Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
15befae4
Commit
15befae4
authored
Jan 23, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
implement the new distribution used by infogan.
parent
5d23f241
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
20 additions
and
19 deletions
+20
-19
examples/GAN/InfoGAN-mnist.py
examples/GAN/InfoGAN-mnist.py
+20
-19
No files found.
examples/GAN/InfoGAN-mnist.py
View file @
15befae4
...
@@ -21,6 +21,16 @@ BATCH = 128
...
@@ -21,6 +21,16 @@ BATCH = 128
NOISE_DIM
=
62
NOISE_DIM
=
62
class
GaussianWithUniformSample
(
GaussianDistribution
):
"""
OpenAI official code actually models the "uniform" latent code as
a Gaussian distribution, but obtain the samples from a uniform distribution.
We follow the official code for now.
"""
def
_sample
(
self
,
batch_size
,
theta
):
return
tf
.
random_uniform
([
batch_size
,
self
.
dim
],
-
1
,
1
)
class
Model
(
GANModelDesc
):
class
Model
(
GANModelDesc
):
def
_get_input_vars
(
self
):
def
_get_input_vars
(
self
):
...
@@ -58,27 +68,15 @@ class Model(GANModelDesc):
...
@@ -58,27 +68,15 @@ class Model(GANModelDesc):
real_sample
=
tf
.
expand_dims
(
real_sample
*
2.0
-
1
,
-
1
)
real_sample
=
tf
.
expand_dims
(
real_sample
*
2.0
-
1
,
-
1
)
# latent space is cat(10) x uni(1) x uni(1) x noise(NOISE_DIM)
# latent space is cat(10) x uni(1) x uni(1) x noise(NOISE_DIM)
# OpenAI code actually uses Gaussian distribution for uniform, except
# in the sample step. We follow the official implementation for now.
self
.
factors
=
ProductDistribution
(
"factors"
,
[
CategoricalDistribution
(
"cat"
,
10
),
self
.
factors
=
ProductDistribution
(
"factors"
,
[
CategoricalDistribution
(
"cat"
,
10
),
Gaussian
Distribution
(
"uni_a"
,
1
),
Gaussian
WithUniformSample
(
"uni_a"
,
1
),
Gaussian
Distribution
(
"uni_b"
,
1
)])
Gaussian
WithUniformSample
(
"uni_b"
,
1
)])
# prior: the assumption how the factors are presented in the dataset
# prior: the assumption how the factors are presented in the dataset
prior
=
tf
.
constant
([
0.1
]
*
10
+
[
0
,
0
],
tf
.
float32
,
[
12
],
name
=
'prior'
)
prior
=
tf
.
constant
([
0.1
]
*
10
+
[
0
,
0
],
tf
.
float32
,
[
12
],
name
=
'prior'
)
batch_prior
=
tf
.
tile
(
tf
.
expand_dims
(
prior
,
0
),
[
BATCH
,
1
],
name
=
'batch_prior'
)
batch_prior
=
tf
.
tile
(
tf
.
expand_dims
(
prior
,
0
),
[
BATCH
,
1
],
name
=
'batch_prior'
)
# sample the latent code zc:
# sample the latent code zc:
sample
=
self
.
factors
.
dists
[
0
]
.
sample
(
zc
=
symbf
.
remove_shape
(
self
.
factors
.
sample
(
BATCH
,
prior
),
0
,
name
=
'z_code'
)
BATCH
,
tf
.
constant
([
0.1
]
*
10
,
tf
.
float32
,
shape
=
[
10
]))
z_cat
=
symbf
.
remove_shape
(
sample
,
0
,
name
=
'z_cat'
)
# still sample the latent code from a uniform distribution.
z_uni_a
=
symbf
.
remove_shape
(
tf
.
random_uniform
([
BATCH
,
1
],
-
1
,
1
),
0
,
name
=
'z_uni_a'
)
z_uni_b
=
symbf
.
remove_shape
(
tf
.
random_uniform
([
BATCH
,
1
],
-
1
,
1
),
0
,
name
=
'z_uni_b'
)
zc
=
tf
.
concat_v2
([
z_cat
,
z_uni_a
,
z_uni_b
],
1
,
name
=
'z_code'
)
# TODO ideally this can be done by self.factors.sample, if sample
# method is consistent with the distribution
z_noise
=
symbf
.
remove_shape
(
z_noise
=
symbf
.
remove_shape
(
tf
.
random_uniform
([
BATCH
,
NOISE_DIM
],
-
1
,
1
),
0
,
name
=
'z_noise'
)
tf
.
random_uniform
([
BATCH
,
NOISE_DIM
],
-
1
,
1
),
0
,
name
=
'z_noise'
)
...
@@ -175,7 +173,7 @@ def sample(model_path):
...
@@ -175,7 +173,7 @@ def sample(model_path):
pred
=
OfflinePredictor
(
PredictConfig
(
pred
=
OfflinePredictor
(
PredictConfig
(
session_init
=
get_model_loader
(
model_path
),
session_init
=
get_model_loader
(
model_path
),
model
=
Model
(),
model
=
Model
(),
input_names
=
[
'z_c
at'
,
'z_uni_a'
,
'z_uni_b
'
,
'z_noise'
],
input_names
=
[
'z_c
ode
'
,
'z_noise'
],
output_names
=
[
'gen/viz'
]))
output_names
=
[
'gen/viz'
]))
# sample all one-hot encodings (10 times)
# sample all one-hot encodings (10 times)
...
@@ -189,17 +187,20 @@ def sample(model_path):
...
@@ -189,17 +187,20 @@ def sample(model_path):
while
True
:
while
True
:
# only categorical turned on
# only categorical turned on
z_noise
=
np
.
random
.
uniform
(
-
1
,
1
,
(
100
,
NOISE_DIM
))
z_noise
=
np
.
random
.
uniform
(
-
1
,
1
,
(
100
,
NOISE_DIM
))
o
=
pred
([
z_cat
,
z_uni
*
0
,
z_uni
*
0
,
z_noise
])[
0
]
zc
=
np
.
concatenate
((
z_cat
,
z_uni
*
0
,
z_uni
*
0
),
axis
=
1
)
o
=
pred
(
zc
,
z_noise
)[
0
]
viz1
=
next
(
build_patch_list
(
o
,
nr_row
=
10
,
nr_col
=
10
))
viz1
=
next
(
build_patch_list
(
o
,
nr_row
=
10
,
nr_col
=
10
))
viz1
=
cv2
.
resize
(
viz1
,
(
IMG_SIZE
,
IMG_SIZE
))
viz1
=
cv2
.
resize
(
viz1
,
(
IMG_SIZE
,
IMG_SIZE
))
# show effect of first continous variable with fixed noise
# show effect of first continous variable with fixed noise
o
=
pred
([
z_cat
,
z_uni
,
z_uni
*
0
,
z_noise
*
0
])[
0
]
zc
=
np
.
concatenate
((
z_cat
,
z_uni
,
z_uni
*
0
),
axis
=
1
)
o
=
pred
(
zc
,
z_noise
*
0
)[
0
]
viz2
=
next
(
build_patch_list
(
o
,
nr_row
=
10
,
nr_col
=
10
))
viz2
=
next
(
build_patch_list
(
o
,
nr_row
=
10
,
nr_col
=
10
))
viz2
=
cv2
.
resize
(
viz2
,
(
IMG_SIZE
,
IMG_SIZE
))
viz2
=
cv2
.
resize
(
viz2
,
(
IMG_SIZE
,
IMG_SIZE
))
# show effect of second continous variable with fixed noise
# show effect of second continous variable with fixed noise
o
=
pred
([
z_cat
,
z_uni
*
0
,
z_uni
,
z_noise
*
0
])[
0
]
zc
=
np
.
concatenate
((
z_cat
,
z_uni
*
0
,
z_uni
),
axis
=
1
)
o
=
pred
(
zc
,
z_noise
*
0
)[
0
]
viz3
=
next
(
build_patch_list
(
o
,
nr_row
=
10
,
nr_col
=
10
))
viz3
=
next
(
build_patch_list
(
o
,
nr_row
=
10
,
nr_col
=
10
))
viz3
=
cv2
.
resize
(
viz3
,
(
IMG_SIZE
,
IMG_SIZE
))
viz3
=
cv2
.
resize
(
viz3
,
(
IMG_SIZE
,
IMG_SIZE
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment