
FaaS + K8s = faast!
Santhosh Kumar M

CSE, IITB
Mumbai, India

santhoshkm@cse.iitb.ac.in

SSiva Prasad Reddy Garlapati
CSE, IITB

Mumbai, India
23m0747@iitb.ac.in

Abstract—The integration of Functions as a Service (FaaS)
with Kubernetes (K8s) presents a promising approach to building
scalable and efficient cloud-native applications. In this report, we
detail the steps involved in setting up FaaS using Docker and
Kubernetes on a private cloud infrastructure. We demonstrate
the functional completeness, correctness of feature sets, and
performance through autoscaling experiments.

Index Terms—FaaS, Kubernetes, Containers, Functions,
Serverless

I. INTRODUCTION

Cloud computing isn going through a paradigm shift to-
wards more agile, scalable, and efficient architectures. This
transformation is largely driven by the adoption of microser-
vices and serverless computing models, which offer benefits
such as reduced operational overhead, improved scalability,
and increased resource utilization. At the forefront of this
evolution are Functions as a Service (FaaS) and container
orchestration platforms like Kubernetes (K8s), which provide
the foundation for building and deploying modern cloud-native
applications.

A. Functions as a Service (FaaS)

FaaS is a development paradigm where developers write
smaller function and can deploy them without having to bother
about the scalability and operational aspects. Unlike traditional
monolithic applications, which require constant provisioning
and management of infrastructure, FaaS abstracts the underly-
ing infrastructure concerns, allowing developers to focus solely
on writing code. This results in greater agility, as developers
can rapidly develop, deploy, and scale individual functions
without worrying about server provisioning or maintenance.

B. Kubernetes (K8s)

Kubernetes has emerged as the de facto standard for con-
tainer orchestration, providing a robust platform for deploy-
ing, managing, and scaling containerized applications. With
features such as automated scheduling, service discovery,
and horizontal scaling, Kubernetes simplifies the complexities
associated with deploying and managing containers at scale.
By abstracting away the underlying infrastructure, Kubernetes
enables developers to focus on building and deploying appli-
cations, while ensuring reliability, scalability, and flexibility.
Integration of FaaS with Kubernetes:

While FaaS and Kubernetes offer distinct advantages on
their own, their integration presents a compelling proposi-
tion for building cloud-native applications. By combining

the serverless computing model of FaaS with the container
orchestration capabilities of Kubernetes, organizations can
achieve the best of both worlds: the scalability and agility of
serverless computing, coupled with the flexibility and control
of containerized environments. This integration allows devel-
opers to leverage the benefits of serverless computing while
retaining the ability to manage and orchestrate containers
at scale, making it an ideal choice for modern cloud-native
applications.
The integration of FaaS with Kubernetes offers several key
benefits:

• Scalability: Kubernetes provides automated scaling ca-
pabilities, allowing FaaS functions to scale dynamically
in response to fluctuations in workload, ensuring optimal
resource utilization and cost efficiency.

• Flexibility: By running FaaS functions in containers or-
chestrated by Kubernetes, developers have the flexibility
to deploy, manage, and scale applications using familiar
tools and workflows, without being locked into a specific
FaaS platform.

• Portability: Kubernetes abstracts away the underlying
infrastructure, making it easier to deploy FaaS functions
across different environments, including on-premises data
centers, public clouds, and hybrid cloud environments.

• Operational Efficiency: Kubernetes simplifies the opera-
tional overhead associated with managing and orchestrat-
ing containers, allowing organizations to focus on devel-
oping and deploying applications, rather than managing
infrastructure.

C. Objectives of the Project

The primary objectives of this project are as follows:
• To set up a FaaS platform using Docker containers.
• To deploy and integrate the FaaS platform with Kuber-

netes on a private cloud infrastructure.
• To demonstrate the functional completeness and correct-

ness of feature sets of the integrated solution.
• To conduct experiments to demonstrate platform scala-

bility with no operational overheads

II. BACKGROUND AND MOTIVATION

A. Overview of Docker and Kubernetes

1) Docker: Docker is an open-source platform that enables
developers to develop, deploy, and run applications in con-
tainers. Containers are lightweight, portable, and self-sufficient



units that contain everything needed to run an application, in-
cluding the code, runtime, libraries, and dependencies. Docker
provides tools and services for building, distributing, and run-
ning containers efficiently. It uses a client-server architecture,
where the Docker client interacts with the Docker daemon to
manage containers and containerized applications. Docker has
gained widespread adoption due to its ease of use, portability,
and scalability.
Limitations/Challenges of Docker

• Resource Management: Docker lacks native support for
advanced resource management features like auto-scaling
and load balancing.

• Complexity: Managing and orchestrating multiple con-
tainers manually can be complex and time-consuming,
especially in large-scale deployments.

• Compatibility: Ensuring compatibility between containers
and different environments, such as development, testing,
and production, can be challenging.

2) Kubernetes: Kubernetes is an open-source container
orchestration platform that automates the deployment, scaling,
and management of containerized applications. It provides a
robust set of features for managing containerized workloads
across a cluster of machines, enabling developers to deploy
applications with ease and scale them seamlessly as needed.

B. Functions as a Service (FaaS)

Functions as a Service (FaaS) is a cloud computing model
that abstracts away server management and infrastructure con-
cerns, allowing developers to focus solely on writing and de-
ploying individual functions or pieces of code. FaaS platforms
execute these functions in response to events or triggers, such
as HTTP requests, database changes, or file uploads, without
the need for developers to provision or manage servers.
FaaS offers a serverless approach to building and deploying
applications, enabling rapid development, scalability, and cost
efficiency.
Architecture of FaaS Platforms:

1 Execution Environment: FaaS platforms provide a run-
time environment for executing functions, typically based
on containerization technology such as Docker. Each
function runs in its isolated environment, ensuring re-
source isolation and security.

2 Trigger Mechanism: Functions are triggered by events or
triggers, which can originate from various sources such
as HTTP requests, message queues, timers, or external
APIs. FaaS platforms provide integrations with these
event sources to enable seamless triggering of functions.

3 Orchestration and Scaling: FaaS platforms automatically
scale function instances based on demand, ensuring opti-
mal resource utilization and cost efficiency. Auto-scaling
policies can be configured based on metrics such as CPU
utilization, request rate, or custom metrics.

4 Management and Monitoring: FaaS platforms offer man-
agement and monitoring capabilities for functions, allow-
ing developers to deploy, monitor, and manage functions

using web interfaces or command-line tools. Monitoring
tools provide insights into function performance, resource
usage, and error handling.

Key Components of FaaS Platforms:
1 Function: The fundamental unit of computation in FaaS

platforms, representing a single piece of code or a func-
tion that performs a specific task. Functions are stateless
and ephemeral, with no persistent state or local storage
between invocations.

2 Trigger: Events or triggers that initiate the execution of
functions. Triggers can include HTTP requests, database
changes, file uploads, or timer-based events.

3 Runtime Environment: The execution environment in
which functions are executed, typically based on con-
tainerization technology such as Docker. Runtime envi-
ronments provide isolation, security, and resource man-
agement for executing functions.

4 Event Source: Sources of events or triggers that initiate
function execution, such as HTTP endpoints, message
queues, or cloud storage services. FaaS platforms provide
integrations with various event sources to enable seamless
triggering of functions.

Workflow of FaaS Execution:
1 Function Deployment: Developers write and deploy func-

tions to the FaaS platform using tools provided by the
platform or through command-line interfaces. Functions
can be deployed as standalone units or as part of larger
applications.

2 Event Triggering: Events or triggers initiate the execution
of functions based on predefined criteria or conditions.
FaaS platforms handle event routing and triggering, en-
suring that functions are executed in response to the
appropriate events.

3 Function Execution: Functions are executed in isolated
runtime environments, with each function instance han-
dling a single event or request. FaaS platforms manage
the lifecycle of function instances, including provisioning,
execution, and teardown.

4 Result Handling: Upon completion of function execution,
results are returned to the caller or sent to downstream
services for further processing. FaaS platforms handle
result handling and error management, ensuring reliability
and fault tolerance.

Benefits of Functions as a Service (FaaS):
1 Rapid Development: FaaS platforms enable rapid devel-

opment and deployment of applications, allowing devel-
opers to focus on writing code without worrying about
infrastructure concerns.

2 Scalability: FaaS platforms automatically scale function
instances based on demand, ensuring applications can
handle fluctuations in workload without manual interven-
tion.

3 Cost Efficiency: FaaS platforms offer a pay-per-use
billing model, charging users only for the resources
consumed during function execution. This results in cost



efficiency and eliminates the need for upfront investment
in infrastructure.

4 Simplified Operations: FaaS platforms abstract away
server management and operational tasks, reducing the
operational overhead for managing and maintaining in-
frastructure.

C. Importance of Private Cloud Infrastructure:

Private cloud infrastructure refers to cloud computing re-
sources that are dedicated to a single organization and are not
shared with other organizations. Private clouds can be hosted
on-premises or by third-party providers and offer several key
benefits:

• Security and Compliance: Private clouds offer greater
control and customization over security measures and
compliance requirements compared to public clouds. Or-
ganizations can implement stringent security policies and
regulatory compliance standards to protect sensitive data
and meet industry-specific regulations.

• Performance and Reliability: Private clouds provide ded-
icated resources and infrastructure, resulting in improved
performance, reliability, and availability compared to
shared public cloud environments. Organizations can tai-
lor the infrastructure to meet their specific performance
and reliability requirements, ensuring consistent perfor-
mance for mission-critical applications.

• Data Sovereignty: Private clouds allow organizations to
retain full control over their data and maintain data
sovereignty. This is particularly important for organiza-
tions operating in highly regulated industries or regions
with strict data privacy laws.

• Customization and Flexibility: Private clouds offer greater
customization and flexibility compared to public clouds,
allowing organizations to tailor the infrastructure to their
unique requirements. Organizations can customize the
network, storage, and compute resources to optimize
performance and meet the needs of their applications.

Private cloud infrastructure provides organizations with
greater control, security, performance, and customization com-
pared to public cloud environments, making it an ideal choice
for sensitive workloads and mission-critical applications.

III. SETUP DESIGN AND IMPLEMENTATION

A. Setup

We utilized a single physical machine for our setup, employ-
ing VirtualBox to create a virtual machine running Ubuntu
22.04. This virtual machine, along with the physical host,
served as the two nodes necessary for running Docker con-
tainers and Kubernetes. The virtual machine was designated
as the Kubernetes control plane, while the physical machine
was configured as a worker node. Initially, we attempted to
incorporate an additional virtual machine as a worker node.
However, this setup proved to be unstable, frequently resulting
in system hangs. As a result, we opted to proceed with only
two nodes for testing purposes. The configuration of our demo
setup is illustrated in Figure 1.

Fig. 1. Demo environment setup

To ensure network connectivity, we configured the virtual
machine with a network bridge linked to the host system,
enabling it to seamlessly integrate into the lab network and
obtain an IPv4 address from the Lab network’s DHCP system.
For installation, we followed standard procedures using ’apt-
get’ to install Docker and Kubernetes on both nodes. On
the control-plane node, ’kubeadm’ was installed to facilitate
Kubernetes administration operations. Subsequently, upon ini-
tializing the control plane, we utilized security certificates in
the worker node to join the Kubernetes cluster.
The steps followed for installation are given below

• ’setup.sh’: Load required kernel modules (overlay and br
netfilter) on both the nodes.

• ’setup.sh’: Configure the network for IP packet forward-
ing

• ’setup2.sh’: Install Docker dependencies modules namely
gnupg2 and ca certificates

• ’setup2.sh’: Enable installation from Docker repository
• ’setup2.sh’: Install containerd.io
• ’setup2.sh’: Configure the container to start by default on

reboot
• ’setup3.sh’: Enable installation from Kubernetes reposi-

tory
• ’setup3.sh’: Install ”kubelet, kubectl, and kubeadm” on

both the nodes
• On the control-plane/master node, do the following:

– ’setup-master.sh’: Setup Kubernetes master node
– ’setup-master.sh’: Create the token to be used by the

worker node to join the cluster
• On the worker node, join the cluster using the token from

the master node.

B. Implementation Details

In this section, we delve into the technical aspects of
implementing various capabilities for managing Functions as a
Service (FaaS) within a Kubernetes environment. FaaS offers
a serverless computing paradigm that enables developers to
focus on writing and deploying individual functions without
managing the underlying infrastructure. Leveraging Kuber-
netes as the orchestration platform provides scalability, reli-
ability, and flexibility for deploying and managing functions
effectively. We outline the steps involved in deploying func-
tions, pausing and resuming their execution, updating to newer
versions, rolling back to older versions, adjusting resource
limits, deleting functions, retrieving logs and resource usage



metrics, and setting/getting replication counts. Additionally,
we highlight key assumptions and considerations guiding the
implementation process.

1) Capabilities Implemented:

• 1. Build Docker - The program facilitates the seamless
building of Docker images containing the function code.
Using Docker, we encapsulate the function along with its
dependencies into a containerized environment, ensuring
consistency across different deployment environments.

• 2. Deploy Function - Deploying functions to Kubernetes
is simplified through the program. It orchestrates the
deployment process, ensuring that the function is cor-
rectly instantiated within the cluster and is accessible for
execution.

• 3. Update Deployment - The ability to update function
deployments is crucial for incorporating changes or new
versions of the function code. Our program efficiently
handles updates to existing deployments, ensuring smooth
transitions without downtime.

• 4. Delete Deployment/Label - To manage resources ef-
fectively, the program offers functionalities to delete de-
ployments based on specific labels or individual deploy-
ment names. This capability streamlines the removal of
outdated or redundant deployments, maintaining cluster
cleanliness.

• 5. Scale Deployment - Automatic scaling of deployments
based on resource utilization is a key feature of Kuber-
netes. Our program leverages Horizontal Pod Autoscaling
(HPA) to dynamically adjust the number of replicas based
on CPU and memory usage metrics.

• 6. Expose Service - Services expose functions to external
clients, allowing them to access the functionality provided
by the deployed functions. Our program supports various
service types, including ClusterIP, NodePort, LoadBal-
ancer, and ExternalName, enabling flexible and secure
access.

• 7. Get Function Logs - Logging is essential for moni-
toring the execution and performance of functions. Our
program provides the capability to retrieve logs gener-
ated by function executions, facilitating debugging and
performance analysis.

• 8. Get Resource Usage - Monitoring resource usage
is critical for optimizing the performance and cost-
effectiveness of function deployments. Our program re-
trieves resource usage metrics, including CPU and mem-
ory utilization, enabling administrators to identify poten-
tial bottlenecks and optimize resource allocation.

Figure 2 and 3 pictorally show the steps involved in function
deployment and trigger operations.

Below are the assumptions/limitations of our implementa-
tion

• Namespace Deployment - All functions would be de-
ployed to ”default” namespace. We have not implemented
this functionality.

Fig. 2. Function Deployment

Fig. 3. Function Trigger

• New Cluster - We assume Kubernetes cluster is pre-
created for use.

• Single Cluster - We use only one cluster and have not
implemented multiple cluster management.

• Node addition - We currently support anual addition of
worker nodes.

• HTTP-Based Trigger - Only support HTTP-based triggers
for invoking functions, excluding other trigger types (e.g.,
message queues, cron jobs).

• Label Grouping - we have not implemented label based
grouping of various Kubernetes resources including func-
tions.

IV. RESULTS AND DISCUSSION

In this section, we present the results of our implemented
Python program for managing Functions as a Service (FaaS)
on Kubernetes. The program encompasses various functionali-
ties crucial for deploying, managing, and monitoring functions
within a Kubernetes cluster. We conducted comprehensive
testing to evaluate the functional correctness and performance
of each feature.
Testing and Evaluation
We conducted rigorous testing to validate the functionality and
performance of our program. This included:

• Functional Correctness Testing: We verified that each
functionality operates as intended, ensuring that deploy-
ments, updates, scaling, and deletions occur without
errors.

• Performance Testing: We evaluated the program’s per-
formance under varying conditions, including scenarios
where CPU and memory usage increased. We analyzed
the program’s ability to scale deployments dynamically
in response to changing resource demands.

To test Autoscaling functionality, we deployed a multiprocess
function that takes CPU percentage as argument via HTTP
request, and spawns the thread to continously be in while
loop at fixed interval. Similar algorithm was written to test
the memory usage where we allocate memory based on the



HTTP request parameter.
Results and Performance Metrics
Our testing revealed that the implemented functionalities op-
erate as expected, providing a robust framework for managing
FaaS deployments on Kubernetes. We observed:

• Functional Completeness: All planned functionalities
were successfully implemented and demonstrated their
intended behavior.

• Correctness: Deployments, updates, and deletions oc-
curred without errors, validating the program’s reliability
and correctness.

• Performance Benchmarking: We generated performance
metrics, including deployment latency, scaling response
time, and resource utilization. Graphical representations
of CPU and memory usage during load testing are pre-
sented below.

Figure 4 shows the auto scaling for different CPU workloads.

Fig. 4. Auto Scaling in Action

V. CONCLUSION

The Python program developed for managing FaaS deploy-
ments on Kubernetes proved to be effective and reliable. It
offers comprehensive functionalities for deploying, updating,
scaling, and monitoring functions within a Kubernetes envi-
ronment. Through rigorous testing, we confirmed its functional
completeness, correctness, and performance, underscoring its
suitability for real-world FaaS applications.

A. Future Work

• Namespace Management: Implement support for deploy-
ing functions to multiple namespaces, allowing for better
organization and isolation of resources within the Kuber-
netes cluster.

• Cluster Automation: Develop automated procedures for
creating and provisioning new Kubernetes clusters, en-
abling seamless deployment and scaling of FaaS applica-
tions across different environments.

• Multi-Cluster Support: Extend the program to manage
multiple Kubernetes clusters, enabling distributed deploy-
ments and enhancing fault tolerance and scalability.

• Node Automation: Implement automated node manage-
ment capabilities, allowing for dynamic scaling of worker

nodes based on resource demand and workload require-
ments.

• Trigger Diversification: Expand trigger support beyond
HTTP-based triggers to include other event-driven mech-
anisms, such as message queues, scheduled jobs, or
external events.

• Label-Based Grouping: Introduce label-based grouping
of Kubernetes resources, enabling easier management
and orchestration of related functions, deployments, and
services.

By addressing these limitations and pursuing future enhance-
ments, our program can evolve into a more versatile and
comprehensive solution for managing FaaS deployments on
Kubernetes, catering to a broader range of use cases and
deployment scenarios.

REFERENCES

[1] Docker desktop overview, 12 2021.
[2] Kubernetes . Overview, 09 2023.
[3] Debojeet Das. deep dive into containers (docker and k8s), 04 2024.


