Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
0b2ab4ae
Commit
0b2ab4ae
authored
Jan 09, 2019
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Make HED NCHW; Note about buggy BilinearUpSampling (#1040)
parent
fbfc8413
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
38 additions
and
31 deletions
+38
-31
README.md
README.md
+2
-2
docs/tutorial/extend/dataflow.md
docs/tutorial/extend/dataflow.md
+3
-0
examples/HED/hed.py
examples/HED/hed.py
+29
-25
tensorpack/dataflow/base.py
tensorpack/dataflow/base.py
+3
-3
tensorpack/models/conv2d.py
tensorpack/models/conv2d.py
+1
-1
No files found.
README.md
View file @
0b2ab4ae
...
...
@@ -63,8 +63,8 @@ demonstrating its __flexibility__ for actual research.
Dependencies:
+
Python 2.7 or 3.3+. Python 2.7 is supported until
[
it retires in 2020
](
https://pythonclock.org/
)
.
+
Python bindings for OpenCV (Optional, but required by a lot of features)
+
TensorFlow ≥ 1.3. (
If you only want to use
`tensorpack.dataflow`
alone as a data processing library, TensorFlow is not needed
)
+
Python bindings for OpenCV
.
(Optional, but required by a lot of features)
+
TensorFlow ≥ 1.3. (
Optional, if you only want to use
`tensorpack.dataflow`
alone as a data processing library
)
```
pip install --upgrade git+https://github.com/tensorpack/tensorpack.git
# or add `--user` to install to user's local directories
...
...
docs/tutorial/extend/dataflow.md
View file @
0b2ab4ae
### Write a DataFlow
First, make sure you know about Python's generators and
`yield`
keyword.
If you don't, learn it on Google.
#### Write a Source DataFlow
There are several existing DataFlow, e.g.
[
ImageFromFile
](
../../modules/dataflow.html#tensorpack.dataflow.ImageFromFile
)
,
...
...
examples/HED/hed.py
View file @
0b2ab4ae
...
...
@@ -15,6 +15,7 @@ from tensorpack.dataflow import dataset
from
tensorpack.tfutils
import
gradproc
,
optimizer
from
tensorpack.tfutils.summary
import
add_moving_summary
,
add_param_summary
from
tensorpack.utils.gpu
import
get_num_gpu
from
tensorpack.utils
import
logger
def
class_balanced_sigmoid_cross_entropy
(
logits
,
label
,
name
=
'cross_entropy_loss'
):
...
...
@@ -51,15 +52,15 @@ def CaffeBilinearUpSample(x, shape):
It is aimed to mimic caffe behavior.
Args:
x (tf.Tensor): a N
HWC
tensor
x (tf.Tensor): a N
CHW
tensor
shape (int): the upsample factor
Returns:
tf.Tensor: a N
HWC
tensor.
tf.Tensor: a N
CHW
tensor.
"""
inp_shape
=
x
.
shape
.
as_list
()
ch
=
inp_shape
[
3
]
assert
ch
is
not
None
ch
=
inp_shape
[
1
]
assert
ch
==
1
,
"This layer only works for channel=1"
shape
=
int
(
shape
)
filter_shape
=
2
*
shape
...
...
@@ -82,17 +83,17 @@ def CaffeBilinearUpSample(x, shape):
weight_var
=
tf
.
constant
(
w
,
tf
.
float32
,
shape
=
(
filter_shape
,
filter_shape
,
ch
,
ch
),
name
=
'bilinear_upsample_filter'
)
x
=
tf
.
pad
(
x
,
[[
0
,
0
],
[
shape
-
1
,
shape
-
1
],
[
shape
-
1
,
shape
-
1
],
[
0
,
0
]],
mode
=
'SYMMETRIC'
)
out_shape
=
tf
.
shape
(
x
)
*
tf
.
constant
([
1
,
shape
,
shape
,
1
],
tf
.
int32
)
x
=
tf
.
pad
(
x
,
[[
0
,
0
],
[
0
,
0
],
[
shape
-
1
,
shape
-
1
],
[
shape
-
1
,
shape
-
1
]],
mode
=
'SYMMETRIC'
)
out_shape
=
tf
.
shape
(
x
)
*
tf
.
constant
([
1
,
1
,
shape
,
shape
],
tf
.
int32
)
deconv
=
tf
.
nn
.
conv2d_transpose
(
x
,
weight_var
,
out_shape
,
[
1
,
shape
,
shape
,
1
],
'SAME
'
)
[
1
,
1
,
shape
,
shape
],
'SAME'
,
data_format
=
'NCHW
'
)
edge
=
shape
*
(
shape
-
1
)
deconv
=
deconv
[:,
edge
:
-
edge
,
edge
:
-
edge
,
:
]
deconv
=
deconv
[:,
:,
edge
:
-
edge
,
edge
:
-
edge
]
if
inp_shape
[
1
]:
inp_shape
[
1
]
*=
shape
if
inp_shape
[
2
]:
inp_shape
[
2
]
*=
shape
if
inp_shape
[
3
]:
inp_shape
[
3
]
*=
shape
deconv
.
set_shape
(
inp_shape
)
return
deconv
...
...
@@ -104,6 +105,7 @@ class Model(ModelDesc):
def
build_graph
(
self
,
image
,
edgemap
):
image
=
image
-
tf
.
constant
([
104
,
116
,
122
],
dtype
=
'float32'
)
image
=
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
edgemap
=
tf
.
expand_dims
(
edgemap
,
3
,
name
=
'edgemap4d'
)
def
branch
(
name
,
l
,
up
):
...
...
@@ -113,10 +115,11 @@ class Model(ModelDesc):
kernel_initializer
=
tf
.
constant_initializer
())
while
up
!=
1
:
l
=
CaffeBilinearUpSample
(
'upsample{}'
.
format
(
up
),
l
,
2
)
up
=
up
/
2
up
=
up
/
/
2
return
l
with
argscope
(
Conv2D
,
kernel_size
=
3
,
activation
=
tf
.
nn
.
relu
):
with
argscope
(
Conv2D
,
kernel_size
=
3
,
activation
=
tf
.
nn
.
relu
),
\
argscope
([
Conv2D
,
MaxPooling
],
data_format
=
'NCHW'
):
l
=
Conv2D
(
'conv1_1'
,
image
,
64
)
l
=
Conv2D
(
'conv1_2'
,
l
,
64
)
b1
=
branch
(
'branch1'
,
l
,
1
)
...
...
@@ -145,11 +148,12 @@ class Model(ModelDesc):
b5
=
branch
(
'branch5'
,
l
,
16
)
final_map
=
Conv2D
(
'convfcweight'
,
tf
.
concat
([
b1
,
b2
,
b3
,
b4
,
b5
],
3
),
1
,
kernel_size
=
1
,
tf
.
concat
([
b1
,
b2
,
b3
,
b4
,
b5
],
1
),
1
,
kernel_size
=
1
,
kernel_initializer
=
tf
.
constant_initializer
(
0.2
),
use_bias
=
False
,
activation
=
tf
.
identity
)
costs
=
[]
for
idx
,
b
in
enumerate
([
b1
,
b2
,
b3
,
b4
,
b5
,
final_map
]):
b
=
tf
.
transpose
(
b
,
[
0
,
2
,
3
,
1
])
output
=
tf
.
nn
.
sigmoid
(
b
,
name
=
'output{}'
.
format
(
idx
+
1
))
xentropy
=
class_balanced_sigmoid_cross_entropy
(
b
,
edgemap
,
...
...
@@ -161,7 +165,6 @@ class Model(ModelDesc):
wrong
=
tf
.
cast
(
tf
.
not_equal
(
pred
,
edgemap
),
tf
.
float32
)
wrong
=
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
)
if
get_current_tower_context
()
.
is_training
:
wd_w
=
tf
.
train
.
exponential_decay
(
2e-4
,
get_global_step_var
(),
80000
,
0.7
,
True
)
wd_cost
=
tf
.
multiply
(
wd_w
,
regularize_cost
(
'.*/W'
,
tf
.
nn
.
l2_loss
),
name
=
'wd_cost'
)
...
...
@@ -284,6 +287,7 @@ def run(model_path, image_path, output):
pred
=
outputs
[
k
][
0
]
cv2
.
imwrite
(
"out{}.png"
.
format
(
'-fused'
if
k
==
5
else
str
(
k
+
1
)),
pred
*
255
)
logger
.
info
(
"Results saved to out*.png"
)
else
:
pred
=
outputs
[
5
][
0
]
cv2
.
imwrite
(
output
,
pred
*
255
)
...
...
tensorpack/dataflow/base.py
View file @
0b2ab4ae
...
...
@@ -97,9 +97,9 @@ class DataFlow(object):
* There could be many reasons why :meth:`__len__` is inaccurate.
For example, some dataflow has dynamic size.
Some dataflow mixes the datapoints between consecutive
epochs
due to parallelism and buffering, then it does not make sense to stop the
iteration anywhere.
Some dataflow mixes the datapoints between consecutive
passes over
the dataset, due to parallelism and buffering.
In this case it does not make sense to stop the
iteration anywhere.
* Due to the above reasons, the length is only a rough guidance. Inside
tensorpack it's only used in these places:
...
...
tensorpack/models/conv2d.py
View file @
0b2ab4ae
...
...
@@ -42,7 +42,7 @@ def Conv2D(
1. Default kernel initializer is variance_scaling_initializer(2.0).
2. Default padding is 'same'.
3. Support 'split' argument to do group conv.
3. Support 'split' argument to do group conv.
Note that this is not efficient.
Variable Names:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment