Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
14b3578a
Commit
14b3578a
authored
Jan 29, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
a rename in examples (not a breaking change)
parent
88af1f1d
Changes
28
Show whitespace changes
Inline
Side-by-side
Showing
28 changed files
with
88 additions
and
98 deletions
+88
-98
examples/A3C-Gym/run-atari.py
examples/A3C-Gym/run-atari.py
+1
-2
examples/A3C-Gym/train-atari.py
examples/A3C-Gym/train-atari.py
+1
-2
examples/CTC-TIMIT/train-timit.py
examples/CTC-TIMIT/train-timit.py
+3
-4
examples/Char-RNN/char-rnn.py
examples/Char-RNN/char-rnn.py
+8
-8
examples/ConvolutionalPoseMachines/load-cpm.py
examples/ConvolutionalPoseMachines/load-cpm.py
+1
-1
examples/DeepQNetwork/DQN.py
examples/DeepQNetwork/DQN.py
+1
-2
examples/DisturbLabel/mnist-disturb.py
examples/DisturbLabel/mnist-disturb.py
+2
-3
examples/DoReFa-Net/alexnet-dorefa.py
examples/DoReFa-Net/alexnet-dorefa.py
+3
-4
examples/DoReFa-Net/resnet-dorefa.py
examples/DoReFa-Net/resnet-dorefa.py
+3
-3
examples/DoReFa-Net/svhn-digit-dorefa.py
examples/DoReFa-Net/svhn-digit-dorefa.py
+3
-4
examples/GAN/DCGAN-CelebA.py
examples/GAN/DCGAN-CelebA.py
+3
-4
examples/GAN/Image2Image.py
examples/GAN/Image2Image.py
+3
-4
examples/GAN/InfoGAN-mnist.py
examples/GAN/InfoGAN-mnist.py
+3
-3
examples/HED/hed.py
examples/HED/hed.py
+3
-4
examples/Inception/inception-bn.py
examples/Inception/inception-bn.py
+3
-3
examples/Inception/inceptionv3.py
examples/Inception/inceptionv3.py
+3
-3
examples/PennTreebank/PTB-LSTM.py
examples/PennTreebank/PTB-LSTM.py
+3
-3
examples/ResNet/cifar10-resnet.py
examples/ResNet/cifar10-resnet.py
+3
-3
examples/ResNet/imagenet-resnet.py
examples/ResNet/imagenet-resnet.py
+3
-3
examples/Saliency/saliency-maps.py
examples/Saliency/saliency-maps.py
+3
-3
examples/SimilarityLearning/mnist-embeddings.py
examples/SimilarityLearning/mnist-embeddings.py
+11
-11
examples/SpatialTransformer/mnist-addition.py
examples/SpatialTransformer/mnist-addition.py
+3
-4
examples/cifar-convnet.py
examples/cifar-convnet.py
+3
-4
examples/load-alexnet.py
examples/load-alexnet.py
+1
-1
examples/load-vgg16.py
examples/load-vgg16.py
+1
-2
examples/mnist-convnet.py
examples/mnist-convnet.py
+4
-4
examples/svhn-digit-convnet.py
examples/svhn-digit-convnet.py
+3
-3
tensorpack/models/model_desc.py
tensorpack/models/model_desc.py
+6
-3
No files found.
examples/A3C-Gym/run-atari.py
View file @
14b3578a
...
...
@@ -38,8 +38,7 @@ def get_player(dumpdir=None):
class
Model
(
ModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
assert
NUM_ACTIONS
is
not
None
return
[
InputVar
(
tf
.
float32
,
(
None
,)
+
IMAGE_SHAPE3
,
'state'
),
InputVar
(
tf
.
int32
,
(
None
,),
'action'
),
...
...
examples/A3C-Gym/train-atari.py
View file @
14b3578a
...
...
@@ -75,8 +75,7 @@ class MySimulatorWorker(SimulatorProcess):
class
Model
(
ModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
assert
NUM_ACTIONS
is
not
None
return
[
InputVar
(
tf
.
float32
,
(
None
,)
+
IMAGE_SHAPE3
,
'state'
),
InputVar
(
tf
.
int64
,
(
None
,),
'action'
),
...
...
examples/CTC-TIMIT/train-timit.py
View file @
14b3578a
...
...
@@ -27,8 +27,7 @@ FEATUREDIM = 39
class
Model
(
ModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
None
,
FEATUREDIM
],
'feat'
),
# bxmaxseqx39
InputVar
(
tf
.
int64
,
None
,
'labelidx'
),
# label is b x maxlen, sparse
InputVar
(
tf
.
int32
,
None
,
'labelvalue'
),
...
...
@@ -36,8 +35,8 @@ class Model(ModelDesc):
InputVar
(
tf
.
int32
,
[
None
],
'seqlen'
),
# b
]
def
_build_graph
(
self
,
input
_var
s
):
feat
,
labelidx
,
labelvalue
,
labelshape
,
seqlen
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
feat
,
labelidx
,
labelvalue
,
labelshape
,
seqlen
=
inputs
label
=
tf
.
SparseTensor
(
labelidx
,
labelvalue
,
labelshape
)
cell
=
tf
.
contrib
.
rnn
.
BasicLSTMCell
(
num_units
=
HIDDEN
)
...
...
examples/Char-RNN/char-rnn.py
View file @
14b3578a
...
...
@@ -60,12 +60,12 @@ class CharRNNData(RNGDataFlow):
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
int32
,
(
None
,
param
.
seq_len
),
'input'
),
InputVar
(
tf
.
int32
,
(
None
,
param
.
seq_len
),
'nextinput'
)]
def
_build_graph
(
self
,
input
_var
s
):
input
,
nextinput
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
input
,
nextinput
=
inputs
cell
=
tf
.
contrib
.
rnn
.
BasicLSTMCell
(
num_units
=
param
.
rnn_size
)
cell
=
tf
.
contrib
.
rnn
.
MultiRNNCell
([
cell
]
*
param
.
num_rnn_layer
)
...
...
@@ -131,18 +131,18 @@ def sample(path, start, length):
ds
=
CharRNNData
(
param
.
corpus
,
100000
)
model
=
Model
()
input
_vars
=
model
.
get_input_va
rs
()
model
.
build_graph
(
input
_var
s
,
False
)
input
s
=
model
.
get_reuse_placehd
rs
()
model
.
build_graph
(
inputs
,
False
)
sess
=
tf
.
Session
()
tfutils
.
SaverRestore
(
path
)
.
init
(
sess
)
dummy_input
=
np
.
zeros
((
1
,
1
),
dtype
=
'int32'
)
with
sess
.
as_default
():
# feed the starting sentence
state
=
model
.
initial
.
eval
({
input
_var
s
[
0
]:
dummy_input
})
state
=
model
.
initial
.
eval
({
inputs
[
0
]:
dummy_input
})
for
c
in
start
[:
-
1
]:
x
=
np
.
array
([[
ds
.
lut
.
get_idx
(
c
)]],
dtype
=
'int32'
)
state
=
model
.
last_state
.
eval
({
input
_var
s
[
0
]:
x
,
model
.
initial
:
state
})
state
=
model
.
last_state
.
eval
({
inputs
[
0
]:
x
,
model
.
initial
:
state
})
def
pick
(
prob
):
t
=
np
.
cumsum
(
prob
)
...
...
@@ -155,7 +155,7 @@ def sample(path, start, length):
for
k
in
range
(
length
):
x
=
np
.
array
([[
ds
.
lut
.
get_idx
(
c
)]],
dtype
=
'int32'
)
[
prob
,
state
]
=
sess
.
run
([
model
.
prob
,
model
.
last_state
],
{
input
_var
s
[
0
]:
x
,
model
.
initial
:
state
})
{
inputs
[
0
]:
x
,
model
.
initial
:
state
})
c
=
ds
.
lut
.
get_obj
(
pick
(
prob
[
0
]))
ret
+=
c
print
(
ret
)
...
...
examples/ConvolutionalPoseMachines/load-cpm.py
View file @
14b3578a
...
...
@@ -44,7 +44,7 @@ def get_gaussian_map():
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
(
None
,
368
,
368
,
3
),
'input'
),
InputVar
(
tf
.
float32
,
(
None
,
368
,
368
,
15
),
'label'
),
]
...
...
examples/DeepQNetwork/DQN.py
View file @
14b3578a
...
...
@@ -68,8 +68,7 @@ common.get_player = get_player # so that eval functions in common can use the p
class
Model
(
ModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
if
NUM_ACTIONS
is
None
:
p
=
get_player
()
del
p
...
...
examples/DisturbLabel/mnist-disturb.py
View file @
14b3578a
...
...
@@ -29,9 +29,8 @@ IMAGE_SIZE = 28
class
Model
(
mnist_example
.
Model
):
def
_build_graph
(
self
,
input_vars
):
image
,
label
=
input_vars
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
=
tf
.
expand_dims
(
image
,
3
)
with
argscope
(
Conv2D
,
kernel_shape
=
5
,
nl
=
tf
.
nn
.
relu
):
...
...
examples/DoReFa-Net/alexnet-dorefa.py
View file @
14b3578a
...
...
@@ -74,13 +74,12 @@ BATCH_SIZE = None
class
Model
(
ModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
224
,
224
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
image
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
=
image
/
255.0
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
...
...
examples/DoReFa-Net/resnet-dorefa.py
View file @
14b3578a
...
...
@@ -33,12 +33,12 @@ BITG = 32
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
224
,
224
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
image
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
=
image
/
256.0
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
...
...
examples/DoReFa-Net/svhn-digit-dorefa.py
View file @
14b3578a
...
...
@@ -43,13 +43,12 @@ BITG = 4
class
Model
(
ModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
40
,
40
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
image
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
is_training
=
get_current_tower_context
()
.
is_training
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
...
...
examples/GAN/DCGAN-CelebA.py
View file @
14b3578a
...
...
@@ -36,8 +36,7 @@ CFG.Z_DIM = 100
class
Model
(
GANModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
(
None
,
CFG
.
SHAPE
,
CFG
.
SHAPE
,
3
),
'input'
)]
def
generator
(
self
,
z
):
...
...
@@ -70,8 +69,8 @@ class Model(GANModelDesc):
.
FullyConnected
(
'fct'
,
1
,
nl
=
tf
.
identity
)())
return
l
def
_build_graph
(
self
,
input
_var
s
):
image_pos
=
input
_var
s
[
0
]
def
_build_graph
(
self
,
inputs
):
image_pos
=
inputs
[
0
]
image_pos
=
image_pos
/
128.0
-
1
z
=
tf
.
random_uniform
([
CFG
.
BATCH
,
CFG
.
Z_DIM
],
-
1
,
1
,
name
=
'z_train'
)
...
...
examples/GAN/Image2Image.py
View file @
14b3578a
...
...
@@ -43,8 +43,7 @@ NF = 64 # number of filter
class
Model
(
GANModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
(
None
,
SHAPE
,
SHAPE
,
IN_CH
),
'input'
),
InputVar
(
tf
.
float32
,
(
None
,
SHAPE
,
SHAPE
,
OUT_CH
),
'output'
)]
...
...
@@ -100,8 +99,8 @@ class Model(GANModelDesc):
.
Conv2D
(
'convlast'
,
1
,
stride
=
1
,
padding
=
'VALID'
)())
return
l
def
_build_graph
(
self
,
input
_var
s
):
input
,
output
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
input
,
output
=
inputs
input
,
output
=
input
/
128.0
-
1
,
output
/
128.0
-
1
with
argscope
([
Conv2D
,
Deconv2D
],
...
...
examples/GAN/InfoGAN-mnist.py
View file @
14b3578a
...
...
@@ -32,7 +32,7 @@ class GaussianWithUniformSample(GaussianDistribution):
class
Model
(
GANModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
(
None
,
28
,
28
),
'input'
)]
def
generator
(
self
,
z
):
...
...
@@ -62,8 +62,8 @@ class Model(GANModelDesc):
.
FullyConnected
(
'fce-out'
,
self
.
factors
.
param_dim
,
nl
=
tf
.
identity
)())
return
logits
,
encoder
def
_build_graph
(
self
,
input
_var
s
):
real_sample
=
input
_var
s
[
0
]
def
_build_graph
(
self
,
inputs
):
real_sample
=
inputs
[
0
]
real_sample
=
tf
.
expand_dims
(
real_sample
*
2.0
-
1
,
-
1
)
# latent space is cat(10) x uni(1) x uni(1) x noise(NOISE_DIM)
...
...
examples/HED/hed.py
View file @
14b3578a
...
...
@@ -17,13 +17,12 @@ from tensorpack.tfutils.summary import *
class
Model
(
ModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
None
,
None
,
3
],
'image'
),
InputVar
(
tf
.
int32
,
[
None
,
None
,
None
],
'edgemap'
)]
def
_build_graph
(
self
,
input
_var
s
):
image
,
edgemap
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
edgemap
=
inputs
image
=
image
-
tf
.
constant
([
104
,
116
,
122
],
dtype
=
'float32'
)
edgemap
=
tf
.
expand_dims
(
edgemap
,
3
,
name
=
'edgemap4d'
)
...
...
examples/Inception/inception-bn.py
View file @
14b3578a
...
...
@@ -29,12 +29,12 @@ Learning rate may need a different schedule for different number of GPUs (becaus
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
INPUT_SHAPE
,
INPUT_SHAPE
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
image
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
=
image
/
128.0
def
inception
(
name
,
x
,
nr1x1
,
nr3x3r
,
nr3x3
,
nr233r
,
nr233
,
nrpool
,
pooltype
):
...
...
examples/Inception/inceptionv3.py
View file @
14b3578a
...
...
@@ -35,12 +35,12 @@ INPUT_SHAPE = 299
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
INPUT_SHAPE
,
INPUT_SHAPE
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
image
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
=
image
/
255.0
# ?
def
proj_kk
(
l
,
k
,
ch_r
,
ch
,
stride
=
1
):
...
...
examples/PennTreebank/PTB-LSTM.py
View file @
14b3578a
...
...
@@ -44,13 +44,13 @@ def get_PennTreeBank(data_dir=None):
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
int32
,
(
None
,
SEQ_LEN
),
'input'
),
InputVar
(
tf
.
int32
,
(
None
,
SEQ_LEN
),
'nextinput'
)]
def
_build_graph
(
self
,
input
_var
s
):
def
_build_graph
(
self
,
inputs
):
is_training
=
get_current_tower_context
()
.
is_training
input
,
nextinput
=
input
_var
s
input
,
nextinput
=
inputs
initializer
=
tf
.
random_uniform_initializer
(
-
0.05
,
0.05
)
cell
=
rnn
.
BasicLSTMCell
(
num_units
=
HIDDEN_SIZE
,
forget_bias
=
0.0
)
...
...
examples/ResNet/cifar10-resnet.py
View file @
14b3578a
...
...
@@ -37,12 +37,12 @@ class Model(ModelDesc):
super
(
Model
,
self
)
.
__init__
()
self
.
n
=
n
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
32
,
32
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
image
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
=
image
/
128.0
-
1
def
residual
(
name
,
l
,
increase_dim
=
False
,
first
=
False
):
...
...
examples/ResNet/imagenet-resnet.py
View file @
14b3578a
...
...
@@ -28,12 +28,12 @@ DEPTH = None
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
INPUT_SHAPE
,
INPUT_SHAPE
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
image
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
shortcut
(
l
,
n_in
,
n_out
,
stride
):
if
n_in
!=
n_out
:
...
...
examples/Saliency/saliency-maps.py
View file @
14b3578a
...
...
@@ -16,11 +16,11 @@ IMAGE_SIZE = 224
class
Model
(
tp
.
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
tp
.
InputVar
(
tf
.
float32
,
(
IMAGE_SIZE
,
IMAGE_SIZE
,
3
),
'image'
)]
def
_build_graph
(
self
,
input
_var
s
):
orig_image
=
input
_var
s
[
0
]
def
_build_graph
(
self
,
inputs
):
orig_image
=
inputs
[
0
]
mean
=
tf
.
get_variable
(
'resnet_v1_50/mean_rgb'
,
shape
=
[
3
])
with
tp
.
symbolic_functions
.
guided_relu
():
with
slim
.
arg_scope
(
resnet_v1
.
resnet_arg_scope
(
is_training
=
False
)):
...
...
examples/SimilarityLearning/mnist-embeddings.py
View file @
14b3578a
...
...
@@ -61,20 +61,20 @@ class SiameseModel(EmbeddingModel):
ds
=
BatchData
(
ds
,
128
//
2
)
return
ds
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
(
None
,
28
,
28
),
'input'
),
InputVar
(
tf
.
float32
,
(
None
,
28
,
28
),
'input_y'
),
InputVar
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
def
_build_graph
(
self
,
inputs
):
# get inputs
x
,
y
,
label
=
input
_var
s
x
,
y
,
label
=
inputs
# embed them
x
,
y
=
self
.
embed
([
x
,
y
])
# tag the embedding of 'input' with name 'emb', just for inference later on
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
):
tf
.
identity
(
self
.
embed
(
input
_var
s
[
0
]),
name
=
"emb"
)
tf
.
identity
(
self
.
embed
(
inputs
[
0
]),
name
=
"emb"
)
# compute the actual loss
cost
,
pos_dist
,
neg_dist
=
symbf
.
contrastive_loss
(
x
,
y
,
label
,
5.
,
extra
=
True
)
...
...
@@ -85,12 +85,12 @@ class SiameseModel(EmbeddingModel):
class
CosineModel
(
SiameseModel
):
def
_build_graph
(
self
,
input
_var
s
):
x
,
y
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
x
,
y
,
label
=
inputs
x
,
y
=
self
.
embed
([
x
,
y
])
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
):
tf
.
identity
(
self
.
embed
(
input
_var
s
[
0
]),
name
=
"emb"
)
tf
.
identity
(
self
.
embed
(
inputs
[
0
]),
name
=
"emb"
)
cost
=
symbf
.
cosine_loss
(
x
,
y
,
label
)
self
.
cost
=
tf
.
identity
(
cost
,
name
=
"cost"
)
...
...
@@ -104,7 +104,7 @@ class TripletModel(EmbeddingModel):
ds
=
BatchData
(
ds
,
128
//
3
)
return
ds
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
(
None
,
28
,
28
),
'input'
),
InputVar
(
tf
.
float32
,
(
None
,
28
,
28
),
'input_p'
),
InputVar
(
tf
.
float32
,
(
None
,
28
,
28
),
'input_n'
)]
...
...
@@ -112,12 +112,12 @@ class TripletModel(EmbeddingModel):
def
loss
(
self
,
a
,
p
,
n
):
return
symbf
.
triplet_loss
(
a
,
p
,
n
,
5.
,
extra
=
True
)
def
_build_graph
(
self
,
input
_var
s
):
a
,
p
,
n
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
a
,
p
,
n
=
inputs
a
,
p
,
n
=
self
.
embed
([
a
,
p
,
n
])
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
):
tf
.
identity
(
self
.
embed
(
input
_var
s
[
0
]),
name
=
"emb"
)
tf
.
identity
(
self
.
embed
(
inputs
[
0
]),
name
=
"emb"
)
cost
,
pos_dist
,
neg_dist
=
self
.
loss
(
a
,
p
,
n
)
self
.
cost
=
tf
.
identity
(
cost
,
name
=
"cost"
)
...
...
examples/SpatialTransformer/mnist-addition.py
View file @
14b3578a
...
...
@@ -18,17 +18,16 @@ HALF_DIFF = (IMAGE_SIZE - WARP_TARGET_SIZE) // 2
class
Model
(
ModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
,
2
),
'input'
),
InputVar
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
def
_build_graph
(
self
,
inputs
):
xys
=
np
.
array
([(
y
,
x
,
1
)
for
y
in
range
(
WARP_TARGET_SIZE
)
for
x
in
range
(
WARP_TARGET_SIZE
)],
dtype
=
'float32'
)
xys
=
tf
.
constant
(
xys
,
dtype
=
tf
.
float32
,
name
=
'xys'
)
# p x 3
image
,
label
=
input
_var
s
image
,
label
=
inputs
image
=
image
/
255.0
-
0.5
# bhw2
...
...
examples/cifar-convnet.py
View file @
14b3578a
...
...
@@ -24,18 +24,17 @@ Not a good model for Cifar100, just for demonstration.
class
Model
(
ModelDesc
):
def
__init__
(
self
,
cifar_classnum
):
super
(
Model
,
self
)
.
__init__
()
self
.
cifar_classnum
=
cifar_classnum
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
30
,
30
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)
]
def
_build_graph
(
self
,
input
_var
s
):
image
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
is_training
=
get_current_tower_context
()
.
is_training
keep_prob
=
tf
.
constant
(
0.5
if
is_training
else
1.0
)
...
...
examples/load-alexnet.py
View file @
14b3578a
...
...
@@ -24,7 +24,7 @@ Usage:
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
(
None
,
227
,
227
,
3
),
'input'
)]
def
_build_graph
(
self
,
inputs
):
...
...
examples/load-vgg16.py
View file @
14b3578a
...
...
@@ -24,8 +24,7 @@ Usage:
class
Model
(
ModelDesc
):
def
_get_input_vars
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
(
None
,
224
,
224
,
3
),
'input'
)]
def
_build_graph
(
self
,
inputs
):
...
...
examples/mnist-convnet.py
View file @
14b3578a
...
...
@@ -23,18 +23,18 @@ USE_SLIM = False
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
"""Define all the input variables (with type, shape, name) that'll be
fed into the graph to produce a cost. """
return
[
InputVar
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
),
'input'
),
InputVar
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
def
_build_graph
(
self
,
inputs
):
"""This function should build the model which takes the input variables
and define self.cost at the end"""
# input
_var
s contains a list of input variables defined above
image
,
label
=
input
_var
s
# inputs contains a list of input variables defined above
image
,
label
=
inputs
# In tensorflow, inputs to convolution function are assumed to be
# NHWC. Add a single channel here.
image
=
tf
.
expand_dims
(
image
,
3
)
...
...
examples/svhn-digit-convnet.py
View file @
14b3578a
...
...
@@ -23,12 +23,12 @@ Speed is about 43 it/s on TitanX.
class
Model
(
ModelDesc
):
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
return
[
InputVar
(
tf
.
float32
,
[
None
,
40
,
40
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
input
_var
s
):
image
,
label
=
input
_var
s
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
=
image
/
128.0
-
1
...
...
tensorpack/models/model_desc.py
View file @
14b3578a
...
...
@@ -87,11 +87,14 @@ class ModelDesc(object):
"""
return
self
.
_get_input_vars
()
@
abstractmethod
def
_get_input_vars
(
self
):
def
_get_input_vars
(
self
):
# keep backward compatibility
"""
:returns: a list of InputVar
"""
return
self
.
_get_inputs
()
def
_get_inputs
(
self
):
# this is a better name than _get_input_vars
raise
NotImplementedError
()
def
build_graph
(
self
,
model_inputs
):
"""
...
...
@@ -171,7 +174,7 @@ class ModelFromMetaGraph(ModelDesc):
assert
k
in
all_coll
,
\
"Collection {} not found in metagraph!"
.
format
(
k
)
def
_get_input
_var
s
(
self
):
def
_get_inputs
(
self
):
col
=
tf
.
get_collection
(
INPUT_VARS_KEY
)
col
=
[
InputVar
.
loads
(
v
)
for
v
in
col
]
return
col
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment