FaaS + K&s = faast!

Santhosh Kumar M Siva Prasad Reddy Garlapati
23D0369 23M0747

GitHub: https://git.cse.iitb.ac.in/santhoshkm /dfaast.git

Abstract

The integration of Functions as a Service (FaaS) with Kubernetes
(K8s) presents a promising approach to building scalable and efficient
cloud-native applications. In this report, we detail the steps involved
in setting up FaaS using Docker and Kubernetes on a private cloud in-
frastructure. We demonstrate the functional completeness, correctness of
feature sets, and performance through autoscaling experiments.

1 Introduction

Cloud computing isn going through a paradigm shift towards more agile, scal-
able, and efficient architectures. This transformation is largely driven by the
adoption of microservices and serverless computing models, which offer bene-
fits such as reduced operational overhead, improved scalability, and increased
resource utilization. At the forefront of this evolution are Functions as a Ser-
vice (FaaS) and container orchestration platforms like Kubernetes (K8s), which
provide the foundation for building and deploying modern cloud-native appli-
cations.

1.1 Functions as a Service (FaaS)

FaaS is a development paradigm where developers write smaller function and
can deploy them without having to bother about the scalability and operational
aspects. Unlike traditional monolithic applications, which require constant pro-
visioning and management of infrastructure, FaaS abstracts the underlying in-
frastructure concerns, allowing developers to focus solely on writing code. This
results in greater agility, as developers can rapidly develop, deploy, and scale
individual functions without worrying about server provisioning or maintenance.

1.2 Kubernetes (K8s)

Kubernetes has emerged as the de facto standard for container orchestration,
providing a robust platform for deploying, managing, and scaling containerized
applications. With features such as automated scheduling, service discovery,
and horizontal scaling, Kubernetes simplifies the complexities associated with
deploying and managing containers at scale. By abstracting away the underlying
infrastructure, Kubernetes enables developers to focus on building and deploying
applications, while ensuring reliability, scalability, and flexibility.

Integration of FaaS with Kubernetes:

While FaaS and Kubernetes offer distinct advantages on their own, their
integration presents a compelling proposition for building cloud-native applica-
tions. By combining the serverless computing model of FaaS with the container
orchestration capabilities of Kubernetes, organizations can achieve the best of
both worlds: the scalability and agility of serverless computing, coupled with
the flexibility and control of containerized environments. This integration allows
developers to leverage the benefits of serverless computing while retaining the
ability to manage and orchestrate containers at scale, making it an ideal choice
for modern cloud-native applications.

The integration of FaaS with Kubernetes offers several key benefits:

e Scalability: Kubernetes provides automated scaling capabilities, allowing
FaaS functions to scale dynamically in response to fluctuations in work-
load, ensuring optimal resource utilization and cost efficiency.

e Flexibility: By running FaaS functions in containers orchestrated by Ku-
bernetes, developers have the flexibility to deploy, manage, and scale ap-
plications using familiar tools and workflows, without being locked into a
specific FaaS platform.

e Portability: Kubernetes abstracts away the underlying infrastructure, mak-
ing it easier to deploy FaaS functions across different environments, in-
cluding on-premises data centers, public clouds, and hybrid cloud envi-
ronments.

e Operational Efficiency: Kubernetes simplifies the operational overhead
associated with managing and orchestrating containers, allowing organi-
zations to focus on developing and deploying applications, rather than
managing infrastructure.

1.3 Objectives of the Project
The primary objectives of this project are as follows:

e To set up a FaaS platform using Docker containers.

e To deploy and integrate the FaaS platform with Kubernetes on a private
cloud infrastructure.

e To demonstrate the functional completeness and correctness of feature sets
of the integrated solution.

e To conduct experiments to demonstrate platform scalability with no op-
erational overheads

2 Background and Motivation

2.1 Overview of Docker and Kubernetes
2.1.1 Docker

Docker is an open-source platform that enables developers to develop, deploy,
and run applications in containers. Containers are lightweight, portable, and
self-sufficient units that contain everything needed to run an application, includ-
ing the code, runtime, libraries, and dependencies. Docker provides tools and
services for building, distributing, and running containers efficiently. It uses a
client-server architecture, where the Docker client interacts with the Docker dae-
mon to manage containers and containerized applications. Docker has gained
widespread adoption due to its ease of use, portability, and scalability.
Limitations/Challenges of Docker

e Resource Management: Docker lacks native support for advanced resource
management features like auto-scaling and load balancing.

e Complexity: Managing and orchestrating multiple containers manually
can be complex and time-consuming, especially in large-scale deployments.

e Compatibility: Ensuring compatibility between containers and different
environments, such as development, testing, and production, can be chal-
lenging.

2.1.2 Kubernetes

Kubernetes is an open-source container orchestration platform that automates
the deployment, scaling, and management of containerized applications. It pro-
vides a robust set of features for managing containerized workloads across a
cluster of machines, enabling developers to deploy applications with ease and
scale them seamlessly as needed.

2.2 Functions as a Service (FaaS)

Functions as a Service (FaaS) is a cloud computing model that abstracts away
server management and infrastructure concerns, allowing developers to focus
solely on writing and deploying individual functions or pieces of code. FaaS plat-
forms execute these functions in response to events or triggers, such as HTTP
requests, database changes, or file uploads, without the need for developers to
provision or manage servers. FaaS offers a serverless approach to building and

deploying applications, enabling rapid development, scalability, and cost effi-
ciency.
Architecture of FaaS Platforms:

1

Execution Environment: FaaS platforms provide a runtime environment
for executing functions, typically based on containerization technology
such as Docker. Each function runs in its isolated environment, ensuring
resource isolation and security.

Trigger Mechanism: Functions are triggered by events or triggers, which
can originate from various sources such as HTTP requests, message queues,
timers, or external APIs. FaaS platforms provide integrations with these
event sources to enable seamless triggering of functions.

Orchestration and Scaling: FaaS platforms automatically scale function
instances based on demand, ensuring optimal resource utilization and cost
efficiency. Auto-scaling policies can be configured based on metrics such
as CPU utilization, request rate, or custom metrics.

Management and Monitoring: FaaS platforms offer management and mon-
itoring capabilities for functions, allowing developers to deploy, monitor,
and manage functions using web interfaces or command-line tools. Mon-
itoring tools provide insights into function performance, resource usage,
and error handling.

Key Components of FaaS Platforms:

1

Function: The fundamental unit of computation in FaaS platforms, rep-
resenting a single piece of code or a function that performs a specific task.
Functions are stateless and ephemeral, with no persistent state or local
storage between invocations.

Trigger: Events or triggers that initiate the execution of functions. Trig-
gers can include HTTP requests, database changes, file uploads, or timer-
based events.

Runtime Environment: The execution environment in which functions are
executed, typically based on containerization technology such as Docker.
Runtime environments provide isolation, security, and resource manage-
ment for executing functions.

Event Source: Sources of events or triggers that initiate function execu-
tion, such as HTTP endpoints, message queues, or cloud storage services.
FaaS platforms provide integrations with various event sources to enable
seamless triggering of functions.

Workflow of FaaS Execution:

1 Function Deployment: Developers write and deploy functions to the FaaS
platform using tools provided by the platform or through command-line
interfaces. Functions can be deployed as standalone units or as part of
larger applications.

2 Event Triggering: Events or triggers initiate the execution of functions
based on predefined criteria or conditions. FaaS platforms handle event
routing and triggering, ensuring that functions are executed in response
to the appropriate events.

3 Function Execution: Functions are executed in isolated runtime environ-
ments, with each function instance handling a single event or request.
FaaS platforms manage the lifecycle of function instances, including pro-
visioning, execution, and teardown.

4 Result Handling: Upon completion of function execution, results are re-
turned to the caller or sent to downstream services for further processing.
FaaS platforms handle result handling and error management, ensuring
reliability and fault tolerance.

Benefits of Functions as a Service (FaaS):

1 Rapid Development: FaaS platforms enable rapid development and de-
ployment of applications, allowing developers to focus on writing code
without worrying about infrastructure concerns.

2 Scalability: FaaS platforms automatically scale function instances based
on demand, ensuring applications can handle fluctuations in workload
without manual intervention.

3 Cost Efficiency: FaaS platforms offer a pay-per-use billing model, charging
users only for the resources consumed during function execution. This
results in cost efficiency and eliminates the need for upfront investment in
infrastructure.

4 Simplified Operations: FaaS platforms abstract away server management
and operational tasks, reducing the operational overhead for managing
and maintaining infrastructure.

2.3 Importance of Private Cloud Infrastructure:

Private cloud infrastructure refers to cloud computing resources that are ded-
icated to a single organization and are not shared with other organizations.
Private clouds can be hosted on-premises or by third-party providers and offer
several key benefits:

e Security and Compliance: Private clouds offer greater control and cus-
tomization over security measures and compliance requirements compared
to public clouds. Organizations can implement stringent security policies

and regulatory compliance standards to protect sensitive data and meet
industry-specific regulations.

e Performance and Reliability: Private clouds provide dedicated resources
and infrastructure, resulting in improved performance, reliability, and
availability compared to shared public cloud environments. Organizations
can tailor the infrastructure to meet their specific performance and reli-
ability requirements, ensuring consistent performance for mission-critical
applications.

e Data Sovereignty: Private clouds allow organizations to retain full control
over their data and maintain data sovereignty. This is particularly impor-
tant for organizations operating in highly regulated industries or regions
with strict data privacy laws.

e Customization and Flexibility: Private clouds offer greater customization
and flexibility compared to public clouds, allowing organizations to tai-
lor the infrastructure to their unique requirements. Organizations can
customize the network, storage, and compute resources to optimize per-
formance and meet the needs of their applications.

Private cloud infrastructure provides organizations with greater control, se-
curity, performance, and customization compared to public cloud environments,
making it an ideal choice for sensitive workloads and mission-critical applica-
tions.

3 Setup design and Implementation

3.1 Setup

We utilized a single physical machine for our setup, employing VirtualBox to
create a virtual machine running Ubuntu 22.04. This virtual machine, along
with the physical host, served as the two nodes necessary for running Docker
containers and Kubernetes. The virtual machine was designated as the Ku-
bernetes control plane, while the physical machine was configured as a worker
node. Initially, we attempted to incorporate an additional virtual machine as a
worker node. However, this setup proved to be unstable, frequently resulting in
system hangs. As a result, we opted to proceed with only two nodes for testing
purposes. The configuration of our demo setup is illustrated in Figure 1.

To ensure network connectivity, we configured the virtual machine with a
network bridge linked to the host system, enabling it to seamlessly integrate
into the lab network and obtain an IPv4 address from the Lab network’s DHCP
system.

For installation, we followed standard procedures using ’apt-get’ to install Docker
and Kubernetes on both nodes. On the control-plane node, ’kubeadm’ was in-
stalled to facilitate Kubernetes administration operations. Subsequently, upon
initializing the control plane, we utilized security certificates in the worker node

EI Wirtual Machine
(s e
network]__. Bridge
@ | router R

master node

Client System Worker node Virtual Machine-2

——

worker node 2
Figure 1: Demo environment setup

to join the Kubernetes cluster.
The steps followed for installation are given below

e ’setup.sh’: Load required kernel modules (overlay and br _netfilter) on
both the nodes.

e ’setup.sh’: Configure the network for IP packet forwarding

e ’setup2.sh’: Install Docker dependencies modules namely gnupg2 and ca
certificates

e ’setup2.sh’: Enable installation from Docker repository

e ’setup2.sh’: Install containerd.io

e ’setup2.sh’: Configure the container to start by default on reboot

e ’setup3.sh’: Enable installation from Kubernetes repository

e ’‘setupd.sh’: Install "kubelet, kubectl, and kubeadm” on both the nodes
e On the control-plane/master node, do the following:

— ’setup-master.sh’: Setup Kubernetes master node

— ’setup-master.sh’: Create the token to be used by the worker node
to join the cluster

e On the worker node, join the cluster using the token from the master node.

3.2 Implementation Details

In this section, we delve into the technical aspects of implementing various
capabilities for managing Functions as a Service (FaaS) within a Kubernetes
environment. FaaS offers a serverless computing paradigm that enables devel-
opers to focus on writing and deploying individual functions without managing
the underlying infrastructure. Leveraging Kubernetes as the orchestration plat-
form provides scalability, reliability, and flexibility for deploying and managing

functions effectively. We outline the steps involved in deploying functions, paus-
ing and resuming their execution, updating to newer versions, rolling back to
older versions, adjusting resource limits, deleting functions, retrieving logs and
resource usage metrics, and setting/getting replication counts. Additionally,
we highlight key assumptions and considerations guiding the implementation
process.

3.2.1 Capabilities Implemented

e 1. Build Docker - The program facilitates the seamless building of Docker
images containing the function code. Using Docker, we encapsulate the
function along with its dependencies into a containerized environment,
ensuring consistency across different deployment environments.

e 2. Deploy Function - Deploying functions to Kubernetes is simplified
through the program. It orchestrates the deployment process, ensuring
that the function is correctly instantiated within the cluster and is acces-
sible for execution.

e 3. Update Deployment - The ability to update function deployments is
crucial for incorporating changes or new versions of the function code.
Our program efficiently handles updates to existing deployments, ensuring
smooth transitions without downtime.

e 4. Delete Deployment/Label - To manage resources effectively, the pro-
gram offers functionalities to delete deployments based on specific labels
or individual deployment names. This capability streamlines the removal
of outdated or redundant deployments, maintaining cluster cleanliness.

e 5. Scale Deployment - Automatic scaling of deployments based on re-
source utilization is a key feature of Kubernetes. Our program leverages
Horizontal Pod Autoscaling (HPA) to dynamically adjust the number of
replicas based on CPU and memory usage metrics.

e 6. Expose Service - Services expose functions to external clients, allowing
them to access the functionality provided by the deployed functions. Our
program supports various service types, including ClusterIP, NodePort,
LoadBalancer, and ExternalName, enabling flexible and secure access.

e 7. Get Function Logs - Logging is essential for monitoring the execution
and performance of functions. Our program provides the capability to
retrieve logs generated by function executions, facilitating debugging and
performance analysis.

e 8. Get Resource Usage - Monitoring resource usage is critical for opti-
mizing the performance and cost-effectiveness of function deployments.
Our program retrieves resource usage metrics, including CPU and mem-
ory utilization, enabling administrators to identify potential bottlenecks
and optimize resource allocation.

Figure 2 and 3 pictorally show the steps involved in function deployment
and trigger operations.

Function Deployment/Update/Delete/Resize

push docker image to repository

1. build docker image and push
to docker-hub repository
send request to CURD

request on scheduled pull docker image from

(o= send CURD request worker node repository by
i
@ container E o i

masler node

2. identifies worker node
and issues Pod creation
request

e
update container creation

Eth dep—\uv SEETS and health status

deploy response

Figure 2: Function Deployment

Function Trigger

health status
_trigger function request Pod _,7_7——7*E
T e —
@ function response masler node
Load Balancer Worker node

“treate/deletepod Pod scale up/down

resize pod decision

Figure 3: Function Trigger

Below are the assumptions/limitations of our implementation

e Namespace Deployment - All functions would be deployed to ”default”
namespace. We have not implemented this functionality.

e New Cluster - We assume Kubernetes cluster is pre-created for use.

e Single Cluster - We use only one cluster and have not implemented mul-
tiple cluster management.

e Node addition - We currently support anual addition of worker nodes.

e HTTP-Based Trigger - Only support HTTP-based triggers for invoking
functions, excluding other trigger types (e.g., message queues, cron jobs).

e Label Grouping - we have not implemented label based grouping of various
Kubernetes resources including functions.

4 Results and Discussion

In this section, we present the results of our implemented Python program for
managing Functions as a Service (FaaS) on Kubernetes. The program encom-
passes various functionalities crucial for deploying, managing, and monitoring

functions within a Kubernetes cluster. We conducted comprehensive testing to
evaluate the functional correctness and performance of each feature.

Testing and Evaluation

We conducted rigorous testing to validate the functionality and performance of
our program. This included:

e Functional Correctness Testing: We verified that each functionality oper-
ates as intended, ensuring that deployments, updates, scaling, and dele-
tions occur without errors.

e Performance Testing: We evaluated the program’s performance under
varying conditions, including scenarios where CPU and memory usage
increased. We analyzed the program’s ability to scale deployments dy-
namically in response to changing resource demands.

To test Autoscaling functionality, we deployed a multiprocess function that takes
CPU percentage as argument via HTTP request, and spawns the thread to
continously be in while loop at fixed interval. Similar algorithm was written to
test the memory usage where we allocate memory based on the HTTP request
parameter.

Results and Performance Metrics

Our testing revealed that the implemented functionalities operate as expected,
providing a robust framework for managing FaaS deployments on Kubernetes.
We observed:

e Functional Completeness: All planned functionalities were successfully
implemented and demonstrated their intended behavior.

e Correctness: Deployments, updates, and deletions occurred without er-
rors, validating the program’s reliability and correctness.

e Performance Benchmarking: We generated performance metrics, includ-
ing deployment latency, scaling response time, and resource utilization.
Graphical representations of CPU and memory usage during load testing
are presented below.

Figure 4 shows the auto scaling for different CPU workloads.

5 Conclusion

The Python program developed for managing FaaS deployments on Kubernetes
proved to be effective and reliable. It offers comprehensive functionalities for
deploying, updating, scaling, and monitoring functions within a Kubernetes en-
vironment. Through rigorous testing, we confirmed its functional completeness,
correctness, and performance, underscoring its suitability for real-world FaaS
applications.

10

5.1

Average CPU Utilzation and Number of Pods vs. CPU Utilization

Figure 4: Auto Scaling in Action

Future Work

Namespace Management: Implement support for deploying functions to
multiple namespaces, allowing for better organization and isolation of re-
sources within the Kubernetes cluster.

Cluster Automation: Develop automated procedures for creating and pro-
visioning new Kubernetes clusters, enabling seamless deployment and scal-
ing of FaaS applications across different environments.

Multi-Cluster Support: Extend the program to manage multiple Kuber-
netes clusters, enabling distributed deployments and enhancing fault tol-
erance and scalability.

Node Automation: Implement automated node management capabilities,
allowing for dynamic scaling of worker nodes based on resource demand
and workload requirements.

Trigger Diversification: Expand trigger support beyond HTTP-based trig-
gers to include other event-driven mechanisms, such as message queues,
scheduled jobs, or external events.

Label-Based Grouping: Introduce label-based grouping of Kubernetes re-
sources, enabling easier management and orchestration of related func-
tions, deployments, and services.

By addressing these limitations and pursuing future enhancements, our pro-
gram can evolve into a more versatile and comprehensive solution for managing
FaaS deployments on Kubernetes, catering to a broader range of use cases and
deployment scenarios.

11

References

[1] Docker desktop overview, 12 2021.
[2] Kubernetes . Overview, 09 2023.

[3] Debojeet Das. deep dive into containers (docker and k8s), 04 2024.

12

