Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
0050d6e7
Commit
0050d6e7
authored
Jul 15, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update docs
parent
264b1e4e
Changes
7
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
10 additions
and
9 deletions
+10
-9
examples/FasterRCNN/coco.py
examples/FasterRCNN/coco.py
+1
-1
examples/FasterRCNN/common.py
examples/FasterRCNN/common.py
+2
-2
examples/FasterRCNN/config.py
examples/FasterRCNN/config.py
+1
-1
examples/FasterRCNN/data.py
examples/FasterRCNN/data.py
+3
-3
examples/FasterRCNN/model_frcnn.py
examples/FasterRCNN/model_frcnn.py
+1
-1
examples/FasterRCNN/viz.py
examples/FasterRCNN/viz.py
+1
-0
tensorpack/tfutils/varmanip.py
tensorpack/tfutils/varmanip.py
+1
-1
No files found.
examples/FasterRCNN/coco.py
View file @
0050d6e7
...
...
@@ -12,7 +12,6 @@ from tensorpack.utils.rect import FloatBox
from
tensorpack.utils.timer
import
timed_operation
from
tensorpack.utils.argtools
import
log_once
from
pycocotools.coco
import
COCO
from
config
import
config
as
cfg
...
...
@@ -63,6 +62,7 @@ class COCODetection(object):
basedir
,
'annotations/instances_{}.json'
.
format
(
name
))
assert
os
.
path
.
isfile
(
annotation_file
),
annotation_file
from
pycocotools.coco
import
COCO
self
.
coco
=
COCO
(
annotation_file
)
# initialize the meta
...
...
examples/FasterRCNN/common.py
View file @
0050d6e7
...
...
@@ -7,8 +7,6 @@ import cv2
from
tensorpack.dataflow
import
RNGDataFlow
from
tensorpack.dataflow.imgaug
import
transform
import
pycocotools.mask
as
cocomask
class
DataFromListOfDict
(
RNGDataFlow
):
def
__init__
(
self
,
lst
,
keys
,
shuffle
=
False
):
...
...
@@ -95,6 +93,8 @@ def segmentation_to_mask(polys, height, width):
a binary matrix of (height, width)
"""
polys
=
[
p
.
flatten
()
.
tolist
()
for
p
in
polys
]
import
pycocotools.mask
as
cocomask
rles
=
cocomask
.
frPyObjects
(
polys
,
height
,
width
)
rle
=
cocomask
.
merge
(
rles
)
return
cocomask
.
decode
(
rle
)
...
...
examples/FasterRCNN/config.py
View file @
0050d6e7
...
...
@@ -64,7 +64,7 @@ _C.DATA.BASEDIR = '/path/to/your/COCO/DIR'
_C
.
DATA
.
TRAIN
=
[
'train2014'
,
'valminusminival2014'
]
# i.e., trainval35k
_C
.
DATA
.
VAL
=
'minival2014'
# For now, only support evaluation on single dataset
_C
.
DATA
.
NUM_CATEGORY
=
80
# 80 categories.
_C
.
DATA
.
CLASS_NAMES
=
[]
# NUM_CLASS
strings. Needs to be populated later by data loader
_C
.
DATA
.
CLASS_NAMES
=
[]
# NUM_CLASS
(NUM_CATEGORY+1) strings, to be populated later by data loader. The first is BG.
# basemodel ----------------------
_C
.
BACKBONE
.
WEIGHTS
=
''
# /path/to/weights.npz
...
...
examples/FasterRCNN/data.py
View file @
0050d6e7
...
...
@@ -264,9 +264,9 @@ def get_train_dataflow():
To train on your own data, change this to your loader.
Produce "imgs" as a list of dict, in the dict the following keys are needed for training:
height, width: integer
file_name: str
boxes: kx4 floats
class: k integers
file_name: str
, full path to the image
boxes:
numpy array of
kx4 floats
class:
numpy array of
k integers
is_crowd: k booleans. Use k False if you don't know what it means.
segmentation: k lists of numpy arrays (one for each box).
Each list of numpy array corresponds to the mask for one instance.
...
...
examples/FasterRCNN/model_frcnn.py
View file @
0050d6e7
...
...
@@ -239,7 +239,7 @@ def fastrcnn_2fc_head(feature, num_classes):
def
fastrcnn_Xconv1fc_head
(
feature
,
num_classes
,
num_convs
,
norm
=
None
):
"""
Args:
feature (
any shape
):
feature (
NCHW
):
num_classes(int): num_category + 1
num_convs (int): number of conv layers
norm (str or None): either None or 'GN'
...
...
examples/FasterRCNN/viz.py
View file @
0050d6e7
...
...
@@ -12,6 +12,7 @@ from config import config as cfg
def
draw_annotation
(
img
,
boxes
,
klass
,
is_crowd
=
None
):
"""Will not modify img"""
labels
=
[]
assert
len
(
boxes
)
==
len
(
klass
)
if
is_crowd
is
not
None
:
...
...
tensorpack/tfutils/varmanip.py
View file @
0050d6e7
...
...
@@ -178,7 +178,7 @@ def get_checkpoint_path(model_path):
elif
model_path
.
endswith
(
'.index'
):
new_path
=
model_path
.
split
(
'.index'
)[
0
]
if
new_path
!=
model_path
:
logger
.
warn
(
logger
.
info
(
"Checkpoint path {} is auto-corrected to {}."
.
format
(
model_path
,
new_path
))
model_path
=
new_path
assert
tf
.
gfile
.
Exists
(
model_path
)
or
tf
.
gfile
.
Exists
(
model_path
+
'.index'
),
model_path
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment