Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
18b19d6d
Commit
18b19d6d
authored
May 14, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
DoReFa uses ImageNetModel
parent
41759741
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
10 additions
and
31 deletions
+10
-31
examples/DeepQNetwork/atari.py
examples/DeepQNetwork/atari.py
+1
-1
examples/DoReFa-Net/alexnet-dorefa.py
examples/DoReFa-Net/alexnet-dorefa.py
+8
-29
examples/ImageNetModels/README.md
examples/ImageNetModels/README.md
+1
-1
No files found.
examples/DeepQNetwork/atari.py
View file @
18b19d6d
...
@@ -96,7 +96,7 @@ class AtariPlayer(gym.Env):
...
@@ -96,7 +96,7 @@ class AtariPlayer(gym.Env):
self
.
action_space
=
spaces
.
Discrete
(
len
(
self
.
actions
))
self
.
action_space
=
spaces
.
Discrete
(
len
(
self
.
actions
))
self
.
observation_space
=
spaces
.
Box
(
self
.
observation_space
=
spaces
.
Box
(
low
=
0
,
high
=
255
,
shape
=
(
self
.
height
,
self
.
width
))
low
=
0
,
high
=
255
,
shape
=
(
self
.
height
,
self
.
width
)
,
dtype
=
np
.
uint8
)
self
.
_restart_episode
()
self
.
_restart_episode
()
def
get_action_meanings
(
self
):
def
get_action_meanings
(
self
):
...
...
examples/DoReFa-Net/alexnet-dorefa.py
View file @
18b19d6d
...
@@ -12,13 +12,12 @@ import sys
...
@@ -12,13 +12,12 @@ import sys
from
tensorpack
import
*
from
tensorpack
import
*
from
tensorpack.tfutils.symbolic_functions
import
prediction_incorrect
from
tensorpack.tfutils.summary
import
add_param_summary
from
tensorpack.tfutils.summary
import
add_moving_summary
,
add_param_summary
from
tensorpack.tfutils.varreplace
import
remap_variables
from
tensorpack.tfutils.varreplace
import
remap_variables
from
tensorpack.dataflow
import
dataset
from
tensorpack.dataflow
import
dataset
from
tensorpack.utils.gpu
import
get_nr_gpu
from
tensorpack.utils.gpu
import
get_nr_gpu
from
imagenet_utils
import
get_imagenet_dataflow
,
fbresnet_augmentor
from
imagenet_utils
import
get_imagenet_dataflow
,
fbresnet_augmentor
,
ImageNetModel
from
dorefa
import
get_dorefa
,
ternarize
from
dorefa
import
get_dorefa
,
ternarize
"""
"""
...
@@ -59,15 +58,11 @@ TOTAL_BATCH_SIZE = 256
...
@@ -59,15 +58,11 @@ TOTAL_BATCH_SIZE = 256
BATCH_SIZE
=
None
BATCH_SIZE
=
None
class
Model
(
ModelDesc
):
class
Model
(
ImageNetModel
):
def
inputs
(
self
):
weight_decay
=
5e-6
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
224
,
224
,
3
],
'input'
),
weight_decay_pattern
=
'fc.*/W'
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
build_graph
(
self
,
image
,
label
):
image
=
image
/
255.0
image
=
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
def
get_logits
(
self
,
image
):
if
BITW
==
't'
:
if
BITW
==
't'
:
fw
,
fa
,
fg
=
get_dorefa
(
32
,
32
,
32
)
fw
,
fa
,
fg
=
get_dorefa
(
32
,
32
,
32
)
fw
=
ternarize
fw
=
ternarize
...
@@ -97,7 +92,7 @@ class Model(ModelDesc):
...
@@ -97,7 +92,7 @@ class Model(ModelDesc):
argscope
(
BatchNorm
,
momentum
=
0.9
,
epsilon
=
1e-4
),
\
argscope
(
BatchNorm
,
momentum
=
0.9
,
epsilon
=
1e-4
),
\
argscope
(
Conv2D
,
use_bias
=
False
):
argscope
(
Conv2D
,
use_bias
=
False
):
logits
=
(
LinearWrap
(
image
)
logits
=
(
LinearWrap
(
image
)
.
Conv2D
(
'conv0'
,
96
,
12
,
strides
=
4
,
padding
=
'VALID'
)
.
Conv2D
(
'conv0'
,
96
,
12
,
strides
=
4
,
padding
=
'VALID'
,
use_bias
=
True
)
.
apply
(
activate
)
.
apply
(
activate
)
.
Conv2D
(
'conv1'
,
256
,
5
,
padding
=
'SAME'
,
split
=
2
)
.
Conv2D
(
'conv1'
,
256
,
5
,
padding
=
'SAME'
,
split
=
2
)
.
apply
(
fg
)
.
apply
(
fg
)
...
@@ -132,24 +127,8 @@ class Model(ModelDesc):
...
@@ -132,24 +127,8 @@ class Model(ModelDesc):
.
BatchNorm
(
'bnfc1'
)
.
BatchNorm
(
'bnfc1'
)
.
apply
(
nonlin
)
.
apply
(
nonlin
)
.
FullyConnected
(
'fct'
,
1000
,
use_bias
=
True
)())
.
FullyConnected
(
'fct'
,
1000
,
use_bias
=
True
)())
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
wrong
=
prediction_incorrect
(
logits
,
label
,
1
,
name
=
'wrong-top1'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top1'
))
wrong
=
prediction_incorrect
(
logits
,
label
,
5
,
name
=
'wrong-top5'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top5'
))
# weight decay on all W of fc layers
wd_cost
=
regularize_cost
(
'fc.*/W'
,
l2_regularizer
(
5e-6
),
name
=
'regularize_cost'
)
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
total_cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
return
logits
add_moving_summary
(
cost
,
wd_cost
,
total_cost
)
return
total_cost
def
optimizer
(
self
):
def
optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
2e-4
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
2e-4
,
trainable
=
False
)
...
...
examples/ImageNetModels/README.md
View file @
18b19d6d
...
@@ -30,7 +30,7 @@ This Inception-BN script reaches 27% single-crop error after 300k steps with 6 G
...
@@ -30,7 +30,7 @@ This Inception-BN script reaches 27% single-crop error after 300k steps with 6 G
This VGG16 script, when trained with 32x8 batch size, reaches the following
This VGG16 script, when trained with 32x8 batch size, reaches the following
error rate after 100 epochs (30h with 8 P100s). This reproduces the VGG
error rate after 100 epochs (30h with 8 P100s). This reproduces the VGG
experi
e
ments in the paper
[
Group Normalization
](
https://arxiv.org/abs/1803.08494
)
.
experiments in the paper
[
Group Normalization
](
https://arxiv.org/abs/1803.08494
)
.
| No Normalization | Batch Normalization | Group Normalization |
| No Normalization | Batch Normalization | Group Normalization |
|:---------------------------------|---------------------|--------------------:|
|:---------------------------------|---------------------|--------------------:|
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment