
.
model
.
build_graph
(
model_inputs
)
cost_var
=
self
.
model
.
get_cost
()
# build tower
# TODO gate_gradienst=0 might be faster?
grad_list
.
append
(
get_tower_grad_func
())
grad_list
.
append
(
self
.
config
.
optimizer
.
compute_gradients
(
cost_var
,
gate_gradients
=
0
))
if
idx
==
0
:
if
idx
==
0
:
add_moving_summary
(
cost_var
)
add_moving_summary
(
cost_var
)
...
@@ -47,10 +43,12 @@ class MultiGPUTrainer(FeedlessTrainer):
...
@@ -47,10 +43,12 @@ class MultiGPUTrainer(FeedlessTrainer):
restore_collection
(
backup
)
restore_collection
(
backup
)
return
grad_list
return
grad_list
class
SyncMultiGPUTrainer
(
QueueInputTrainer
,
MultiGPU
Trainer
):
class
SyncMultiGPUTrainer
(
QueueInputTrainer
Base
,
MultiGPUTrainer
,
SingleCostFeedless
Trainer
):
def
__init__
(
self
,
config
,
input_queue
=
None
,
predict_tower
=
None
):
def
__init__
(
self
,
config
,
input_queue
=
None
,
predict_tower
=
None
):
super
(
MultiGPUTrainer
,
self
)
.
__init__
(
config
,
input_queue
,
predict_tower
)
assert
len
(
config
.
tower
)
>=
1
,
"MultiGPUTrainer must be used with at least one GPU."
assert
len
(
config
.
tower
)
>=
1
,
"MultiGPUTrainer must be used with at least one GPU."
super
(
SyncMultiGPUTrainer
,
self
)
.
__init__
(
config
)
self
.
_setup_predictor_factory
(
predict_tower
)
self
.
_build_enque_thread
(
input_queue
)
@
staticmethod
@
staticmethod
def
_average_grads
(
tower_grads
):
def
_average_grads
(
tower_grads
):
...
@@ -75,18 +73,28 @@ class SyncMultiGPUTrainer(QueueInputTrainer, MultiGPUTrainer):
...
@@ -75,18 +73,28 @@ class SyncMultiGPUTrainer(QueueInputTrainer, MultiGPUTrainer):
return
ret
return
ret
def
_setup
(
self
):
def
_setup
(
self
):
grad_list
=
self
.
_multi_tower_grads
()
grad_list
=
MultiGPUTrainer
.
_multi_tower_grads
(
self
.
config
.
tower
,
lambda
:
self
.
_get_cost_and_grad
()[
1
])
grads
=
SyncMultiGPUTrainer
.
_average_grads
(
grad_list
)
grads
=
SyncMultiGPUTrainer
.
_average_grads
(
grad_list
)
grads
=
apply_grad_processors
(
grads
,
grads
=
apply_grad_processors
(
grads
,
self
.
model
.
get_gradient_processor
())
self
.
model
.
get_gradient_processor
())
self
.
train_op
=
tf
.
group
(
self
.
train_op
=
tf
.
group
(
self
.
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
self
.
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
summary_moving_average
(),
name
=
'train_op'
)
summary_moving_average
(),
name
=
'train_op'
)
class
AsyncMultiGPUTrainer
(
QueueInputTrainer
,
MultiGPUTrainer
):
def
run_step
(
self
):
self
.
sess
.
run
(
self
.
train_op
)
class
AsyncMultiGPUTrainer
(
QueueInputTrainerBase
,
MultiGPUTrainer
,
SingleCostFeedlessTrainer
):
def
__init__
(
self
,
config
,
input_queue
=
None
,
predict_tower
=
None
):
assert
len
(
config
.
tower
)
>=
1
,
"MultiGPUTrainer must be used with at least one GPU."
super
(
SyncMultiGPUTrainer
,
self
)
.
__init__
(
config
)
self
.
_setup_predictor_factory
(
predict_tower
)
self
.
_build_enque_thread
(
input_queue
)
def
_setup
(
self
):
def
_setup
(
self
):
grad_list
=
self
.
_multi_tower_grads
()
grad_list
=
MultiGPUTrainer
.
_multi_tower_grads
(
self
.
config
.
tower
,
lambda
:
self
.
_get_cost_and_grad
()[
1
])
gradprocs
=
self
.
model
.
get_gradient_processor
()
gradprocs
=
self
.
model
.
get_gradient_processor
()
# pretend to average the grads, in order to make async and
# pretend to average the grads, in order to make async and
# sync have consistent effective learning rate
# sync have consistent effective learning rate
...
...
tensorpack/train/queue.py
View file @
1db8e2b4
...
@@ -13,7 +13,8 @@ from ..utils import logger
...
@@ -13,7 +13,8 @@ from ..utils import logger
from
..callbacks.concurrency
import
StartProcOrThread
from
..callbacks.concurrency
import
StartProcOrThread
from
..tfutils.gradproc
import
apply_grad_processors
from
..tfutils.gradproc
import
apply_grad_processors
from
.trainer
import
FeedlessTrainer
,
MultiPredictorTowerTrainer
from
.trainer
import
(
FeedlessTrainer
,
MultiPredictorTowerTrainer
,
SingleCostFeedlessTrainer
)
__all__
=
[
'QueueInputTrainerBase'
,
'QueueInputTrainer'
]
__all__
=
[
'QueueInputTrainerBase'
,
'QueueInputTrainer'
]
...
@@ -88,7 +89,7 @@ class QueueInputTrainerBase(FeedlessTrainer):
...
@@ -88,7 +89,7 @@ class QueueInputTrainerBase(FeedlessTrainer):
#tf.Variable(tf.ones([128], dtype=tf.int32), trainable=False)]
#tf.Variable(tf.ones([128], dtype=tf.int32), trainable=False)]
return
ret
return
ret
class
QueueInputTrainer
(
MultiPredictorTowerTrainer
,
QueueInputTrainerBase
):
class
QueueInputTrainer
(
MultiPredictorTowerTrainer
,
QueueInputTrainerBase
,
SingleCostFeedlessTrainer
):
""" Single GPU Trainer, takes input from a queue"""
""" Single GPU Trainer, takes input from a queue"""
def
__init__
(
self
,
config
,
input_queue
=
None
,
predict_tower
=
None
):
def
__init__
(
self
,
config
,
input_queue
=
None
,
predict_tower
=
None
):
...
@@ -103,23 +104,12 @@ class QueueInputTrainer(MultiPredictorTowerTrainer, QueueInputTrainerBase):
...
@@ -103,23 +104,12 @@ class QueueInputTrainer(MultiPredictorTowerTrainer, QueueInputTrainerBase):
self
.
_setup_predictor_factory
(
predict_tower
)
self
.
_setup_predictor_factory
(
predict_tower
)
self
.
_build_enque_thread
(
input_queue
)
self
.
_build_enque_thread
(
input_queue
)
def
_single_tower_grad
(
self
,
actual_inputs
):
""" Get grad and cost for single-tower"""
with
TowerContext
(
''
):
self
.
model
.
build_graph
(
actual_inputs
)
cost_var
=
self
.
model
.
get_cost
()
grads
=
self
.
config
.
optimizer
.
compute_gradients
(
cost_var
,
gate_gradients
=
0
)
# GATE_NONE
add_moving_summary
(
cost_var
)
return
grads
def
_setup
(
self
):
def
_setup
(
self
):
assert
len
(
self
.
config
.
tower
)
==
1
,
\
assert
len
(
self
.
config
.
tower
)
==
1
,
\
"QueueInputTrainer doesn't support multigpu! Use Sync/AsyncMultiGPUTrainer instead."
"QueueInputTrainer doesn't support multigpu! Use Sync/AsyncMultiGPUTrainer instead."
actual_inputs
=
self
.
_get_input_tensors_noreuse
()
with
TowerContext
(
''
):
grads
=
self
.
_single_tower_grad
(
actual_inputs
)
cost
,
grads
=
self
.
_get_cost_and_grad
()
grads
=
apply_grad_processors
(
grads
,
grads
=
apply_grad_processors
(
grads
,
self
.
model
.
get_gradient_processor
())
self
.
model
.
get_gradient_processor
())
self
.
train_op
=
tf
.
group
(
self
.
train_op
=
tf
.
group
(
self
.
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
self
.
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
...
...
tensorpack/train/trainer.py
View file @
1db8e2b4
...
@@ -17,7 +17,8 @@ from ..tfutils.summary import summary_moving_average, add_moving_summary
...
@@ -17,7 +17,8 @@ from ..tfutils.summary import summary_moving_average, add_moving_summary
from
..predict
import
OnlinePredictor
,
build_multi_tower_prediction_graph
from
..predict
import
OnlinePredictor
,
build_multi_tower_prediction_graph
from
..tfutils.gradproc
import
apply_grad_processors
from
..tfutils.gradproc
import
apply_grad_processors
__all__
=
[
'SimpleTrainer'
,
'FeedlessTrainer'
,
'MultiPredictorTowerTrainer'
]
__all__
=
[
'SimpleTrainer'
,
'FeedlessTrainer'
,
'MultiPredictorTowerTrainer'
,
'SingleCostFeedlessTrainer'
]
class
PredictorFactory
(
object
):
class
PredictorFactory
(
object
):
""" Make predictors for a trainer"""
""" Make predictors for a trainer"""
...
@@ -124,3 +125,16 @@ class FeedlessTrainer(Trainer):
...
@@ -124,3 +125,16 @@ class FeedlessTrainer(Trainer):
""" return a list of actual input tensors.
""" return a list of actual input tensors.
Always return new tensors (for multi tower) if called mutliple times.
Always return new tensors (for multi tower) if called mutliple times.
"""
"""
class
SingleCostFeedlessTrainer
(
Trainer
):
def
_get_cost_and_grad
(
self
):
""" get the cost and gradient on a new tower"""
actual_inputs
=
self
.
_get_input_tensors_noreuse
()
self
.
model
.
build_graph
(
actual_inputs
)
cost_var
=
self
.
model
.
get_cost
()
# GATE_NONE faster?
grads
=
self
.
config
.
optimizer
.
compute_gradients
(
cost_var
,
gate_gradients
=
0
)
add_moving_summary
(
cost_var
)
return
cost_var
,
grads
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment