RoboCup 2D Half Field Offense
Technical Manual

Matthew Hausknecht
August 12, 2017

Contents

1 Overviewl

2 Installationl
2.1 Python Intertace]

3 _Uninstalll

[4 Basic Usage|

B Visualizer

geimng

7 Making Videos|

8 Recording|

9 Randomness|

(10 Player On Ball|
11 Teams

2 C ationl
13 Fullstatel

(14 Controlling Trials|

[15 State Spaces|
(15.1 High Level Feature Set|
(15.1.1 High Level State Feature Last|

[15.2.3 Angular Features| 9

[15.2.4 Proximity Features|o 9

15.2.5 Landmark Features o 9

[15.2.6 Player Features| 10

(15.2.7 Uniform Number Features| oL 10

[5.2.8 Other Featuresl 10

15.2.9 Low Level State Feature Listl. 10

16 Action Space] 12
6.1 Low Level Actionsl 12
6.2 Mid Level Actionsl. o e 12
[16.3 High Level Actions| 12
[16.4 Special Actions| L 13
[16.5 Applicable Actions| 13
17 Developing a New Agent| 14

1 Overview

This document describes the installation, usage, state, and action spaces of the HFO domain.

2 Installation
Installation with CMake:

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=RelwithDebInfo ..

make -j4 # Replace 4 with the number of cores on your machine

make install # This just copies binaries to the HFO directory; no sudo required

vV V V V

HFO installation has been tested on Ubuntu Linux and OSX. Successful installation depends on
CMake, Boost-system, Boost-filesystem, and flex.

These depedencies can be installed on Ubuntu using the following command:
sudo apt-get install cmake libboost-filesystem libboost-system flex

By default, the soccerwindow?2 visualizer is also built and requires Qt4. Experimentally speaking,
HFO is fully-functional without the visualizer. To disable this component, use the following cmake
command:

> cmake -DCMAKE_BUILD_TYPE=RelwithDebInfo -DBUILD_SOCCERWINDOW=False ..

2.1 Python Interface

The Python interface is required for interfacing Python agents to the HFO domain. To install this
interface, from the main HFO directory:
> pip imstall .

or
> pip install --user .

if you have limited permissions on the machine.

Successful installation depends on Python 2.7, 3.2, or above (tested with 2.7 and 3.5) and numpy.

3 Uninstall

The install is completely contained in the HFO directory. Simply delete this directory to uninstall. If
you have installed the python interface, uninstall it as follows: pip uninstall hfo.

— —
[

Offense | (Tagentzd Agent2d Defense
Soccer Server

NPCs | [TAgentzd }— L {"Agent2d NPCs
Agent2d

N
Agent2d Agent2d
HFO Trainer.py HFO
Interface Interface
Offense ¥ Defense
A t Your Your
gen Code Code Agent

HFO

— —_—

Figure 1: HFO is comprised of several components which communicate over the network. Network
connections are depicted with orange ovals. Calling the HFO executable starts the trainer, visualizer,
and all the offensive and defensive npcs (Agent2d) as well as the offensive and defensive agent servers.
Your code then uses the HFO interface to connect your agent to the server. Once all agents are connected,
the game begins. The trainer oversees the game.

4 Basic Usage

RoboCup 2D soccer is designed to be played between two teams of autonomous agents who communi-
cate with a game server. Shown in Figure [I} the HFO domain reflects these design choices and allows
arbitrary teams to be created consisting of some mix of non-player-controlled agents (agent2d npcs) and
player-controlled agents. These options are specified through the following flags:

> ./bin/HF0 --offense-agents=1 --defense-agents=1 --offense-npcs=2 --defense-npcs=2

This would create a 3v3 game with one player-controlled agent on each team. In order for the game
to start, you must connect your player-controlled agents to the server. This is done through the call:

> hfo.connectToServer (FEATURE_SET, port, etc);

The arguments to this function are provided by the HFO executable for each player upon starting
the game. For example ./bin/HF0 --offense-agents=1 prints all the information needed to connect
the offensive player:

Waiting for player-controlled agent base_left-0:
config_dir=HF0/bin/teams/base/config/formations-dt,
server_port=6000, server_addr=localhost,
team_name=base_left, play_goalie=False

By default, the server starts on port 6000, but may be changed as follows:

> ./bin/HF0 --port 12345

5 Visualizer

The SoccerWindow?2 Visualizer allows a live game to be viewed as it progresses. By default, the visual-
izer is enabled. However, the game will likely proceed at a pace too fast for meaningful watching. To
enforce a standard pace, disable sync-mode:

> ./bin/HF0 --no-sync
To disable visualization altogether, run in headless mode:
> ./bin/HF0 --headless

The visualizer may also be used after the end of a game by replaying logs, as discussed in the next
section.

6 Logging

By default, the soccer server generates game logs and stores them in the log directory. The main game
logs are rcg files: log/*.rcg. These log may be replayed using the soccerwindow?2 visualizer.

To replay a log:
> ./bin/soccerwindow2 -1 log/incomplete.rcg
To disable logging:
> ./bin/HF0 --no-logging
To change the logging directory:
> ./bin/HF0 --log-dir /path/to/new/dir
Note that the logs can become quite large for a prolonged series of episodes.

7 Making Videos

It is possible to make videos from logs by saving frames from SoccerWindow?2. It helps to full-screen
SoccerWindow?2 before making a video as it will save higher quality images. There are also several

display options under View — View Preference — Show that toggle what will be displayed. Saving
frames can be done by File — Save Image. To convert the saved pngs into a movie:

avconv -r 10 -start_number O -i 3v3/image-%05d.png -f mp4 -c:v 1ibx264
-s 1024x768 -vf "crop=iw/2.5:8.38%ih/10:iw/2:ih/10,transpose=1"
-pix_fmt yuv420p test.mp4d

This command autocrops offensive half of the playfield and rotates it 90 degrees. Avconv can be
replaced by ffmpeg. Start number specifies the number of the first frame. yuv420p pix format for OSX
compatibility.

8 Recording

It is possible to record the state perceptions (low- or high-level depending on the player), low-level
actions, and game status of all players:

> ./bin/HF0 --record

This will produce logs for all the offensive players (log/left-[1-11].1log) and defensive players
(log/right-[1-11].1og). The first offensive player is left-11, so in the case of single-agent offense,
left-11.log will contain the active player’s record. Note that for player controlled agents, it is necessary
to specify a record_dir in the connectToServer function:

std::string record_dir = "log/";
hfo.connectToServer(features, config dir, port, server_addr,
team_name, goalie, record_dir);

9 Randomness

A seed may be specified as follows:
> ./bin/HF0 --seed 123

This seed will determine the placement of the players and the ball at the beginning of each episode.
Due to non-determinism in the player policies, it is not sufficient to precisely replicate full games. It
only replicates the starting conditions for each episode. The players’ behavior, observations, and physics
all proceed stochastically.

10 Player On Ball

By default, episodes begin with the ball being randomly positioned in the offensive half of the playfield.
Typically the first task for the offense is to send a player to collect the ball. It is possible to instead
request that a certain offensive player is given the ball at the start of each episode. This is accomplished

as follows:
> ./bin/HF0 --offense-on-ball 1

The above command will always give the ball to the first offensive player (e.g. uniform number 11).
If an offense-on-ball number is specified that is larger than the number of offensive players, the ball will
be given to a random offensive player at the start of each episode.

11 Teams

By default, offensive and defensive NPCs use the base Agent2D policy. It is possible to use policies from
different teams as follows:

> ./bin/HF0 —-offense-team helios
> ./bin/HF0 --defense-team base

This would take offense NPCs from Helios’ 2013 Eindhoven release and defensive NPCs from the
default Agent2D-base. Currently the only supported teams are Helios (on Linux only) and Base.

12 Communication

HFO allows agents to receive and broadcast messages. This is accomplished by the hear and say
functions. The maximum allowed message size is controlled by HFO’s --message-size flag. See
examples/communication_agent.cpp and examples/communication_agent.py for examples.

13 Fullstate

By default, perceptions and actions in HFO are noisy. The --fullstate flag in HFO removes noise
from the agent’s perception of the world. Many tasks become significantly easier as a result. Noise in
actions remains. This flag is disabled by default.

14 Controlling Trials

HFO trials typically end with a goal, the defense capturing the ball, the ball going out of bounds, or
running out of time. The trials flag specifies a maximum number of trials: > ./bin/HF0 --trials 500.
Instead, a maximum number of frames may be specified; for instance, ——frames 1000 will stop the server
after 1,000 steps have passed. Each trial is run for a maximum of —-frames-per-trial steps, but may
stop early if no agent approaches the ball within ——untouched-time steps.

15 State Spaces

The HFO domains provides a choice between a low and a high-level feature set. Selecting between the
different feature sets is accomplished when connecting the agent to the server:

> hfo.connectToServer (LOW_LEVEL_FEATURE_SET, ...);
> hfo.connectToServer (HIGH_LEVEL_FEATURE_SET, ...);

See examples/hfo_example_agent.cpp and examples/hfo_example_agent.py for examples. As
the choice of feature set influences the challenge of learning, it is the responsibility of the user to
faithfully report which state space was used. The following sections explain the feature sets.

15.1 High Level Feature Set

A set of high-level features is provided following the example given by Barrett pp. 159-160 [I]. Barrett
writes: “There are many ways to represent the state of a game of half field offense. Ideally, we want
a compact representation that allows the agent to learn quickly by generalizing its knowledge about a
state to similar states without over-constraining the policy.” All features are encoded a floating point
values and normalized to the range of [-1,1]. Invalid features are given a value of -2. The features are
as follows:

15.1.1 High Level State Feature List

Let T denote the number of teammates in the HFO game and O the number of opponents. There are
a total of 10 4+ 67" 4 30 high-level features.

0 X position - The agents x-position on the field. See Figure [2|

1 Y position - The agents y-position on the field. See Figure [2]

2 Orientation - The global direction that the agent is facing.

3 Ball X - The ball’s x-position on the field.

4 Ball Y - The ball’s y-position on the field.

5 Able to Kick - Boolean indicating if the agent can kick the ball.

6 Goal Center Proximity - Agent’s proximity to the center of the goal.

7 Goal Center Angle - Angle from the agent to the center of the goal.

8 Goal Opening Angle - The size of the largest open angle of the agent to the goal, shown as 0,
in Figure 3] Invalid if agent is not playing offense.

9 Proximity to Opponent - If an opponent is present, proximity to the closest opponent. Invalid
if there are no opponents.

T Teammate’s Goal Opening Angle - For each teammate i: is goal opening angle. Invalid if
agent is not playing offense.

T Proximity from Teammate i to Opponent - For each teammate i: the proximity from the
teammate to the closest opponent. This feature is invalid if there are no opponents or if teammates
are present but not detected.

T Pass Opening Angle - For each teammate i: the open angle available to pass to teammate i.
Shown as ¢, in Figure If teammates are present but not detected, this feature is considered
invalid and given the value of -2.

3T X, Y, and Uniform Number of Teammates - For each teammate: the x-position, y-position
and uniform number of that teammate.

30 X, Y, and Uniform Number of Opponents - For each opponent: the x-position, y-position
and uniform number of that opponent.

+1 Last_Action_Success_Possible - Whether there is any chance the last action taken was success-
ful, either in accomplishing the usual intent of the action or in some other way such as getting out
of a goal-collision state. 1 for yes, -1 for no.

Figure 2: Normalized Coordinates in the HFO play field: These coordinates are used for reporting
the agent’s position in the high-level feature set as well specifying targets for the mid-level actions
(Section . The red-rectangle shows the boundaries of the reported positions, which exceed the play
field boundaries by 10% in each direction. Positions exceeding this rectangle are bounded (via min/max)
to the edges of the rectangle. All distance features are normalized against the max HFO distance shown
in orange.

Figure 3: Open angle from ball to the goal 6, avoiding the blue goalie and the open angle from the ball
to the yellow teammate 0,. Figure reproduced with permission from Samuel Barrett.

15.2 Low Level Feature Set

The state features used by HFO are designed with the mindset of providing an overcomplete, basic,
egocentric viewpoint. The features are basic in the sense that they provide distances and angles to
relevant points of interest, but do not include higher level perceptions such as the largest angle between
a goal post and goalkeeper.

All features are encoded as floating point values normalized to the range of [-1,1]. Several different
types of features exist:

15.2.1 Boolean Features

Boolean features assume either the minimum feature value of -1 or the maximum feature value of 1.

15.2.2 Valid Features

Since feature information is attained from the Agent’s world-model, it is possible that, the world model’s
information may be stale or incorrect. Valid features are boolean features indicating consistency of world
model predictions. For example, if the world model’s estimate of the agent’s position is known to be
flawed, the walid feature for self position would assume the minimum value of -1. Otherwise it will
assume the maximum value of 1.

The features associated with a valid feature are given the value of zero if an inconsistency is detected.
For example, if the world model detects that the agent’s velocity perception is invalid, the feature that
encodes the magnitude of self velocity will be set to zero.

15.2.3 Angular Features

Angular features (e.g. the angle to the ball), are encoded as two floating point numbers — the sin(6)
and cos(0) where 0 is the original angle in radians. Figure [4| provides examples of the angular encoding.

This encoding allows the angle to vary smoothly for all possible angular values. Other encodings
such as radians or degrees have a discontinuity that when normalized, could cause the feature value to
flip between the maximum and minimum value in response to small changes in 6.

Given an angular feature (aj,as) we can recover the original angle 6 (in radians) by taking the
cos ' (ay) and multiplying by the sign of a;. Another method, possibly preferable in the presence of
noise, uses the common ’atan2’ function as atan2(aq, as).

15.2.4 Proximity Features

Proximity features encode the proximity of the agent to an object of interest. Unless otherwise indicated,
they are normalized against the maximum possible distance in the HFO playfield (defined as v/1% 4+ w?
where [, w are the length and width of the HFO playfield). A maximum proximity of 1 indicates the
agent is co-located with the object of interest, while a minimum proximity of -1 indicates that the agent
is across the field from the object of interest.

15.2.5 Landmark Features

Landmark features encode the relative angle and proximity of the agent to a landmark of interest. Each
landmark feature consists of three floating point values, two to encode the agent’s relative angle to the
landmark and one to encode the landmark’s proximity. Note that if the agent’s self position is invalid,
the landmark feature values are zeroed.

-1,.0

-sin, -cos -sin, +cos
0, '1 . > 0’ 1
+sin, -cos +sin, +cos
1,0
(a) Angular Encoding (b) Additional Examples

Figure 4: Angular Encoding: Objects on the agents left /right side result in a negative /positive sin(f).
cos(0) is positive in front of the player and negative behind. For example, an object directly in front
of the player would have angular features of sin(f) = 0,cos(f) = 1. Additional examples: Angle to
ball § = 60° or 1.0472 radians. This results in angular features (sin(6) = .86, cos(d) = .49). Angle to
teammate: 6 = 135°,2.35 radians. (sin(f) = .71, cos(f) = —.71). Angle to Opponent: § = —90° or
—1.57 radians. (sin(0) = —1, cos(0) = 0).

15.2.6 Player Features

Player features are used to encode the relationship of the agent to another player or opponent. Each
player feature is encoded as 1) a landmark feature of that player’s location 2) the global angle of that
player’s body 3) the magnitude of the player’s velocity and 4) the global angle of the player’s velocity.
Eight floating point numbers are used to encode each player feature.

15.2.7 Uniform Number Features

In the low-level feature space, unknown uniform numbers, or unums, are encoded as -1, while known
ones are encoded as “77e", thus remaining well within the [—1, 1] range. (Note that roundoff error may
need to be allowed for when converting these back to integers, such as for use in high-level actions;
e.g., 0.0799 will need to be converted back to 8.) Uniform number features, a later addition to the
low-level feature space, are positioned after all other features to hopefully ensure compatibility with

older programs.

15.2.8 Other Features

Some features, such as the agent’s stamina, do not fall into any of the above categories. These features
are referred to as other features and are normalized in the range [—1, 1].

15.2.9 Low Level State Feature List

Let T denote the number of teammates and O denote the number of opponents in the HFO game. Then
there are a total of 58 + 97 + 90 low-level features:

0 Self_Pos_Valid [Valid] Indicates if self position is valid.
1 Self Vel Valid [Valid] Indicates if the agent’s velocity is valid.
2-3 Self_Vel _Ang [Angle] Angle of agent’s velocity.

10

0 ~J O &~

10

11

12
13-15
16-18
19-21
22-24
25-27
28-30
31-33

34-36
37-39
40-42
43-45

46

47
48
49
20
51-52
93
o4
95
26-57
8T

80

+1

Self Vel Mag [Other| Magnitude of the agent’s velocity.

Self_Ang [Angle] Agent’s Global Body Angle.

Stamina [Other| Agent’s Stamina: Low stamina slows movement.

Frozen [Boolean| Indicates if the agent is Frozen. Frozen status can happen when tackling or
being tackled by another player.

Colliding_with_ball [Boolean] Indicates the agent is colliding with the ball.
Colliding_with_player [Boolean| Indicates the agent is colliding with another player.
Colliding_with_post [Boolean]| Indicates the agent is colliding with a goal post.

Kickable [Boolean] Indicates the agent is able to kick the ball.

Goal Center [Landmark]| Center point between the goal posts.

Goal Post Top [Landmark]| Top goal post.

Goal Post Bot [Landmark] Bottom goal post.

Penalty Box Center [Landmark] Center of the penalty box line.

Penalty Box Top [Landmark] Top corner of the penalty box.

Penalty Box Bot [Landmark] Bottom corner of the penalty box.

Center Field [Landmark] The left middle point of the RoboCup field (note that this is not the
center of the HFO play area).

Corner Top Left [Landmark] Top left corner HFO Playfield.

Corner Top Right [Landmark] Top right corner HFO Playfield.

Corner Bot Right [Landmark] Bottom right corner HFO Playfield.

Corner Bot Left [Landmark] Bottom left corner HFO Playfield.

OOB Left Dist [Proximity| Proximity to the nearest point of the left side of the HFO playable
area. E.g. distance remaining before the agent goes out of bounds in left field.

OOB Right Dist [Proximity] Proximity to the right field line.

OOB Top Dist [Proximity] Proximity to the top field line.

OOB Bot Dist [Proximity] Proximity to the bottom field line.

Ball Pos Valid [Valid| Indicates the ball position estimate is valid.

Ball Angle [Angle] Agent’s angle to the ball.

Ball Dist [Proximity] Proximity to the ball.

Ball Vel Valid [Valid] Indicates the ball velocity estimate is valid.

Ball Vel Mag [Other] Magnitude of the ball’s velocity.

Ball Vel Ang [Angle] Global angle of ball velocity.

Teammate Features [Player| One teammate feature set (8 features) for each teammate active
in HFO, sorted by proximity to the agent.

Opponent Features [Player] One opponent feature set (8 features) for each opponent active in
HFO, sorted by proximity to the player.

Teammate Uniform Nums [Unum] One uniform number for each teammate active in HFO,
sorted by proximity to the agent.

Opponent Uniform Nums [Unum] One uniform number for each opponent active in HFO,
sorted by proximity to the player.

Last_Action_Success_Possible [Boolean] Whether there is any chance the last action taken was
successful, either in accomplishing the usual intent of the action or in some other way such as
getting out of a goal-collision state.

11

16 Action Space

The HFO domain provides support for both low-level primitive actions, mid-level, and high-level strategic
actions. Low-level, parameterized actions are provided for locomotion and kicking. Mid-level actions are
still mostly parameterized but capture high-level activities such as dribbling. Finally, high-level discrete,
strategic actions are available for moving, shooting, passing and dribbling. Control of the agent’s head
and gaze is not provided and follows Agent2D’s default strategy. Low, medium, and high level actions
are available through the same interface. As the choice of action spaces greatly influences the challenge
of learning, it is the responsibility of the user to faithfully report which action spaces were used.

16.1 Low Level Actions

e Dash(power, degrees): Moves the agent with power [-100, 100] where negative values move back-
wards. The relative direction of movement is given in degrees and varies between [-180,180] with
0 degrees being a forward dash and 90 degrees dashing to the agent’s right side. Note, dashing
does not turn the agent.

e Turn(degrees): Turns the agent in the specified direction. Valid values range between [-180, 180]
degrees where 90 degrees turns the agent to directly to its right side.

e Tackle(degrees): Contest the ball. Direction varies between [-180, 180].

e Kick(power, degrees): Kick the ball with power [0, 100] in relative direction [-180, 180]. Has no
effect if the agent does not possess the ball.

16.2 Mid Level Actions

e Kick _To(target,, target,, speed): Kicks the ball to the specified target point with the desired
speed. Valid values for target,, € [—1,1] and speed € [0, 3].

e Move_To(target,, target,): Moves to the specified target point using the max dash speed. Valid
values for target,, € [—1,1].

e Dribble_To(target,, target,): Dribbles the ball to the specified target point. Attempts to fetch
the ball if the agent doesn’t already possess it. Performs some checks to avoid opponents and
keeps good control of the ball. Valid values for target,, € [—1,1].

e Intercept(): Moves to intercept the ball, taking into account the ball velocity. More efficient than
chasing the ball.

16.3 High Level Actions

e Move(): Re-positions the agent according to the strategy given by Agent2D. The Move command
works only when the agent does not have the ball. If the agent has the ball, another command
such as Dribble, Shoot, or Pass should be used.

e Shoot(): Executes the best available shot. This command only works when the agent has the
ball.

e Pass(teammate_uniform number): Passes to the teammate with the provided uniform number.
Does nothing if the player does not have control of the ball or the requested teammate is not
detected.

e Dribble(): Advances the ball towards the goal using a combination of short kicks and moves.

e Catch(): This goalie-specific action may be used to catch the ball.

12

e Reduce_Angle To Goal(): Moves the agent to a point on the field, such that the kicker has the
least open angle to the goal.

e Defend_Goal(): Moves the agent to a point on a fixed line on the field, such that the kicker has
the least open angle to the goal.

e Go_To_Ball(): Makes the agent go towards the ball.

e Mark Player(uniform number): Moves the agent so as to mark the player with the specified
uniform number.

e Reorient(): Deal with loss of self or ball localization information and pay increased attention to
surroundings.

16.4 Special Actions

e NO-OP: Indicates that the agent should take no action.
e Quit: Indicates to the agent server that you wish to terminate the HFO environment.

16.5 Applicable Actions

The Special Actions are always applicable (potentially appropriate). The below table indicates whether
other actions are applicable (only if there are no “N”s indicated); check below the table for the action
abbreviations and notes.

Action ‘ Da Tu Ta K ‘ KT MT DT 1 ‘ M S P D C RG DG G MP Re

Self position invalid | Y Y Y Y | N N N NIN N N Y Y N N N N Y
Self velocity invalid | N Y Y Y | N N N NIN N Y Y Y N N N N Y
Ball positioninvalid | Y Y Y N | N Y Y N|N N N Y N N N N N Y
Ball velocity invalid | Y Y Y Y | N Y N Y| Y NN Y Y Y Y Y Y Y
Teammate locinvalid | Y Y Y Y | Y Y Y Y|Y Y N Y Y Y Y Y Y Y
Team. unuminvalid | Y Y Y Y| Y Y Y Y|]Y Y N Y Y Y Y Y Y Y
Opponent locinvalid | Y Y Y Y | Y Y N YN Y Y N Y Y Y Y N Y
Opp. unuminvalid | Y Y Y Y| Y Y Y Y|]Y Y Y Y Y Y Y Y N Y
Ball kickable | Y Y Y Y | Y N Y N|* Y Y Y Y N N N Y N

Ball not kickable | Y 'Y Y N | N Y Y Y|Y N N N Y Y Y Y Y Y
Frozen | N N N N | N N N N|N N N N N N N N N Y
Collidingw/ball | Y Y N N| Y N Y Y|Y Y Y Y Y N N N N N
Colliding w/player | Y Y Y Y | Y Y Y Y|Y Y N Y Y Y Y Y Y Y
Collidingw/post | Y Y Y Y| Y Y N Y|Y Y N Y Y Y Y Y Y Y
Offtnse | Y Y N Y| Y Y Y Y|Y Y Y Y N N N Y N Y

Defense, not goalie | Y Y Y N | N Y N Y|Y N N NN Y Y Y Y Y
Goalie (defense) | Y Y Y N | N Y N Y|Y N N N Y N Y N N Y

*: The Move command is not recommended for offensive players able to kick the ball, but can work for
defensive players (usually by triggering a tackle).

e Da: Dash; Tu: Turn; Ta: Tackle; K: Kick

o KT:Kick_To; MT: Move_To; DT: Dribble_To; I: Intercept

e M: Move; S:Shoot; P:Pass; D:Dribble; C: Catch; RG: Reduce_Angle_To_Goal; DG: Defend_Goal;
G: Go_To_Ball; MP: Mark_Player; Re: Reorient

13

17 Developing a New Agent

New agents may be developed in C++ or Python. In Python, as long as the hfo interface has been
installed, the agent only needs to import hfo (or from hfo import *). In C++, it is necessary to
#include <HFO.hpp> and also link against the shared object library 1ib/1ibhfo.so when compiling:

> g++ example/your_new_agent.cpp -I src -L 1lib -Wl1,-rpath=1lib -1lhfo
References

[1] S. Barrett. Making Friends on the Fly: Advances in Ad Hoc Teamwork. PhD thesis, The University
of Texas at Austin, Austin, Texas, USA, December 2014.

14

	Overview
	Installation
	Python Interface

	Uninstall
	Basic Usage
	Visualizer
	Logging
	Making Videos
	Recording
	Randomness
	Player On Ball
	Teams
	Communication
	Fullstate
	Controlling Trials
	State Spaces
	High Level Feature Set
	High Level State Feature List

	Low Level Feature Set
	Boolean Features
	Valid Features
	Angular Features
	Proximity Features
	Landmark Features
	Player Features
	Uniform Number Features
	Other Features
	Low Level State Feature List

	Action Space
	Low Level Actions
	Mid Level Actions
	High Level Actions
	Special Actions
	Applicable Actions

	Developing a New Agent

