Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
07783edb
Commit
07783edb
authored
Jun 28, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Sync BatchNorm statistics with nccl or horovod
parent
bffcfc1b
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
161 additions
and
52 deletions
+161
-52
tensorpack/models/_old_batch_norm.py
tensorpack/models/_old_batch_norm.py
+0
-2
tensorpack/models/batch_norm.py
tensorpack/models/batch_norm.py
+161
-50
No files found.
tensorpack/models/_old_batch_norm.py
View file @
07783edb
...
@@ -36,7 +36,6 @@ def get_bn_variables(n_out, use_scale, use_bias, gamma_init):
...
@@ -36,7 +36,6 @@ def get_bn_variables(n_out, use_scale, use_bias, gamma_init):
def
update_bn_ema
(
xn
,
batch_mean
,
batch_var
,
def
update_bn_ema
(
xn
,
batch_mean
,
batch_var
,
moving_mean
,
moving_var
,
decay
,
internal_update
):
moving_mean
,
moving_var
,
decay
,
internal_update
):
# TODO is there a way to use zero_debias in multi-GPU?
update_op1
=
moving_averages
.
assign_moving_average
(
update_op1
=
moving_averages
.
assign_moving_average
(
moving_mean
,
batch_mean
,
decay
,
zero_debias
=
False
,
moving_mean
,
batch_mean
,
decay
,
zero_debias
=
False
,
name
=
'mean_ema_op'
)
name
=
'mean_ema_op'
)
...
@@ -147,7 +146,6 @@ def BatchNorm(inputs, training=None, momentum=0.9, epsilon=1e-5,
...
@@ -147,7 +146,6 @@ def BatchNorm(inputs, training=None, momentum=0.9, epsilon=1e-5,
mean
=
moving_mean
,
variance
=
moving_var
,
epsilon
=
epsilon
,
mean
=
moving_mean
,
variance
=
moving_var
,
epsilon
=
epsilon
,
data_format
=
data_format
,
is_training
=
False
)
data_format
=
data_format
,
is_training
=
False
)
else
:
else
:
# avoid the reshape if possible (when channel is the last dimension)
xn
=
tf
.
nn
.
batch_normalization
(
xn
=
tf
.
nn
.
batch_normalization
(
inputs
,
moving_mean
,
moving_var
,
beta
,
gamma
,
epsilon
)
inputs
,
moving_mean
,
moving_var
,
beta
,
gamma
,
epsilon
)
...
...
tensorpack/models/batch_norm.py
View file @
07783edb
...
@@ -4,6 +4,9 @@
...
@@ -4,6 +4,9 @@
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorflow.contrib.framework
import
add_model_variable
from
tensorflow.contrib.framework
import
add_model_variable
from
tensorflow.python.training
import
moving_averages
import
re
import
six
from
..utils
import
logger
from
..utils
import
logger
from
..utils.argtools
import
get_data_format
from
..utils.argtools
import
get_data_format
...
@@ -19,6 +22,42 @@ __all__ = ['BatchNorm', 'BatchRenorm']
...
@@ -19,6 +22,42 @@ __all__ = ['BatchNorm', 'BatchRenorm']
# eps: torch: 1e-5. Lasagne: 1e-4
# eps: torch: 1e-5. Lasagne: 1e-4
def
get_bn_variables
(
n_out
,
use_scale
,
use_bias
,
beta_init
,
gamma_init
):
if
use_bias
:
beta
=
tf
.
get_variable
(
'beta'
,
[
n_out
],
initializer
=
beta_init
)
else
:
beta
=
tf
.
zeros
([
n_out
],
name
=
'beta'
)
if
use_scale
:
gamma
=
tf
.
get_variable
(
'gamma'
,
[
n_out
],
initializer
=
gamma_init
)
else
:
gamma
=
tf
.
ones
([
n_out
],
name
=
'gamma'
)
# x * gamma + beta
moving_mean
=
tf
.
get_variable
(
'mean/EMA'
,
[
n_out
],
initializer
=
tf
.
constant_initializer
(),
trainable
=
False
)
moving_var
=
tf
.
get_variable
(
'variance/EMA'
,
[
n_out
],
initializer
=
tf
.
constant_initializer
(
1.0
),
trainable
=
False
)
return
beta
,
gamma
,
moving_mean
,
moving_var
def
update_bn_ema
(
xn
,
batch_mean
,
batch_var
,
moving_mean
,
moving_var
,
decay
,
internal_update
):
update_op1
=
moving_averages
.
assign_moving_average
(
moving_mean
,
batch_mean
,
decay
,
zero_debias
=
False
,
name
=
'mean_ema_op'
)
update_op2
=
moving_averages
.
assign_moving_average
(
moving_var
,
batch_var
,
decay
,
zero_debias
=
False
,
name
=
'var_ema_op'
)
if
internal_update
:
with
tf
.
control_dependencies
([
update_op1
,
update_op2
]):
return
tf
.
identity
(
xn
,
name
=
'output'
)
else
:
tf
.
add_to_collection
(
tf
.
GraphKeys
.
UPDATE_OPS
,
update_op1
)
tf
.
add_to_collection
(
tf
.
GraphKeys
.
UPDATE_OPS
,
update_op2
)
return
tf
.
identity
(
xn
,
name
=
'output'
)
@
layer_register
()
@
layer_register
()
@
convert_to_tflayer_args
(
@
convert_to_tflayer_args
(
args_names
=
[],
args_names
=
[],
...
@@ -35,20 +74,30 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
...
@@ -35,20 +74,30 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
gamma_initializer
=
tf
.
ones_initializer
(),
gamma_initializer
=
tf
.
ones_initializer
(),
virtual_batch_size
=
None
,
virtual_batch_size
=
None
,
data_format
=
'channels_last'
,
data_format
=
'channels_last'
,
internal_update
=
False
):
internal_update
=
False
,
sync_statistics
=
None
):
"""
"""
Mostly equivalent to `tf.layers.batch_normalization`, but different in
Almost equivalent to `tf.layers.batch_normalization`, but different (and more powerful)
the following due to historical reasons
:
in the following
:
1. Accepts
`data_format`
when `axis` is None. For 2D input, this argument will be ignored.
1. Accepts
an alternative `data_format` option
when `axis` is None. For 2D input, this argument will be ignored.
2. Default value for `momentum` and `epsilon` is different.
2. Default value for `momentum` and `epsilon` is different.
3. Default value for `training` is automatically obtained from `TowerContext`.
3. Default value for `training` is automatically obtained from tensorpack's `TowerContext`, but can be overwritten.
4. Support the `internal_update` option, which can be very useful in certain models.
4. Support the `internal_update` option, which enables the use of BatchNorm layer inside conditionals.
5. Support the `sync_statistics` option, which is very useful in small-batch models.
Args:
Args:
internal_update (bool): if False, add EMA update ops to
internal_update (bool): if False, add EMA update ops to
`tf.GraphKeys.UPDATE_OPS`. If True, update EMA inside the layer
`tf.GraphKeys.UPDATE_OPS`. If True, update EMA inside the layer
by control dependencies.
by control dependencies.
They are very similar in speed, but `internal_update=True` can be used
when you have conditionals in your model, or when you have multiple networks to train.
sync_statistics: either None or "nccl". By default (None), it uses statistics of the input tensor to normalize.
When set to "nccl", this layer must be used under tensorpack multi-gpu trainers,
and it then uses per-machine (multiple GPU) statistics to normalize.
This option has no effect when not training.
The option is also known as "Cross-GPU BatchNorm" as mentioned in https://arxiv.org/abs/1711.07240.
Variable Names:
Variable Names:
...
@@ -58,9 +107,7 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
...
@@ -58,9 +107,7 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
* ``variance/EMA``: the moving average of variance.
* ``variance/EMA``: the moving average of variance.
Note:
Note:
1. About multi-GPU training: moving averages across GPUs are not aggregated.
1. Combinations of ``training`` and ``ctx.is_training``:
Batch statistics are computed independently. This is consistent with most frameworks.
2. Combinations of ``training`` and ``ctx.is_training``:
* ``training == ctx.is_training``: standard BN, EMA are
* ``training == ctx.is_training``: standard BN, EMA are
maintained during training and used during inference. This is
maintained during training and used during inference. This is
the default.
the default.
...
@@ -75,6 +122,9 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
...
@@ -75,6 +122,9 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
shape
=
inputs
.
get_shape
()
.
as_list
()
shape
=
inputs
.
get_shape
()
.
as_list
()
ndims
=
len
(
shape
)
ndims
=
len
(
shape
)
assert
ndims
in
[
2
,
4
],
ndims
assert
ndims
in
[
2
,
4
],
ndims
if
sync_statistics
is
not
None
:
sync_statistics
=
sync_statistics
.
lower
()
assert
sync_statistics
in
[
None
,
'nccl'
,
'horovod'
],
sync_statistics
if
axis
is
None
:
if
axis
is
None
:
if
ndims
==
2
:
if
ndims
==
2
:
...
@@ -82,6 +132,9 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
...
@@ -82,6 +132,9 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
axis
=
1
axis
=
1
else
:
else
:
axis
=
1
if
data_format
==
'NCHW'
else
3
axis
=
1
if
data_format
==
'NCHW'
else
3
else
:
data_format
=
'NCHW'
if
axis
==
1
else
'NHWC'
num_chan
=
shape
[
axis
]
# parse training/ctx
# parse training/ctx
ctx
=
get_current_tower_context
()
ctx
=
get_current_tower_context
()
...
@@ -98,58 +151,116 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
...
@@ -98,58 +151,116 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
# Using moving_mean/moving_variance in training, which means we
# Using moving_mean/moving_variance in training, which means we
# loaded a pre-trained BN and only fine-tuning the affine part.
# loaded a pre-trained BN and only fine-tuning the affine part.
coll_bk
=
backup_collection
([
tf
.
GraphKeys
.
UPDATE_OPS
])
if
sync_statistics
is
None
or
not
(
training
and
ctx
.
is_training
):
with
rename_get_variable
(
coll_bk
=
backup_collection
([
tf
.
GraphKeys
.
UPDATE_OPS
])
{
'moving_mean'
:
'mean/EMA'
,
with
rename_get_variable
(
'moving_variance'
:
'variance/EMA'
}):
{
'moving_mean'
:
'mean/EMA'
,
if
TF_version
>=
1.5
:
'moving_variance'
:
'variance/EMA'
}):
layer
=
tf
.
layers
.
BatchNormalization
(
tf_args
=
dict
(
axis
=
axis
,
momentum
=
momentum
,
epsilon
=
epsilon
,
center
=
center
,
scale
=
scale
,
beta_initializer
=
beta_initializer
,
gamma_initializer
=
gamma_initializer
,
virtual_batch_size
=
virtual_batch_size
,
fused
=
True
,
_reuse
=
tf
.
get_variable_scope
()
.
reuse
)
else
:
assert
virtual_batch_size
is
None
,
"Feature not supported in this version of TF!"
layer
=
tf
.
layers
.
BatchNormalization
(
axis
=
axis
,
axis
=
axis
,
momentum
=
momentum
,
epsilon
=
epsilon
,
momentum
=
momentum
,
epsilon
=
epsilon
,
center
=
center
,
scale
=
scale
,
center
=
center
,
scale
=
scale
,
beta_initializer
=
beta_initializer
,
beta_initializer
=
beta_initializer
,
gamma_initializer
=
gamma_initializer
,
gamma_initializer
=
gamma_initializer
,
fused
=
True
,
fused
=
True
,
_reuse
=
tf
.
get_variable_scope
()
.
reuse
_reuse
=
tf
.
get_variable_scope
()
.
reuse
)
)
if
TF_version
>=
1.5
:
xn
=
layer
.
apply
(
inputs
,
training
=
training
,
scope
=
tf
.
get_variable_scope
())
tf_args
[
'virtual_batch_size'
]
=
virtual_batch_size
else
:
assert
virtual_batch_size
is
None
,
"Feature not supported in this version of TF!"
layer
=
tf
.
layers
.
BatchNormalization
(
**
tf_args
)
xn
=
layer
.
apply
(
inputs
,
training
=
training
,
scope
=
tf
.
get_variable_scope
())
# maintain EMA only on one GPU is OK, even in replicated mode.
# maintain EMA only on one GPU is OK, even in replicated mode.
# because training time doesn't use EMA
# because during training, EMA isn't used
if
ctx
.
is_main_training_tower
:
if
ctx
.
is_main_training_tower
:
for
v
in
layer
.
non_trainable_variables
:
for
v
in
layer
.
non_trainable_variables
:
add_model_variable
(
v
)
add_model_variable
(
v
)
if
not
ctx
.
is_main_training_tower
or
internal_update
:
if
not
ctx
.
is_main_training_tower
or
internal_update
:
restore_collection
(
coll_bk
)
restore_collection
(
coll_bk
)
if
training
and
internal_update
:
if
training
and
internal_update
:
assert
layer
.
updates
assert
layer
.
updates
with
tf
.
control_dependencies
(
layer
.
updates
):
with
tf
.
control_dependencies
(
layer
.
updates
):
ret
=
tf
.
identity
(
xn
,
name
=
'output'
)
else
:
ret
=
tf
.
identity
(
xn
,
name
=
'output'
)
ret
=
tf
.
identity
(
xn
,
name
=
'output'
)
vh
=
ret
.
variables
=
VariableHolder
(
moving_mean
=
layer
.
moving_mean
,
mean
=
layer
.
moving_mean
,
# for backward-compatibility
moving_variance
=
layer
.
moving_variance
,
variance
=
layer
.
moving_variance
)
# for backward-compatibility
if
scale
:
vh
.
gamma
=
layer
.
gamma
if
center
:
vh
.
beta
=
layer
.
beta
else
:
else
:
re
t
=
tf
.
identity
(
xn
,
name
=
'output'
)
re
d_axis
=
[
0
]
if
ndims
==
2
else
([
0
,
2
,
3
]
if
axis
==
1
else
[
0
,
1
,
2
]
)
vh
=
ret
.
variables
=
VariableHolder
(
new_shape
=
None
# don't need to reshape unless ...
moving_mean
=
layer
.
moving_mean
,
if
ndims
==
4
and
axis
==
1
:
mean
=
layer
.
moving_mean
,
# for backward-compatibility
new_shape
=
[
1
,
num_chan
,
1
,
1
]
moving_variance
=
layer
.
moving_variance
,
variance
=
layer
.
moving_variance
)
# for backward-compatibility
batch_mean
=
tf
.
reduce_mean
(
inputs
,
axis
=
red_axis
)
if
scale
:
batch_mean_square
=
tf
.
reduce_mean
(
tf
.
square
(
inputs
),
axis
=
red_axis
)
vh
.
gamma
=
layer
.
gamma
if
center
:
if
sync_statistics
==
'nccl'
:
vh
.
beta
=
layer
.
beta
if
six
.
PY3
and
TF_version
<=
1.8
and
ctx
.
is_main_training_tower
:
logger
.
warn
(
"A TensorFlow bug will cause cross-GPU BatchNorm to fail. "
"Apply this patch: https://github.com/tensorflow/tensorflow/pull/20360"
)
from
tensorflow.contrib.nccl.ops
import
gen_nccl_ops
shared_name
=
re
.
sub
(
'tower[0-9]+/'
,
''
,
tf
.
get_variable_scope
()
.
name
)
num_dev
=
ctx
.
total
batch_mean
=
gen_nccl_ops
.
nccl_all_reduce
(
input
=
batch_mean
,
reduction
=
'sum'
,
num_devices
=
num_dev
,
shared_name
=
shared_name
+
'_NCCL_mean'
)
*
(
1.0
/
num_dev
)
batch_mean_square
=
gen_nccl_ops
.
nccl_all_reduce
(
input
=
batch_mean_square
,
reduction
=
'sum'
,
num_devices
=
num_dev
,
shared_name
=
shared_name
+
'_NCCL_mean_square'
)
*
(
1.0
/
num_dev
)
elif
sync_statistics
==
'horovod'
:
# Require https://github.com/uber/horovod/pull/331
# Proof-of-concept, not ready yet.
import
horovod.tensorflow
as
hvd
batch_mean
=
hvd
.
allreduce
(
batch_mean
,
average
=
True
)
batch_mean_square
=
hvd
.
allreduce
(
batch_mean_square
,
average
=
True
)
batch_var
=
batch_mean_square
-
tf
.
square
(
batch_mean
)
batch_mean_vec
=
batch_mean
batch_var_vec
=
batch_var
beta
,
gamma
,
moving_mean
,
moving_var
=
get_bn_variables
(
num_chan
,
scale
,
center
,
beta_initializer
,
gamma_initializer
)
if
new_shape
is
not
None
:
batch_mean
=
tf
.
reshape
(
batch_mean
,
new_shape
)
batch_var
=
tf
.
reshape
(
batch_var
,
new_shape
)
r_gamma
=
tf
.
reshape
(
gamma
,
new_shape
)
r_beta
=
tf
.
reshape
(
beta
,
new_shape
)
else
:
r_gamma
,
r_beta
=
gamma
,
beta
xn
=
tf
.
nn
.
batch_normalization
(
inputs
,
batch_mean
,
batch_var
,
r_beta
,
r_gamma
,
epsilon
)
if
ctx
.
is_main_training_tower
:
ret
=
update_bn_ema
(
xn
,
batch_mean_vec
,
batch_var_vec
,
moving_mean
,
moving_var
,
momentum
,
internal_update
)
else
:
ret
=
tf
.
identity
(
xn
,
name
=
'output'
)
vh
=
ret
.
variables
=
VariableHolder
(
moving_mean
=
moving_mean
,
mean
=
moving_mean
,
# for backward-compatibility
moving_variance
=
moving_var
,
variance
=
moving_var
)
# for backward-compatibility
if
scale
:
vh
.
gamma
=
gamma
if
center
:
vh
.
beta
=
beta
return
ret
return
ret
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment