RoboCup 2D Half Field Offense
Technical Manual

Matthew Hausknecht

October 2, 2015

Contents

1 Overviewl

[2__Installationl
2.1 Python Intertacel

13 Uninstalll

[4 Basic Usage|

5 Visnalized

7 Recording|

8 Randomness|

[9 State Spaces|
[9.1 High Level Feature Set|, .
[9.1.1 High Level State Feature List|
I.sz I‘gz&! I‘g:!g:l I g:iil !lIg: :‘!g:ll ------------------------------

0 00 00 0 1 =1 = = =J Ut gt

(10 Action Space] 10

10.1 Low Level Actiond 11
[10.2 High Level Actions|o 11
11 Developing a New Agent| 11

1 Overview

This document describes the installation, usage, state, and action spaces of the HFO domain.

2 Installation
Installation with CMake:

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=Release ..

make -j4 # Replace 4 with the number of cores on your machine

make install # This just copies binaries to the HFO directory; no sudo required

vV V V V

HFO installation has been tested on Ubuntu Linux and OSX. Successful installation
depends on CMake, Boost-system, Boost-filesystem, Flex. By default, the soccer-
window2 visualizer is also built and requires Qt4. Experimentally speaking, HFO is fully-
functional without the visualizer. To disable this component, use the following cmake com-
mand:

> cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_SOCCERWINDOW=False ..

2.1 Python Interface

The Python interface is required for interfacing Python agents to the HFO domain. To
install this interface, from the main HFO directory:

> pip install .

or

> pip install --user .

if you have limited permissions on the machine.

3 Uninstall

The install is completely contained in the HFO directory. Simply delete this directory to
uninstall. If you have installed the python interface, uninstall it as follows: pip uninstall hfo.

Agent2d
U

Defense
NPCs

Offense
NPCs

Defense
Agent

Offense
Agent

Figure 1: HFO is comprised of several components which communicate over the network.
Network connections are depicted with orange ovals. Calling the HFO executable starts the
trainer, visualizer, and all the offensive and defensive npcs (Agent2d) as well as the offensive
and defensive agent servers. Your code then uses the HFO interface to connect your agent
to an agent server. Once all servers have connected agents, the game begins. The trainer
oversees the game and is responsible for resetting the players between episodes.

4 Basic Usage

RoboCup 2D soccer is designed to be played between two teams of autonomous agents
who communicate with a game server. Shown in Figure [} the HFO domain reflects these
design choices and allows arbitrary teams to be created consisting of some mix of non-player-
controlled agents (agent2d npcs) and player-controlled agents. These options are specified
through the following flags:

> ./bin/HF0 --offense-agents=1 --defense-agents=1 --offense-npcs=2 --defense-npcs=2

This would create a 3v3 game with one player-controlled agent on each team. In order
for the game to start, you must connect your player-controlled agents to the waiting agent
servers. This is done through the call:

> hfo.connectToAgentServer (6000, LOW_LEVEL_FEATURE_SET) ;
or in Python:
> hfo_env.connectToAgentServer (6000, HFO_Features.LOW_LEVEL_FEATURE_SET)

By default, the server for the first agent is allocated to port 6000. Subsequent ports
are allocated sequentially backwards (e.g. to connect the second agent, port 5999 would be
used). The default port may be changed as follows:

> ./bin/HF0 --port 12345

5 Visualizer

The SoccerWindow?2 Visualizer allows a live game to be viewed as it progresses. By default,
the visualizer is enabled. However, the game will likely proceed at a pace too fast for mean-
ingful watching. To enforce a standard pace, disable sync-mode:

> ./bin/HF0 --no-sync
To disable visualization altogether, run in headless mode:
> ./bin/HF0 --headless

The visualizer may also be used after the end of a game by replaying logs, as discussed
in the next section.

6 Logging

By default, the soccer server generates game logs and stores them in the log directory. The
main game log is log/incomplete.rcg. This log may be replayed using the soccerwindow2
visualizer.

To replay a log:

> ./bin/soccerwindow2 -1 log/incomplete.rcg
To disable logging:

> ./bin/HF0 --no-logging
To change the logging directory:

> ./bin/HF0 --log-dir /path/to/new/dir

7 Recording

It is possible to record the low-level state perceptions, actions, and game status of all players:
> ./bin/HF0 --record

This will produce logs for all the offensive players (log/left-[1-11].1log) and defensive
players (log/right-[1-11] .1log). The first offensive player is left-11, so in the case of single-
agent offense, left-11.log will contain the active player’s record. The log, incomplete.rcg
may be used to verify the player numbers on field.

8 Randomness

A seed may be specified as follows:
> ./bin/HF0 --seed 123

This seed will determine the placement of the players and the ball at the beginning of
each episode. Due to non-determinism in the player policies and server, it is not sufficient
to precisely replicate full games. It only replicates the starting conditions for each episode.
The player’s behavior, observations, and physics all proceed stochastically.

9 State Spaces

The HFO domains provides a choice between a low-level feature set and a higher-level feature
set. Selecting between the different feature sets is accomplished when connecting to the agent
server. Also see examples/hfo_example_agent.cpp and examples/hfo_example_agent.py
for examples:

> hfo.connectToAgentServer (6000, LOW_LEVEL_FEATURE_SET) ;
> hfo. connectToAgentServer(6000 , HIGH_LEVEL_FEATURE_SET) ;

9.1 High Level Feature Set

A set of high-level features is provided following the example given by Barrett et al. pp.
159-160 [I]. Barrett writes “There are many ways to represent the state of a game of half
field offense. Ideally, we want a compact representation that allows the agent to learn quickly
by generalizing its knowledge about a state to similar states without over-constraining the
policy.” All features are encoded a floating point values and normalized to the range of [-1,1].
Invalid features are given a value of -2. The features are as follows:

9.1.1 High Level State Feature List

0 X position - The agents x position on the field.

1 Y position - The agents y position on the field.

2 Orientation - The direction that the agent is facing.

3 Ball Distance - Distance to the ball.

4 Ball Angle - Angle to the ball.

5 Able to Kick - Boolean indicating if the agent can kick the ball.

6 Goal Center Distance - Distance from the agent to the center of the goal.

5

3T

Goal Center Angle - Angle from the agent to the center of the goal.

Goal Opening Angle - The size of the largest open angle of the agent to the goal,
shown as 6, in Figure 2} Invalid if agent is not playing offense.

Teammate i’s Goal Opening Angle - For each teammate i: is goal opening angle.
Invalid if agent is not playing offense.

Distance to Opponent - If an opponent is present, distance to the closest opponent.
This feature is absent if there are no opponents.

Distance from Teammate i to Opponent - For each teammate i: the distance from
the teammate to the closest opponent. This feature is absent if there are no opponents.
If teammates are present but not detected, this feature is considered invalid and given
the value of -2.

Pass Opening Angle - For each teammate i: the open angle available to pass to
teammate i. Shown as 6, in Figure 2] If teammates are present but not detected, this
feature is considered invalid and given the value of -2.

Distance, Angle, and Uniform Number of Teammates - For each teammate i:
the distance, angle, and uniform number of that teammate.

There are a total of 9+5*num_teammates features with an additional 14+num_teammates
features if at least one opponent is present.

Figure 2: Open angle from ball to the goal ¢, avoiding the blue goalie and the open angle
from the ball to the yellow teammate 6,. Figure reproduced with permission from Samuel
Barrett.

9.2 Low Level Feature Set

The state features used by HFO are designed with the mindset of providing an overcomplete,
basic, egocentric viewpoint. The features are basic in the sense that they provide distances
and angles to relevant points of interest, but do not include higher level perceptions such as
the largest angle between a goal post and goalkeeper.

All features are encoded as floating point values normalized to the range of [-1,1]. Dif-
ferent types of features are discussed next.

9.2.1 Boolean Features

Boolean features assume either the minimum feature value of -1 or the maximum feature
value of 1.

9.2.2 Valid Features

Since feature information is attained from the Agent’s world-model, it is possible that, the
world model’s information may be stale or incorrect. Valid features are boolean features
indicating consistency of world model predictions. For example, if the world model’s estimate
of the agent’s position is known to be flawed, the valid feature for self position would assume
the minimum value of -1. Otherwise it will assume the maximum value of 1.

The features associated with a valid feature are given the value of zero if an inconsistency
is detected. For example, if the world model detects that the agent’s velocity is invalid, the
feature that encodes the magnitude of self velocity will be set to zero.

9.2.3 Angular Features

Angular features (e.g. the angle to the ball), are encoded as two floating point numbers —
the sin(0) and cos(f) where 6 is the original angle in radians. Figure [3| provides examples
of the angular encoding.

This encoding allows the angle to vary smoothly for all possible angular values. Other
encodings such as radians or degrees have a discontinuity that when normalized, could cause
the feature value to flip between the maximum and minimum value in response to small
changes in 6.

Given an angular feature (ay, as) we can recover the original angle 6 (in radians) by
taking the cos™!(ay) and multiplying by the sign of aj.

9.2.4 Distance Features

Distance features encode the distance to objects of interest. Unless otherwise indicated,
they are normalized against the maximum possible distance in the HFO playfield (defined
as V{2 + w? where [, w are the length and width of the HFO playfield). A distance of zero
will be encoded with the minimum feature value of -1 while a maximum distance will be
encoded with 1.

-1,0

-sin, -cos -sin, +cos
O, '1 01 1
+sin, -cos +sin, +cos
1,0
(a) Angular Encoding (b) Additional Examples

Figure 3: Angular Encoding: Objects on the agents left/right side result in a nega-
tive/positive sin(f). cos(f) is positive in front of the player and negative behind. For
example, an object directly in front of the player would have angular features of sin(f) =
0,cos(d) = 1. Additional examples: Angle to ball § = 60° or 1.0472 radians. This results
in angular features (sin(d) = .86,cos(d) = .49). Angle to teammate: 6 = 135°2.35
radians. (sin(f) = .71,cos(f) = —.71). Angle to Opponent: § = —90° or —1.57 radians.
(sin(f) = —1,cos(0) = 0).

9.2.5 Landmark Features

Landmark features encode the relative angle and distance to a landmark of interest. Each
landmark feature consists of three floating point values, two to encode the angle to the
landmark and one to encode the distance. Note that if the agent’s self position is invalid,
then the landmark feature values are zeroed.

9.2.6 Player Features

Player features are used to encode the relationship of the agent to another player or opponent.
Each player feature is encoded as 1) a landmark feature of that player’s location 2) the global
angle of that player’s body 3) the magnitude of the player’s velocity and 4) the global angle
of the player’s velocity. Eight floating point numbers are used to encode each player feature.

9.2.7 Other Features
Some features, such as the agent’s stamina, do not fall into any of the above categories.
These features are referred to as other features.

9.2.8 Low Level State Feature List

Basic Features are always present and independent of the number of teammates or opponents.
The 32 basic features are encoded using 58 floating point values (angular features require
two floats, landmark features require 3). Additionally a variable number of player features
are then added. This number depends on the number of teammates and opponents in the

HFO game, but 8 floating point values are required for each player feature. Thus, the total
number of features is 58 + 8 * num_teammates + 8 * num_opponents.

0
1
2-3
4

-6

10

11

12
13-15
16-18
19-21
22-24
25-27
28-30

31-33

34-36
37-39
40-42

Self Pos_Valid [Valid] Indicates if self position is valid.
Self Vel Valid [Valid] Indicates if the agent’s velocity is valid.
Self_Vel_Ang [Angle] Angle of agent’s velocity.

Self_Vel Mag [Other] Magnitude of agent’s velocity. Normalized against the maxi-
mum observed self speed, 0.46.

Self_Ang [Angle] Agent’s Global Body Angle.

Stamina [Other| Agent’s Stamina: The amount of remaining stamina the agent has.
Normalized against the maximum observed agent stamina of 8000.

Frozen [Boolean| Indicates if the agent is Frozen. Frozen status can happen when
being tackled by another player.

Colliding_with_ball [Boolean| Indicates if the agent is colliding with the ball.

Colliding_with_player [Boolean| Indicates if the agent is colliding with another
player.

Colliding_with_post [Boolean]| Indicates if the agent is colliding with a goal post.
Kickable [Boolean| Indicates if the agent is able to kick the ball.

Goal Center [Landmark]| Center point between the goal posts.

Goal Post Top [Landmark] Top goal post.

Goal Post Bot [Landmark] Bottom goal post.

Penalty Box Center [Landmark] Center of the penalty box line.

Penalty Box Top [Landmark] Top corner of the penalty box.

Penalty Box Bot [Landmark] Bottom corner of the penalty box.

Center Field [Landmark] The left middle point of the HFO play area. True center of
the full-field.

Corner Top Left [Landmark] Top left corner HFO Playfield.
Corner Top Right [Landmark] Top right corner HFO Playfield.
Corner Bot Right [Landmark] Bot right corner HFO Playfield.

43-45
46

47

48

49

20
51-52
33
54
95

56-57
8T

80

10

Corner Bot Left [Landmark] Bot left corner HFO Playfield.

OOB Left Dist [Distance] Distance to the nearest point of the left side of the HFO
playable area. E.g. distance remaining before the agent goes out of bounds in left field.

OOB Right Dist [Distance| Distance remaining before the agent goes out of bounds
in right field.

OOB Top Dist [Distance] Distance remaining before the agent goes out of bounds in
top field.

OOB Bot Dist [Distance] Distance remaining before the agent goes out of bounds in
bottom field.

Ball Pos Valid [Valid] Indicates if the ball position estimate is valid.
Ball Angle [Angle] Angle to the ball from the agent’s perspective.
Ball Dist [Distance] Distance to the ball.

Ball Vel Valid [Valid] Indicates if the ball velocity estimate is valid.

Ball Vel Mag [Other] Global magnitude of the ball velocity. Normalized against the
observed maximum ball velocity, 3.0.

Ball Vel Ang [Angle] Global angle of ball velocity.

Teammate Features [Player] One teammate feature set (8 features) for each team-
mate active in HFO, sorted by proximity to the agent.

Opponent Features [Player| One opponent feature set (8 features) for each opponent
present, sorted by proximity to the player.

Action Space

The HFO domain provides support for both low-level primitive actions and high-level strate-
gic actions. Basic, parameterized actions are provided for locomotion and kicking. Addi-
tionally high-level strategic actions are available for moving, shooting, passing and dribbling.
Control of the agent’s head and gaze is not provided and follows Agent2D’s default strat-

egy.

Both low and high level actions are available through the same interface. It is the

responsibility of the user to faithfully report which action spaces were used.

10

10.1 Low Level Actions

e Dash(power, degrees): Moves the agent with power [-100, 100] where negative values
move backwards. The relative direction of movement is given in degrees and varies
between [-180,180] with 0 degrees being a forward dash and 90 degrees dashing to the
agent’s right side. Note, dashing does not turn the agent.

e Turn(degrees): Turns the agent in the specified direction. Valid values range between
[-180, 180] degrees where 90 degrees turns the agent to directly to its right side.

e Tackle(degrees): Contest the ball. Direction varies between [-180, 180].

e Kick(power, degrees): Kick the ball with power [0, 100] in relative direction [-180,
180]. Has no effect if the agent does not possess the ball.

Quit: Indicates to the agent server that you wish to terminate the HFO environment.

10.2 High Level Actions

e Move(): Re-positions the agent according to the strategy given by Agent2D. The move
command works only when agent does not have the ball. If the agent has the ball,
another command such as dribble, shoot, or pass should be used.

e Shoot(): Executes the best available shot. This command only works when the agent
has the ball.

e Pass(teammate_uniform number): Passes to the teammate with the provided uniform
number. Does nothing if the player does not have control of the ball or the requested
teammate is not detected.

e Dribble(): Advances the ball towards the goal using a combination of short kicks and
moves.
11 Developing a New Agent

New agents may be developed in C++ or Python. In Python, as long as the hfo interface
has been installed, the agent needs only to from hfo import *. In C++4 it is necessary
to #include <HFQ.hpp> and also to link against the shared object library 1ib/1libhfo.so
when compiling:

> g++ example/your_new_agent.cpp -I src -L 1lib -W1l,-rpath=1ib -1lhfo

11

References

[1] S. Barrett. Making Friends on the Fly: Advances in Ad Hoc Teamwork. PhD thesis, The
University of Texas at Austin, Austin, Texas, USA, December 2014.

12

	Overview
	Installation
	Python Interface

	Uninstall
	Basic Usage
	Visualizer
	Logging
	Recording
	Randomness
	State Spaces
	High Level Feature Set
	High Level State Feature List

	Low Level Feature Set
	Boolean Features
	Valid Features
	Angular Features
	Distance Features
	Landmark Features
	Player Features
	Other Features
	Low Level State Feature List

	Action Space
	Low Level Actions
	High Level Actions

	Developing a New Agent

