Commit bfba9cf3 authored by prashantsaroj's avatar prashantsaroj

Added solutions

parent bdc04f8c
function centroids = computeCentroids(X, idx, K)
%COMPUTECENTROIDS returns the new centroids by computing the means of the
%data points assigned to each centroid.
% centroids = COMPUTECENTROIDS(X, idx, K) returns the new centroids by
% computing the means of the data points assigned to each centroid. It is
% given a dataset X where each row is a single data point, a vector
% idx of centroid assignments (i.e. each entry in range [1..K]) for each
% example, and K, the number of centroids. You should return a matrix
% centroids, where each row of centroids is the mean of the data points
% assigned to it.
%
% Useful variables
[m n] = size(X);
% You need to return the following variables correctly.
centroids = zeros(K, n);
count = zeros(K);
sum_arr = zeros(K,n);
% ====================== YOUR CODE HERE ======================
% Instructions: Go over every centroid and compute mean of all points that
% belong to it. Concretely, the row vector centroids(i, :)
% should contain the mean of the data points assigned to
% centroid i.
%
% Note: You can use a for-loop over the centroids to compute this.
%
for i = 1:m
mu_i = idx(i);
sum_arr(mu_i,:) = sum_arr(mu_i,:) + X(i,:);
count(mu_i) = count(mu_i) + 1;
end
for i = 1:K
if count(i) ~= 0
centroids(i,:) = sum_arr(i,:)/count(i);
end
end
% =============================================================
end
function [h, display_array] = displayData(X, example_width)
%DISPLAYDATA Display 2D data in a nice grid
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
% stored in X in a nice grid. It returns the figure handle h and the
% displayed array if requested.
% Set example_width automatically if not passed in
if ~exist('example_width', 'var') || isempty(example_width)
example_width = round(sqrt(size(X, 2)));
end
% Gray Image
colormap(gray);
% Compute rows, cols
[m n] = size(X);
example_height = (n / example_width);
% Compute number of items to display
display_rows = floor(sqrt(m));
display_cols = ceil(m / display_rows);
% Between images padding
pad = 1;
% Setup blank display
display_array = - ones(pad + display_rows * (example_height + pad), ...
pad + display_cols * (example_width + pad));
% Copy each example into a patch on the display array
curr_ex = 1;
for j = 1:display_rows
for i = 1:display_cols
if curr_ex > m,
break;
end
% Copy the patch
% Get the max value of the patch
max_val = max(abs(X(curr_ex, :)));
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
reshape(X(curr_ex, :), example_height, example_width) / max_val;
curr_ex = curr_ex + 1;
end
if curr_ex > m,
break;
end
end
% Display Image
h = imagesc(display_array, [-1 1]);
% Do not show axis
axis image off
drawnow;
end
function drawLine(p1, p2, varargin)
%DRAWLINE Draws a line from point p1 to point p2
% DRAWLINE(p1, p2) Draws a line from point p1 to point p2 and holds the
% current figure
plot([p1(1) p2(1)], [p1(2) p2(2)], varargin{:});
end
\ No newline at end of file
%% Machine Learning Online Class
% Exercise 7 | Principle Component Analysis and K-Means Clustering
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% pca.m
% projectData.m
% recoverData.m
% computeCentroids.m
% findClosestCentroids.m
% kMeansInitCentroids.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% ================= Part 1: Find Closest Centroids ====================
% To help you implement K-Means, we have divided the learning algorithm
% into two functions -- findClosestCentroids and computeCentroids. In this
% part, you should complete the code in the findClosestCentroids function.
%
fprintf('Finding closest centroids.\n\n');
% Load an example dataset that we will be using
load('ex7data2.mat');
% Select an initial set of centroids
K = 3; % 3 Centroids
initial_centroids = [3 3; 6 2; 8 5];
% Find the closest centroids for the examples using the
% initial_centroids
idx = findClosestCentroids(X, initial_centroids);
fprintf('Closest centroids for the first 3 examples: \n')
fprintf(' %d', idx(1:3));
fprintf('\n(the closest centroids should be 1, 3, 2 respectively)\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ===================== Part 2: Compute Means =========================
% After implementing the closest centroids function, you should now
% complete the computeCentroids function.
%
fprintf('\nComputing centroids means.\n\n');
% Compute means based on the closest centroids found in the previous part.
centroids = computeCentroids(X, idx, K);
fprintf('Centroids computed after initial finding of closest centroids: \n')
fprintf(' %f %f \n' , centroids');
fprintf('\n(the centroids should be\n');
fprintf(' [ 2.428301 3.157924 ]\n');
fprintf(' [ 5.813503 2.633656 ]\n');
fprintf(' [ 7.119387 3.616684 ]\n\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =================== Part 3: K-Means Clustering ======================
% After you have completed the two functions computeCentroids and
% findClosestCentroids, you have all the necessary pieces to run the
% kMeans algorithm. In this part, you will run the K-Means algorithm on
% the example dataset we have provided.
%
fprintf('\nRunning K-Means clustering on example dataset.\n\n');
% Load an example dataset
load('ex7data2.mat');
% Settings for running K-Means
K = 3;
max_iters = 10;
% For consistency, here we set centroids to specific values
% but in practice you want to generate them automatically, such as by
% settings them to be random examples (as can be seen in
% kMeansInitCentroids).
initial_centroids = [3 3; 6 2; 8 5];
% Run K-Means algorithm. The 'true' at the end tells our function to plot
% the progress of K-Means
[centroids, idx] = runkMeans(X, initial_centroids, max_iters, true);
fprintf('\nK-Means Done.\n\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============= Part 4: K-Means Clustering on Pixels ===============
% In this exercise, you will use K-Means to compress an image. To do this,
% you will first run K-Means on the colors of the pixels in the image and
% then you will map each pixel onto its closest centroid.
%
% You should now complete the code in kMeansInitCentroids.m
%
fprintf('\nRunning K-Means clustering on pixels from an image.\n\n');
% Load an image of a bird
A = double(imread('bird_small.png'));
% If imread does not work for you, you can try instead
% load ('bird_small.mat');
A = A / 255; % Divide by 255 so that all values are in the range 0 - 1
% Size of the image
img_size = size(A);
% Reshape the image into an Nx3 matrix where N = number of pixels.
% Each row will contain the Red, Green and Blue pixel values
% This gives us our dataset matrix X that we will use K-Means on.
X = reshape(A, img_size(1) * img_size(2), 3);
% Run your K-Means algorithm on this data
% You should try different values of K and max_iters here
K = 16;
max_iters = 10;
% When using K-Means, it is important the initialize the centroids
% randomly.
% You should complete the code in kMeansInitCentroids.m before proceeding
initial_centroids = kMeansInitCentroids(X, K);
% Run K-Means
[centroids, idx] = runkMeans(X, initial_centroids, max_iters);
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================= Part 5: Image Compression ======================
% In this part of the exercise, you will use the clusters of K-Means to
% compress an image. To do this, we first find the closest clusters for
% each example. After that, we
fprintf('\nApplying K-Means to compress an image.\n\n');
% Find closest cluster members
idx = findClosestCentroids(X, centroids);
% Essentially, now we have represented the image X as in terms of the
% indices in idx.
% We can now recover the image from the indices (idx) by mapping each pixel
% (specified by its index in idx) to the centroid value
X_recovered = centroids(idx,:);
% Reshape the recovered image into proper dimensions
X_recovered = reshape(X_recovered, img_size(1), img_size(2), 3);
% Display the original image
subplot(1, 2, 1);
imagesc(A);
title('Original');
% Display compressed image side by side
subplot(1, 2, 2);
imagesc(X_recovered)
title(sprintf('Compressed, with %d colors.', K));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% Machine Learning Online Class
% Exercise 7 | Principle Component Analysis and K-Means Clustering
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% pca.m
% projectData.m
% recoverData.m
% computeCentroids.m
% findClosestCentroids.m
% kMeansInitCentroids.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% ================== Part 1: Load Example Dataset ===================
% We start this exercise by using a small dataset that is easily to
% visualize
%
fprintf('Visualizing example dataset for PCA.\n\n');
% The following command loads the dataset. You should now have the
% variable X in your environment
load ('ex7data1.mat');
% Visualize the example dataset
plot(X(:, 1), X(:, 2), 'bo');
axis([0.5 6.5 2 8]); axis square;
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =============== Part 2: Principal Component Analysis ===============
% You should now implement PCA, a dimension reduction technique. You
% should complete the code in pca.m
%
fprintf('\nRunning PCA on example dataset.\n\n');
% Before running PCA, it is important to first normalize X
[X_norm, mu, sigma] = featureNormalize(X);
% Run PCA
[U, S] = pca(X_norm);
% Compute mu, the mean of the each feature
% Draw the eigenvectors centered at mean of data. These lines show the
% directions of maximum variations in the dataset.
hold on;
drawLine(mu, mu + 1.5 * S(1,1) * U(:,1)', '-k', 'LineWidth', 2);
drawLine(mu, mu + 1.5 * S(2,2) * U(:,2)', '-k', 'LineWidth', 2);
hold off;
fprintf('Top eigenvector: \n');
fprintf(' U(:,1) = %f %f \n', U(1,1), U(2,1));
fprintf('\n(you should expect to see -0.707107 -0.707107)\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =================== Part 3: Dimension Reduction ===================
% You should now implement the projection step to map the data onto the
% first k eigenvectors. The code will then plot the data in this reduced
% dimensional space. This will show you what the data looks like when
% using only the corresponding eigenvectors to reconstruct it.
%
% You should complete the code in projectData.m
%
fprintf('\nDimension reduction on example dataset.\n\n');
% Plot the normalized dataset (returned from pca)
plot(X_norm(:, 1), X_norm(:, 2), 'bo');
axis([-4 3 -4 3]); axis square
% Project the data onto K = 1 dimension
K = 1;
Z = projectData(X_norm, U, K);
fprintf('Projection of the first example: %f\n', Z(1));
fprintf('\n(this value should be about 1.481274)\n\n');
X_rec = recoverData(Z, U, K);
fprintf('Approximation of the first example: %f %f\n', X_rec(1, 1), X_rec(1, 2));
fprintf('\n(this value should be about -1.047419 -1.047419)\n\n');
% Draw lines connecting the projected points to the original points
hold on;
plot(X_rec(:, 1), X_rec(:, 2), 'ro');
for i = 1:size(X_norm, 1)
drawLine(X_norm(i,:), X_rec(i,:), '--k', 'LineWidth', 1);
end
hold off
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =============== Part 4: Loading and Visualizing Face Data =============
% We start the exercise by first loading and visualizing the dataset.
% The following code will load the dataset into your environment
%
fprintf('\nLoading face dataset.\n\n');
% Load Face dataset
load ('ex7faces.mat')
% Display the first 100 faces in the dataset
displayData(X(1:100, :));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% =========== Part 5: PCA on Face Data: Eigenfaces ===================
% Run PCA and visualize the eigenvectors which are in this case eigenfaces
% We display the first 36 eigenfaces.
%
fprintf(['\nRunning PCA on face dataset.\n' ...
'(this might take a minute or two ...)\n\n']);
% Before running PCA, it is important to first normalize X by subtracting
% the mean value from each feature
[X_norm, mu, sigma] = featureNormalize(X);
% Run PCA
[U, S] = pca(X_norm);
% Visualize the top 36 eigenvectors found
displayData(U(:, 1:36)');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ============= Part 6: Dimension Reduction for Faces =================
% Project images to the eigen space using the top k eigenvectors
% If you are applying a machine learning algorithm
fprintf('\nDimension reduction for face dataset.\n\n');
K = 100;
Z = projectData(X_norm, U, K);
fprintf('The projected data Z has a size of: ')
fprintf('%d ', size(Z));
fprintf('\n\nProgram paused. Press enter to continue.\n');
pause;
%% ==== Part 7: Visualization of Faces after PCA Dimension Reduction ====
% Project images to the eigen space using the top K eigen vectors and
% visualize only using those K dimensions
% Compare to the original input, which is also displayed
fprintf('\nVisualizing the projected (reduced dimension) faces.\n\n');
K = 100;
X_rec = recoverData(Z, U, K);
% Display normalized data
subplot(1, 2, 1);
displayData(X_norm(1:100,:));
title('Original faces');
axis square;
% Display reconstructed data from only k eigenfaces
subplot(1, 2, 2);
displayData(X_rec(1:100,:));
title('Recovered faces');
axis square;
fprintf('Program paused. Press enter to continue.\n');
pause;
%% === Part 8(a): Optional (ungraded) Exercise: PCA for Visualization ===
% One useful application of PCA is to use it to visualize high-dimensional
% data. In the last K-Means exercise you ran K-Means on 3-dimensional
% pixel colors of an image. We first visualize this output in 3D, and then
% apply PCA to obtain a visualization in 2D.
close all; close all; clc
% Reload the image from the previous exercise and run K-Means on it
% For this to work, you need to complete the K-Means assignment first
A = double(imread('bird_small.png'));
% If imread does not work for you, you can try instead
% load ('bird_small.mat');
A = A / 255;
img_size = size(A);
X = reshape(A, img_size(1) * img_size(2), 3);
K = 16;
max_iters = 10;
initial_centroids = kMeansInitCentroids(X, K);
[centroids, idx] = runkMeans(X, initial_centroids, max_iters);
% Sample 1000 random indexes (since working with all the data is
% too expensive. If you have a fast computer, you may increase this.
sel = floor(rand(1000, 1) * size(X, 1)) + 1;
% Setup Color Palette
palette = hsv(K);
colors = palette(idx(sel), :);
% Visualize the data and centroid memberships in 3D
figure;
scatter3(X(sel, 1), X(sel, 2), X(sel, 3), 10, colors);
title('Pixel dataset plotted in 3D. Color shows centroid memberships');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% === Part 8(b): Optional (ungraded) Exercise: PCA for Visualization ===
% Use PCA to project this cloud to 2D for visualization
% Subtract the mean to use PCA
[X_norm, mu, sigma] = featureNormalize(X);
% PCA and project the data to 2D
[U, S] = pca(X_norm);
Z = projectData(X_norm, U, 2);
% Plot in 2D
figure;
plotDataPoints(Z(sel, :), idx(sel), K);
title('Pixel dataset plotted in 2D, using PCA for dimensionality reduction');
fprintf('Program paused. Press enter to continue.\n');
pause;
function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X
% FEATURENORMALIZE(X) returns a normalized version of X where
% the mean value of each feature is 0 and the standard deviation
% is 1. This is often a good preprocessing step to do when
% working with learning algorithms.
mu = mean(X);
X_norm = bsxfun(@minus, X, mu);
sigma = std(X_norm);
X_norm = bsxfun(@rdivide, X_norm, sigma);
% ============================================================
end
function idx = findClosestCentroids(X, centroids)
%FINDCLOSESTCENTROIDS computes the centroid memberships for every example
% idx = FINDCLOSESTCENTROIDS (X, centroids) returns the closest centroids
% in idx for a dataset X where each row is a single example. idx = m x 1
% vector of centroid assignments (i.e. each entry in range [1..K])
%
% Set K
K = size(centroids, 1);
% You need to return the following variables correctly.
idx = zeros(size(X,1), 1);
m = size(X,1);
% ====================== YOUR CODE HERE ======================
% Instructions: Go over every example, find its closest centroid, and store
% the index inside idx at the appropriate location.
% Concretely, idx(i) should contain the index of the centroid
% closest to example i. Hence, it should be a value in the
% range 1..K
%
% Note: You can use a for-loop over the examples to compute this.
%
for i = 1:m
norm_matrix = sum((X(i,:)-centroids).^2,2);
[~,idx(i)] = min(norm_matrix);
end
% =============================================================
end
function centroids = kMeansInitCentroids(X, K)
%KMEANSINITCENTROIDS This function initializes K centroids that are to be
%used in K-Means on the dataset X
% centroids = KMEANSINITCENTROIDS(X, K) returns K initial centroids to be
% used with the K-Means on the dataset X
%
% You should return this values correctly
centroids = zeros(K, size(X, 2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should set centroids to randomly chosen examples from
% the dataset X
%
randidx = randperm(size(X, 1));
% Take the first K examples as centroids
centroids = X(randidx(1:K), :);
% =============================================================
end
The author of "jsonlab" toolbox is Qianqian Fang. Qianqian
is currently an Assistant Professor at Massachusetts General Hospital,
Harvard Medical School.
Address: Martinos Center for Biomedical Imaging,
Massachusetts General Hospital,
Harvard Medical School
Bldg 149, 13th St, Charlestown, MA 02129, USA
URL: http://nmr.mgh.harvard.edu/~fangq/
Email: <fangq at nmr.mgh.harvard.edu> or <fangqq at gmail.com>
The script loadjson.m was built upon previous works by
- Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
date: 2009/11/02
- François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
date: 2009/03/22
- Joel Feenstra: http://www.mathworks.com/matlabcentral/fileexchange/20565
date: 2008/07/03
This toolbox contains patches submitted by the following contributors:
- Blake Johnson <bjohnso at bbn.com>
part of revision 341
- Niclas Borlin <Niclas.Borlin at cs.umu.se>
various fixes in revision 394, including
- loadjson crashes for all-zero sparse matrix.
- loadjson crashes for empty sparse matrix.
- Non-zero size of 0-by-N and N-by-0 empty matrices is lost after savejson/loadjson.
- loadjson crashes for sparse real column vector.
- loadjson crashes for sparse complex column vector.
- Data is corrupted by savejson for sparse real row vector.
- savejson crashes for sparse complex row vector.
- Yul Kang <yul.kang.on at gmail.com>
patches for svn revision 415.
- savejson saves an empty cell array as [] instead of null
- loadjson differentiates an empty struct from an empty array
============================================================================
JSONlab - a toolbox to encode/decode JSON/UBJSON files in MATLAB/Octave
----------------------------------------------------------------------------
JSONlab ChangeLog (key features marked by *):
== JSONlab 1.0 (codename: Optimus - Final), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2015/01/02 polish help info for all major functions, update examples, finalize 1.0
2014/12/19 fix a bug to strictly respect NoRowBracket in savejson
== JSONlab 1.0.0-RC2 (codename: Optimus - RC2), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2014/11/22 show progress bar in loadjson ('ShowProgress')
2014/11/17 add Compact option in savejson to output compact JSON format ('Compact')
2014/11/17 add FastArrayParser in loadjson to specify fast parser applicable levels
2014/09/18 start official github mirror: https://github.com/fangq/jsonlab
== JSONlab 1.0.0-RC1 (codename: Optimus - RC1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2014/09/17 fix several compatibility issues when running on octave versions 3.2-3.8
2014/09/17 support 2D cell and struct arrays in both savejson and saveubjson
2014/08/04 escape special characters in a JSON string
2014/02/16 fix a bug when saving ubjson files
== JSONlab 0.9.9 (codename: Optimus - beta), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2014/01/22 use binary read and write in saveubjson and loadubjson
== JSONlab 0.9.8-1 (codename: Optimus - alpha update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2013/10/07 better round-trip conservation for empty arrays and structs (patch submitted by Yul Kang)
== JSONlab 0.9.8 (codename: Optimus - alpha), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2013/08/23 *universal Binary JSON (UBJSON) support, including both saveubjson and loadubjson
== JSONlab 0.9.1 (codename: Rodimus, update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2012/12/18 *handling of various empty and sparse matrices (fixes submitted by Niclas Borlin)
== JSONlab 0.9.0 (codename: Rodimus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2012/06/17 *new format for an invalid leading char, unpacking hex code in savejson
2012/06/01 support JSONP in savejson
2012/05/25 fix the empty cell bug (reported by Cyril Davin)
2012/04/05 savejson can save to a file (suggested by Patrick Rapin)
== JSONlab 0.8.1 (codename: Sentiel, Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2012/02/28 loadjson quotation mark escape bug, see http://bit.ly/yyk1nS
2012/01/25 patch to handle root-less objects, contributed by Blake Johnson
== JSONlab 0.8.0 (codename: Sentiel), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2012/01/13 *speed up loadjson by 20 fold when parsing large data arrays in matlab
2012/01/11 remove row bracket if an array has 1 element, suggested by Mykel Kochenderfer
2011/12/22 *accept sequence of 'param',value input in savejson and loadjson
2011/11/18 fix struct array bug reported by Mykel Kochenderfer
== JSONlab 0.5.1 (codename: Nexus Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2011/10/21 fix a bug in loadjson, previous code does not use any of the acceleration
2011/10/20 loadjson supports JSON collections - concatenated JSON objects
== JSONlab 0.5.0 (codename: Nexus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2011/10/16 package and release jsonlab 0.5.0
2011/10/15 *add json demo and regression test, support cpx numbers, fix double quote bug
2011/10/11 *speed up readjson dramatically, interpret _Array* tags, show data in root level
2011/10/10 create jsonlab project, start jsonlab website, add online documentation
2011/10/07 *speed up savejson by 25x using sprintf instead of mat2str, add options support
2011/10/06 *savejson works for structs, cells and arrays
2011/09/09 derive loadjson from JSON parser from MATLAB Central, draft savejson.m
Copyright 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed
or implied, of the copyright holders.
===============================================================================
= JSONLab =
= An open-source MATLAB/Octave JSON encoder and decoder =
===============================================================================
*Copyright (C) 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>
*License: BSD License, see License_BSD.txt for details
*Version: 1.0 (Optimus - Final)
-------------------------------------------------------------------------------
Table of Content:
I. Introduction
II. Installation
III.Using JSONLab
IV. Known Issues and TODOs
V. Contribution and feedback
-------------------------------------------------------------------------------
I. Introduction
JSON ([http://www.json.org/ JavaScript Object Notation]) is a highly portable,
human-readable and "[http://en.wikipedia.org/wiki/JSON fat-free]" text format
to represent complex and hierarchical data. It is as powerful as
[http://en.wikipedia.org/wiki/XML XML], but less verbose. JSON format is widely
used for data-exchange in applications, and is essential for the wild success
of [http://en.wikipedia.org/wiki/Ajax_(programming) Ajax] and
[http://en.wikipedia.org/wiki/Web_2.0 Web2.0].
UBJSON (Universal Binary JSON) is a binary JSON format, specifically
optimized for compact file size and better performance while keeping
the semantics as simple as the text-based JSON format. Using the UBJSON
format allows to wrap complex binary data in a flexible and extensible
structure, making it possible to process complex and large dataset
without accuracy loss due to text conversions.
We envision that both JSON and its binary version will serve as part of
the mainstream data-exchange formats for scientific research in the future.
It will provide the flexibility and generality achieved by other popular
general-purpose file specifications, such as
[http://www.hdfgroup.org/HDF5/whatishdf5.html HDF5], with significantly
reduced complexity and enhanced performance.
JSONLab is a free and open-source implementation of a JSON/UBJSON encoder
and a decoder in the native MATLAB language. It can be used to convert a MATLAB
data structure (array, struct, cell, struct array and cell array) into
JSON/UBJSON formatted strings, or to decode a JSON/UBJSON file into MATLAB
data structure. JSONLab supports both MATLAB and
[http://www.gnu.org/software/octave/ GNU Octave] (a free MATLAB clone).
-------------------------------------------------------------------------------
II. Installation
The installation of JSONLab is no different than any other simple
MATLAB toolbox. You only need to download/unzip the JSONLab package
to a folder, and add the folder's path to MATLAB/Octave's path list
by using the following command:
addpath('/path/to/jsonlab');
If you want to add this path permanently, you need to type "pathtool",
browse to the jsonlab root folder and add to the list, then click "Save".
Then, run "rehash" in MATLAB, and type "which loadjson", if you see an
output, that means JSONLab is installed for MATLAB/Octave.
-------------------------------------------------------------------------------
III.Using JSONLab
JSONLab provides two functions, loadjson.m -- a MATLAB->JSON decoder,
and savejson.m -- a MATLAB->JSON encoder, for the text-based JSON, and
two equivallent functions -- loadubjson and saveubjson for the binary
JSON. The detailed help info for the four functions can be found below:
=== loadjson.m ===
<pre>
data=loadjson(fname,opt)
or
data=loadjson(fname,'param1',value1,'param2',value2,...)
parse a JSON (JavaScript Object Notation) file or string
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
created on 2011/09/09, including previous works from
Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
created on 2009/11/02
François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
created on 2009/03/22
Joel Feenstra:
http://www.mathworks.com/matlabcentral/fileexchange/20565
created on 2008/07/03
$Id: loadjson.m 452 2014-11-22 16:43:33Z fangq $
input:
fname: input file name, if fname contains "{}" or "[]", fname
will be interpreted as a JSON string
opt: a struct to store parsing options, opt can be replaced by
a list of ('param',value) pairs - the param string is equivallent
to a field in opt. opt can have the following
fields (first in [.|.] is the default)
opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
for each element of the JSON data, and group
arrays based on the cell2mat rules.
opt.FastArrayParser [1|0 or integer]: if set to 1, use a
speed-optimized array parser when loading an
array object. The fast array parser may
collapse block arrays into a single large
array similar to rules defined in cell2mat; 0 to
use a legacy parser; if set to a larger-than-1
value, this option will specify the minimum
dimension to enable the fast array parser. For
example, if the input is a 3D array, setting
FastArrayParser to 1 will return a 3D array;
setting to 2 will return a cell array of 2D
arrays; setting to 3 will return to a 2D cell
array of 1D vectors; setting to 4 will return a
3D cell array.
opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
output:
dat: a cell array, where {...} blocks are converted into cell arrays,
and [...] are converted to arrays
examples:
dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
dat=loadjson(['examples' filesep 'example1.json'])
dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
</pre>
=== savejson.m ===
<pre>
json=savejson(rootname,obj,filename)
or
json=savejson(rootname,obj,opt)
json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
Object Notation) string
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
created on 2011/09/09
$Id: savejson.m 458 2014-12-19 22:17:17Z fangq $
input:
rootname: the name of the root-object, when set to '', the root name
is ignored, however, when opt.ForceRootName is set to 1 (see below),
the MATLAB variable name will be used as the root name.
obj: a MATLAB object (array, cell, cell array, struct, struct array).
filename: a string for the file name to save the output JSON data.
opt: a struct for additional options, ignore to use default values.
opt can have the following fields (first in [.|.] is the default)
opt.FileName [''|string]: a file name to save the output JSON data
opt.FloatFormat ['%.10g'|string]: format to show each numeric element
of a 1D/2D array;
opt.ArrayIndent [1|0]: if 1, output explicit data array with
precedent indentation; if 0, no indentation
opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
array in JSON array format; if sets to 1, an
array will be shown as a struct with fields
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
sparse arrays, the non-zero elements will be
saved to _ArrayData_ field in triplet-format i.e.
(ix,iy,val) and "_ArrayIsSparse_" will be added
with a value of 1; for a complex array, the
_ArrayData_ array will include two columns
(4 for sparse) to record the real and imaginary
parts, and also "_ArrayIsComplex_":1 is added.
opt.ParseLogical [0|1]: if this is set to 1, logical array elem
will use true/false rather than 1/0.
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
numerical element will be shown without a square
bracket, unless it is the root object; if 0, square
brackets are forced for any numerical arrays.
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
will use the name of the passed obj variable as the
root object name; if obj is an expression and
does not have a name, 'root' will be used; if this
is set to 0 and rootname is empty, the root level
will be merged down to the lower level.
opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
to represent +/-Inf. The matched pattern is '([-+]*)Inf'
and $1 represents the sign. For those who want to use
1e999 to represent Inf, they can set opt.Inf to '$11e999'
opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
to represent NaN
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
for example, if opt.JSONP='foo', the JSON data is
wrapped inside a function call as 'foo(...);'
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
back to the string form
opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
opt can be replaced by a list of ('param',value) pairs. The param
string is equivallent to a field in opt and is case sensitive.
output:
json: a string in the JSON format (see http://json.org)
examples:
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
'SpecialData',[nan, inf, -inf]);
savejson('jmesh',jsonmesh)
savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
</pre>
=== loadubjson.m ===
<pre>
data=loadubjson(fname,opt)
or
data=loadubjson(fname,'param1',value1,'param2',value2,...)
parse a JSON (JavaScript Object Notation) file or string
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
created on 2013/08/01
$Id: loadubjson.m 436 2014-08-05 20:51:40Z fangq $
input:
fname: input file name, if fname contains "{}" or "[]", fname
will be interpreted as a UBJSON string
opt: a struct to store parsing options, opt can be replaced by
a list of ('param',value) pairs - the param string is equivallent
to a field in opt. opt can have the following
fields (first in [.|.] is the default)
opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
for each element of the JSON data, and group
arrays based on the cell2mat rules.
opt.IntEndian [B|L]: specify the endianness of the integer fields
in the UBJSON input data. B - Big-Endian format for
integers (as required in the UBJSON specification);
L - input integer fields are in Little-Endian order.
output:
dat: a cell array, where {...} blocks are converted into cell arrays,
and [...] are converted to arrays
examples:
obj=struct('string','value','array',[1 2 3]);
ubjdata=saveubjson('obj',obj);
dat=loadubjson(ubjdata)
dat=loadubjson(['examples' filesep 'example1.ubj'])
dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
</pre>
=== saveubjson.m ===
<pre>
json=saveubjson(rootname,obj,filename)
or
json=saveubjson(rootname,obj,opt)
json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
convert a MATLAB object (cell, struct or array) into a Universal
Binary JSON (UBJSON) binary string
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
created on 2013/08/17
$Id: saveubjson.m 440 2014-09-17 19:59:45Z fangq $
input:
rootname: the name of the root-object, when set to '', the root name
is ignored, however, when opt.ForceRootName is set to 1 (see below),
the MATLAB variable name will be used as the root name.
obj: a MATLAB object (array, cell, cell array, struct, struct array)
filename: a string for the file name to save the output UBJSON data
opt: a struct for additional options, ignore to use default values.
opt can have the following fields (first in [.|.] is the default)
opt.FileName [''|string]: a file name to save the output JSON data
opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
array in JSON array format; if sets to 1, an
array will be shown as a struct with fields
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
sparse arrays, the non-zero elements will be
saved to _ArrayData_ field in triplet-format i.e.
(ix,iy,val) and "_ArrayIsSparse_" will be added
with a value of 1; for a complex array, the
_ArrayData_ array will include two columns
(4 for sparse) to record the real and imaginary
parts, and also "_ArrayIsComplex_":1 is added.
opt.ParseLogical [1|0]: if this is set to 1, logical array elem
will use true/false rather than 1/0.
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
numerical element will be shown without a square
bracket, unless it is the root object; if 0, square
brackets are forced for any numerical arrays.
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
will use the name of the passed obj variable as the
root object name; if obj is an expression and
does not have a name, 'root' will be used; if this
is set to 0 and rootname is empty, the root level
will be merged down to the lower level.
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
for example, if opt.JSON='foo', the JSON data is
wrapped inside a function call as 'foo(...);'
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
back to the string form
opt can be replaced by a list of ('param',value) pairs. The param
string is equivallent to a field in opt and is case sensitive.
output:
json: a binary string in the UBJSON format (see http://ubjson.org)
examples:
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
'SpecialData',[nan, inf, -inf]);
saveubjson('jsonmesh',jsonmesh)
saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
</pre>
=== examples ===
Under the "examples" folder, you can find several scripts to demonstrate the
basic utilities of JSONLab. Running the "demo_jsonlab_basic.m" script, you
will see the conversions from MATLAB data structure to JSON text and backward.
In "jsonlab_selftest.m", we load complex JSON files downloaded from the Internet
and validate the loadjson/savejson functions for regression testing purposes.
Similarly, a "demo_ubjson_basic.m" script is provided to test the saveubjson
and loadubjson pairs for various matlab data structures.
Please run these examples and understand how JSONLab works before you use
it to process your data.
-------------------------------------------------------------------------------
IV. Known Issues and TODOs
JSONLab has several known limitations. We are striving to make it more general
and robust. Hopefully in a few future releases, the limitations become less.
Here are the known issues:
# 3D or higher dimensional cell/struct-arrays will be converted to 2D arrays;
# When processing names containing multi-byte characters, Octave and MATLAB \
can give different field-names; you can use feature('DefaultCharacterSet','latin1') \
in MATLAB to get consistant results
# savejson can not handle class and dataset.
# saveubjson converts a logical array into a uint8 ([U]) array
# an unofficial N-D array count syntax is implemented in saveubjson. We are \
actively communicating with the UBJSON spec maintainer to investigate the \
possibility of making it upstream
# loadubjson can not parse all UBJSON Specification (Draft 9) compliant \
files, however, it can parse all UBJSON files produced by saveubjson.
-------------------------------------------------------------------------------
V. Contribution and feedback
JSONLab is an open-source project. This means you can not only use it and modify
it as you wish, but also you can contribute your changes back to JSONLab so
that everyone else can enjoy the improvement. For anyone who want to contribute,
please download JSONLab source code from it's subversion repository by using the
following command:
svn checkout svn://svn.code.sf.net/p/iso2mesh/code/trunk/jsonlab jsonlab
You can make changes to the files as needed. Once you are satisfied with your
changes, and ready to share it with others, please cd the root directory of
JSONLab, and type
svn diff > yourname_featurename.patch
You then email the .patch file to JSONLab's maintainer, Qianqian Fang, at
the email address shown in the beginning of this file. Qianqian will review
the changes and commit it to the subversion if they are satisfactory.
We appreciate any suggestions and feedbacks from you. Please use iso2mesh's
mailing list to report any questions you may have with JSONLab:
http://groups.google.com/group/iso2mesh-users?hl=en&pli=1
(Subscription to the mailing list is needed in order to post messages).
function val=jsonopt(key,default,varargin)
%
% val=jsonopt(key,default,optstruct)
%
% setting options based on a struct. The struct can be produced
% by varargin2struct from a list of 'param','value' pairs
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
%
% $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $
%
% input:
% key: a string with which one look up a value from a struct
% default: if the key does not exist, return default
% optstruct: a struct where each sub-field is a key
%
% output:
% val: if key exists, val=optstruct.key; otherwise val=default
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
val=default;
if(nargin<=2) return; end
opt=varargin{1};
if(isstruct(opt) && isfield(opt,key))
val=getfield(opt,key);
end
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
function s=mergestruct(s1,s2)
%
% s=mergestruct(s1,s2)
%
% merge two struct objects into one
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% date: 2012/12/22
%
% input:
% s1,s2: a struct object, s1 and s2 can not be arrays
%
% output:
% s: the merged struct object. fields in s1 and s2 will be combined in s.
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(~isstruct(s1) || ~isstruct(s2))
error('input parameters contain non-struct');
end
if(length(s1)>1 || length(s2)>1)
error('can not merge struct arrays');
end
fn=fieldnames(s2);
s=s1;
for i=1:length(fn)
s=setfield(s,fn{i},getfield(s2,fn{i}));
end
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
function opt=varargin2struct(varargin)
%
% opt=varargin2struct('param1',value1,'param2',value2,...)
% or
% opt=varargin2struct(...,optstruct,...)
%
% convert a series of input parameters into a structure
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% date: 2012/12/22
%
% input:
% 'param', value: the input parameters should be pairs of a string and a value
% optstruct: if a parameter is a struct, the fields will be merged to the output struct
%
% output:
% opt: a struct where opt.param1=value1, opt.param2=value2 ...
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
len=length(varargin);
opt=struct;
if(len==0) return; end
i=1;
while(i<=len)
if(isstruct(varargin{i}))
opt=mergestruct(opt,varargin{i});
elseif(ischar(varargin{i}) && i<len)
opt=setfield(opt,varargin{i},varargin{i+1});
i=i+1;
else
error('input must be in the form of ...,''name'',value,... pairs or structs');
end
i=i+1;
end
function str = makeValidFieldName(str)
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
isoct=exist('OCTAVE_VERSION','builtin');
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
function [U, S] = pca(X)
%PCA Run principal component analysis on the dataset X
% [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
% Returns the eigenvectors U, the eigenvalues (on diagonal) in S
%
% Useful values
[m, n] = size(X);
% You need to return the following variables correctly.
U = zeros(n);
S = zeros(n);
% ====================== YOUR CODE HERE ======================
% Instructions: You should first compute the covariance matrix. Then, you
% should use the "svd" function to compute the eigenvectors
% and eigenvalues of the covariance matrix.
%
% Note: When computing the covariance matrix, remember to divide by m (the
% number of examples).
%
Covar = (X')*X/m;
[U, S, ~] = svd(Covar);
% =========================================================================
end
function plotDataPoints(X, idx, K)
%PLOTDATAPOINTS plots data points in X, coloring them so that those with the same
%index assignments in idx have the same color
% PLOTDATAPOINTS(X, idx, K) plots data points in X, coloring them so that those
% with the same index assignments in idx have the same color
% Create palette
palette = hsv(K + 1);
colors = palette(idx, :);
% Plot the data
scatter(X(:,1), X(:,2), 15, colors);
end
function plotProgresskMeans(X, centroids, previous, idx, K, i)
%PLOTPROGRESSKMEANS is a helper function that displays the progress of
%k-Means as it is running. It is intended for use only with 2D data.
% PLOTPROGRESSKMEANS(X, centroids, previous, idx, K, i) plots the data
% points with colors assigned to each centroid. With the previous
% centroids, it also plots a line between the previous locations and
% current locations of the centroids.
%
% Plot the examples
plotDataPoints(X, idx, K);
% Plot the centroids as black x's
plot(centroids(:,1), centroids(:,2), 'x', ...
'MarkerEdgeColor','k', ...
'MarkerSize', 10, 'LineWidth', 3);
% Plot the history of the centroids with lines
for j=1:size(centroids,1)
drawLine(centroids(j, :), previous(j, :));
end
% Title
title(sprintf('Iteration number %d', i))
end
function Z = projectData(X, U, K)
%PROJECTDATA Computes the reduced data representation when projecting only
%on to the top k eigenvectors
% Z = projectData(X, U, K) computes the projection of
% the normalized inputs X into the reduced dimensional space spanned by
% the first K columns of U. It returns the projected examples in Z.
%
% You need to return the following variables correctly.
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the projection of the data using only the top K
% eigenvectors in U (first K columns).
% For the i-th example X(i,:), the projection on to the k-th
% eigenvector is given as follows:
% x = X(i, :)';
% projection_k = x' * U(:, k);
%
U_reduce = U(:,1:K);
Z = X*U_reduce;
% =============================================================
end
function X_rec = recoverData(Z, U, K)
%RECOVERDATA Recovers an approximation of the original data when using the
%projected data
% X_rec = RECOVERDATA(Z, U, K) recovers an approximation the
% original data that has been reduced to K dimensions. It returns the
% approximate reconstruction in X_rec.
%
% You need to return the following variables correctly.
X_rec = zeros(size(Z, 1), size(U, 1));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the approximation of the data by projecting back
% onto the original space using the top K eigenvectors in U.
%
% For the i-th example Z(i,:), the (approximate)
% recovered data for dimension j is given as follows:
% v = Z(i, :)';
% recovered_j = v' * U(j, 1:K)';
%
% Notice that U(j, 1:K) is a row vector.
%
U_reduce = U(:,1:K);
X_rec = Z*U_reduce';
% =============================================================
end
function [centroids, idx] = runkMeans(X, initial_centroids, ...
max_iters, plot_progress)
%RUNKMEANS runs the K-Means algorithm on data matrix X, where each row of X
%is a single example
% [centroids, idx] = RUNKMEANS(X, initial_centroids, max_iters, ...
% plot_progress) runs the K-Means algorithm on data matrix X, where each
% row of X is a single example. It uses initial_centroids used as the
% initial centroids. max_iters specifies the total number of interactions
% of K-Means to execute. plot_progress is a true/false flag that
% indicates if the function should also plot its progress as the
% learning happens. This is set to false by default. runkMeans returns
% centroids, a Kxn matrix of the computed centroids and idx, a m x 1
% vector of centroid assignments (i.e. each entry in range [1..K])
%
% Set default value for plot progress
if ~exist('plot_progress', 'var') || isempty(plot_progress)
plot_progress = false;
end
% Plot the data if we are plotting progress
if plot_progress
figure;
hold on;
end
% Initialize values
[m n] = size(X);
K = size(initial_centroids, 1);
centroids = initial_centroids;
previous_centroids = centroids;
idx = zeros(m, 1);
% Run K-Means
for i=1:max_iters
% Output progress
fprintf('K-Means iteration %d/%d...\n', i, max_iters);
if exist('OCTAVE_VERSION')
fflush(stdout);
end
% For each example in X, assign it to the closest centroid
idx = findClosestCentroids(X, centroids);
% Optionally, plot progress here
if plot_progress
plotProgresskMeans(X, centroids, previous_centroids, idx, K, i);
previous_centroids = centroids;
fprintf('Press enter to continue.\n');
pause;
end
% Given the memberships, compute new centroids
centroids = computeCentroids(X, idx, K);
end
% Hold off if we are plotting progress
if plot_progress
hold off;
end
end
function submit()
addpath('./lib');
conf.assignmentSlug = 'k-means-clustering-and-pca';
conf.itemName = 'K-Means Clustering and PCA';
conf.partArrays = { ...
{ ...
'1', ...
{ 'findClosestCentroids.m' }, ...
'Find Closest Centroids (k-Means)', ...
}, ...
{ ...
'2', ...
{ 'computeCentroids.m' }, ...
'Compute Centroid Means (k-Means)', ...
}, ...
{ ...
'3', ...
{ 'pca.m' }, ...
'PCA', ...
}, ...
{ ...
'4', ...
{ 'projectData.m' }, ...
'Project Data (PCA)', ...
}, ...
{ ...
'5', ...
{ 'recoverData.m' }, ...
'Recover Data (PCA)', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(sin(1:165), 15, 11);
Z = reshape(cos(1:121), 11, 11);
C = Z(1:5, :);
idx = (1 + mod(1:15, 3))';
if partId == '1'
idx = findClosestCentroids(X, C);
out = sprintf('%0.5f ', idx(:));
elseif partId == '2'
centroids = computeCentroids(X, idx, 3);
out = sprintf('%0.5f ', centroids(:));
elseif partId == '3'
[U, S] = pca(X);
out = sprintf('%0.5f ', abs([U(:); S(:)]));
elseif partId == '4'
X_proj = projectData(X, Z, 5);
out = sprintf('%0.5f ', X_proj(:));
elseif partId == '5'
X_rec = recoverData(X(:,1:5), Z, 5);
out = sprintf('%0.5f ', X_rec(:));
end
end
dndOYxgCeMRoq7kG
\ No newline at end of file
function checkCostFunction(lambda)
%CHECKCOSTFUNCTION Creates a collaborative filering problem
%to check your cost function and gradients
% CHECKCOSTFUNCTION(lambda) Creates a collaborative filering problem
% to check your cost function and gradients, it will output the
% analytical gradients produced by your code and the numerical gradients
% (computed using computeNumericalGradient). These two gradient
% computations should result in very similar values.
% Set lambda
if ~exist('lambda', 'var') || isempty(lambda)
lambda = 0;
end
%% Create small problem
X_t = rand(4, 3);
Theta_t = rand(5, 3);
% Zap out most entries
Y = X_t * Theta_t';
Y(rand(size(Y)) > 0.5) = 0;
R = zeros(size(Y));
R(Y ~= 0) = 1;
%% Run Gradient Checking
X = randn(size(X_t));
Theta = randn(size(Theta_t));
num_users = size(Y, 2);
num_movies = size(Y, 1);
num_features = size(Theta_t, 2);
numgrad = computeNumericalGradient( ...
@(t) cofiCostFunc(t, Y, R, num_users, num_movies, ...
num_features, lambda), [X(:); Theta(:)]);
[cost, grad] = cofiCostFunc([X(:); Theta(:)], Y, R, num_users, ...
num_movies, num_features, lambda);
disp([numgrad grad]);
fprintf(['The above two columns you get should be very similar.\n' ...
'(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n']);
diff = norm(numgrad-grad)/norm(numgrad+grad);
fprintf(['If your cost function implementation is correct, then \n' ...
'the relative difference will be small (less than 1e-9). \n' ...
'\nRelative Difference: %g\n'], diff);
end
\ No newline at end of file
function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ...
num_features, lambda)
%COFICOSTFUNC Collaborative filtering cost function
% [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ...
% num_features, lambda) returns the cost and gradient for the
% collaborative filtering problem.
%
% Unfold the U and W matrices from params
X = reshape(params(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(params(num_movies*num_features+1:end), ...
num_users, num_features);
% You need to return the following values correctly
J = 0;
X_grad = zeros(size(X));
Theta_grad = zeros(size(Theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost function and gradient for collaborative
% filtering. Concretely, you should first implement the cost
% function (without regularization) and make sure it is
% matches our costs. After that, you should implement the
% gradient and use the checkCostFunction routine to check
% that the gradient is correct. Finally, you should implement
% regularization.
%
% Notes: X - num_movies x num_features matrix of movie features
% Theta - num_users x num_features matrix of user features
% Y - num_movies x num_users matrix of user ratings of movies
% R - num_movies x num_users matrix, where R(i, j) = 1 if the
% i-th movie was rated by the j-th user
%
% You should set the following variables correctly:
%
% X_grad - num_movies x num_features matrix, containing the
% partial derivatives w.r.t. to each element of X
% Theta_grad - num_users x num_features matrix, containing the
% partial derivatives w.r.t. to each element of Theta
%
diff = ((X*Theta') - Y).*R;
J = sum(sum(diff.^2))/2 + sum(sum(X.^2))*lambda/2 + sum(sum(Theta.^2))*(lambda)/2;
X_grad = diff*Theta + lambda*X;
Theta_grad = (diff')*X + lambda*Theta;
% =============================================================
grad = [X_grad(:); Theta_grad(:)];
end
function numgrad = computeNumericalGradient(J, theta)
%COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
%and gives us a numerical estimate of the gradient.
% numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
% gradient of the function J around theta. Calling y = J(theta) should
% return the function value at theta.
% Notes: The following code implements numerical gradient checking, and
% returns the numerical gradient.It sets numgrad(i) to (a numerical
% approximation of) the partial derivative of J with respect to the
% i-th input argument, evaluated at theta. (i.e., numgrad(i) should
% be the (approximately) the partial derivative of J with respect
% to theta(i).)
%
numgrad = zeros(size(theta));
perturb = zeros(size(theta));
e = 1e-4;
for p = 1:numel(theta)
% Set perturbation vector
perturb(p) = e;
loss1 = J(theta - perturb);
loss2 = J(theta + perturb);
% Compute Numerical Gradient
numgrad(p) = (loss2 - loss1) / (2*e);
perturb(p) = 0;
end
end
function [mu sigma2] = estimateGaussian(X)
%ESTIMATEGAUSSIAN This function estimates the parameters of a
%Gaussian distribution using the data in X
% [mu sigma2] = estimateGaussian(X),
% The input X is the dataset with each n-dimensional data point in one row
% The output is an n-dimensional vector mu, the mean of the data set
% and the variances sigma^2, an n x 1 vector
%
% Useful variables
[m, n] = size(X);
% You should return these values correctly
sigma2 = zeros(n, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the mean of the data and the variances
% In particular, mu(i) should contain the mean of
% the data for the i-th feature and sigma2(i)
% should contain variance of the i-th feature.
%
mu = mean(X, 1)';
sigma2 = var(X, 1)';
% =============================================================
end
%% Machine Learning Online Class
% Exercise 8 | Anomaly Detection and Collaborative Filtering
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% estimateGaussian.m
% selectThreshold.m
% cofiCostFunc.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% ================== Part 1: Load Example Dataset ===================
% We start this exercise by using a small dataset that is easy to
% visualize.
%
% Our example case consists of 2 network server statistics across
% several machines: the latency and throughput of each machine.
% This exercise will help us find possibly faulty (or very fast) machines.
%
fprintf('Visualizing example dataset for outlier detection.\n\n');
% The following command loads the dataset. You should now have the
% variables X, Xval, yval in your environment
load('ex8data1.mat');
% Visualize the example dataset
plot(X(:, 1), X(:, 2), 'bx');
axis([0 30 0 30]);
xlabel('Latency (ms)');
ylabel('Throughput (mb/s)');
fprintf('Program paused. Press enter to continue.\n');
pause
%% ================== Part 2: Estimate the dataset statistics ===================
% For this exercise, we assume a Gaussian distribution for the dataset.
%
% We first estimate the parameters of our assumed Gaussian distribution,
% then compute the probabilities for each of the points and then visualize
% both the overall distribution and where each of the points falls in
% terms of that distribution.
%
fprintf('Visualizing Gaussian fit.\n\n');
% Estimate my and sigma2
[mu sigma2] = estimateGaussian(X);
% Returns the density of the multivariate normal at each data point (row)
% of X
p = multivariateGaussian(X, mu, sigma2);
% Visualize the fit
visualizeFit(X, mu, sigma2);
xlabel('Latency (ms)');
ylabel('Throughput (mb/s)');
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================== Part 3: Find Outliers ===================
% Now you will find a good epsilon threshold using a cross-validation set
% probabilities given the estimated Gaussian distribution
%
pval = multivariateGaussian(Xval, mu, sigma2);
[epsilon F1] = selectThreshold(yval, pval);
fprintf('Best epsilon found using cross-validation: %e\n', epsilon);
fprintf('Best F1 on Cross Validation Set: %f\n', F1);
fprintf(' (you should see a value epsilon of about 8.99e-05)\n');
fprintf(' (you should see a Best F1 value of 0.875000)\n\n');
% Find the outliers in the training set and plot the
outliers = find(p < epsilon);
% Draw a red circle around those outliers
hold on
plot(X(outliers, 1), X(outliers, 2), 'ro', 'LineWidth', 2, 'MarkerSize', 10);
hold off
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================== Part 4: Multidimensional Outliers ===================
% We will now use the code from the previous part and apply it to a
% harder problem in which more features describe each datapoint and only
% some features indicate whether a point is an outlier.
%
% Loads the second dataset. You should now have the
% variables X, Xval, yval in your environment
load('ex8data2.mat');
% Apply the same steps to the larger dataset
[mu sigma2] = estimateGaussian(X);
% Training set
p = multivariateGaussian(X, mu, sigma2);
% Cross-validation set
pval = multivariateGaussian(Xval, mu, sigma2);
% Find the best threshold
[epsilon F1] = selectThreshold(yval, pval);
fprintf('Best epsilon found using cross-validation: %e\n', epsilon);
fprintf('Best F1 on Cross Validation Set: %f\n', F1);
fprintf(' (you should see a value epsilon of about 1.38e-18)\n');
fprintf(' (you should see a Best F1 value of 0.615385)\n');
fprintf('# Outliers found: %d\n\n', sum(p < epsilon));
%% Machine Learning Online Class
% Exercise 8 | Anomaly Detection and Collaborative Filtering
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% estimateGaussian.m
% selectThreshold.m
% cofiCostFunc.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% =============== Part 1: Loading movie ratings dataset ================
% You will start by loading the movie ratings dataset to understand the
% structure of the data.
%
fprintf('Loading movie ratings dataset.\n\n');
% Load data
load ('ex8_movies.mat');
% Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies on
% 943 users
%
% R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
% rating to movie i
% From the matrix, we can compute statistics like average rating.
fprintf('Average rating for movie 1 (Toy Story): %f / 5\n\n', ...
mean(Y(1, R(1, :))));
% We can "visualize" the ratings matrix by plotting it with imagesc
imagesc(Y);
ylabel('Movies');
xlabel('Users');
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============ Part 2: Collaborative Filtering Cost Function ===========
% You will now implement the cost function for collaborative filtering.
% To help you debug your cost function, we have included set of weights
% that we trained on that. Specifically, you should complete the code in
% cofiCostFunc.m to return J.
% Load pre-trained weights (X, Theta, num_users, num_movies, num_features)
load ('ex8_movieParams.mat');
% Reduce the data set size so that this runs faster
num_users = 4; num_movies = 5; num_features = 3;
X = X(1:num_movies, 1:num_features);
Theta = Theta(1:num_users, 1:num_features);
Y = Y(1:num_movies, 1:num_users);
R = R(1:num_movies, 1:num_users);
% Evaluate cost function
J = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...
num_features, 0);
fprintf(['Cost at loaded parameters: %f '...
'\n(this value should be about 22.22)\n'], J);
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============== Part 3: Collaborative Filtering Gradient ==============
% Once your cost function matches up with ours, you should now implement
% the collaborative filtering gradient function. Specifically, you should
% complete the code in cofiCostFunc.m to return the grad argument.
%
fprintf('\nChecking Gradients (without regularization) ... \n');
% Check gradients by running checkNNGradients
checkCostFunction;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ========= Part 4: Collaborative Filtering Cost Regularization ========
% Now, you should implement regularization for the cost function for
% collaborative filtering. You can implement it by adding the cost of
% regularization to the original cost computation.
%
% Evaluate cost function
J = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...
num_features, 1.5);
fprintf(['Cost at loaded parameters (lambda = 1.5): %f '...
'\n(this value should be about 31.34)\n'], J);
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ======= Part 5: Collaborative Filtering Gradient Regularization ======
% Once your cost matches up with ours, you should proceed to implement
% regularization for the gradient.
%
%
fprintf('\nChecking Gradients (with regularization) ... \n');
% Check gradients by running checkNNGradients
checkCostFunction(1.5);
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============== Part 6: Entering ratings for a new user ===============
% Before we will train the collaborative filtering model, we will first
% add ratings that correspond to a new user that we just observed. This
% part of the code will also allow you to put in your own ratings for the
% movies in our dataset!
%
movieList = loadMovieList();
% Initialize my ratings
my_ratings = zeros(1682, 1);
% Check the file movie_idx.txt for id of each movie in our dataset
% For example, Toy Story (1995) has ID 1, so to rate it "4", you can set
my_ratings(1) = 4;
% Or suppose did not enjoy Silence of the Lambs (1991), you can set
my_ratings(98) = 2;
% We have selected a few movies we liked / did not like and the ratings we
% gave are as follows:
my_ratings(7) = 3;
my_ratings(12)= 5;
my_ratings(54) = 4;
my_ratings(64)= 5;
my_ratings(66)= 3;
my_ratings(69) = 5;
my_ratings(183) = 4;
my_ratings(226) = 5;
my_ratings(355)= 5;
fprintf('\n\nNew user ratings:\n');
for i = 1:length(my_ratings)
if my_ratings(i) > 0
fprintf('Rated %d for %s\n', my_ratings(i), ...
movieList{i});
end
end
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ================== Part 7: Learning Movie Ratings ====================
% Now, you will train the collaborative filtering model on a movie rating
% dataset of 1682 movies and 943 users
%
fprintf('\nTraining collaborative filtering...\n');
% Load data
load('ex8_movies.mat');
% Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies by
% 943 users
%
% R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
% rating to movie i
% Add our own ratings to the data matrix
Y = [my_ratings Y];
R = [(my_ratings ~= 0) R];
% Normalize Ratings
[Ynorm, Ymean] = normalizeRatings(Y, R);
% Useful Values
num_users = size(Y, 2);
num_movies = size(Y, 1);
num_features = 10;
% Set Initial Parameters (Theta, X)
X = randn(num_movies, num_features);
Theta = randn(num_users, num_features);
initial_parameters = [X(:); Theta(:)];
% Set options for fmincg
options = optimset('GradObj', 'on', 'MaxIter', 100);
% Set Regularization
lambda = 10;
theta = fmincg (@(t)(cofiCostFunc(t, Ynorm, R, num_users, num_movies, ...
num_features, lambda)), ...
initial_parameters, options);
% Unfold the returned theta back into U and W
X = reshape(theta(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(theta(num_movies*num_features+1:end), ...
num_users, num_features);
fprintf('Recommender system learning completed.\n');
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ================== Part 8: Recommendation for you ====================
% After training the model, you can now make recommendations by computing
% the predictions matrix.
%
p = X * Theta';
my_predictions = p(:,1) + Ymean;
movieList = loadMovieList();
[r, ix] = sort(my_predictions, 'descend');
fprintf('\nTop recommendations for you:\n');
for i=1:10
j = ix(i);
fprintf('Predicting rating %.1f for movie %s\n', my_predictions(j), ...
movieList{j});
end
fprintf('\n\nOriginal ratings provided:\n');
for i = 1:length(my_ratings)
if my_ratings(i) > 0
fprintf('Rated %d for %s\n', my_ratings(i), ...
movieList{i});
end
end
function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied. As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application. All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%
% Read options
if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
length = options.MaxIter;
else
length = 100;
end
RHO = 0.01; % a bunch of constants for line searches
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current bracket
MAX = 20; % max 20 function evaluations per line search
RATIO = 100; % maximum allowed slope ratio
argstr = ['feval(f, X']; % compose string used to call function
for i = 1:(nargin - 3)
argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr); % get function value and gradient
i = i + (length<0); % count epochs?!
s = -df1; % search direction is steepest
d1 = -s'*s; % this is the slope
z1 = red/(1-d1); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
X = X + z1*s; % begin line search
[f2 df2] = eval(argstr);
i = i + (length<0); % count epochs?!
d2 = df2'*s;
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
if length>0, M = MAX; else M = min(MAX, -length-i); end
success = 0; limit = -1; % initialize quanteties
while 1
while ((f2 > f1+z1*RHO*d1) || (d2 > -SIG*d1)) && (M > 0)
limit = z1; % tighten the bracket
if f2 > f1
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
else
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
end
if isnan(z2) || isinf(z2)
z2 = z3/2; % if we had a numerical problem then bisect
end
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
z1 = z1 + z2; % update the step
X = X + z2*s;
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
z3 = z3-z2; % z3 is now relative to the location of z2
end
if f2 > f1+z1*RHO*d1 || d2 > -SIG*d1
break; % this is a failure
elseif d2 > SIG*d1
success = 1; break; % success
elseif M == 0
break; % failure
end
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
if ~isreal(z2) || isnan(z2) || isinf(z2) || z2 < 0 % num prob or wrong sign?
if limit < -0.5 % if we have no upper limit
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
else
z2 = (limit-z1)/2; % otherwise bisect
end
elseif (limit > -0.5) && (z2+z1 > limit) % extraplation beyond max?
z2 = (limit-z1)/2; % bisect
elseif (limit < -0.5) && (z2+z1 > z1*EXT) % extrapolation beyond limit
z2 = z1*(EXT-1.0); % set to extrapolation limit
elseif z2 < -z3*INT
z2 = -z3*INT;
elseif (limit > -0.5) && (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
z2 = (limit-z1)*(1.0-INT);
end
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
z1 = z1 + z2; X = X + z2*s; % update current estimates
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
end % end of line search
if success % if line search succeeded
f1 = f2; fX = [fX' f1]';
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
d2 = df1'*s;
if d2 > 0 % new slope must be negative
s = -df1; % otherwise use steepest direction
d2 = -s'*s;
end
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
d1 = d2;
ls_failed = 0; % this line search did not fail
else
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
if ls_failed || i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
s = -df1; % try steepest
d1 = -s'*s;
z1 = 1/(1-d1);
ls_failed = 1; % this line search failed
end
if exist('OCTAVE_VERSION')
fflush(stdout);
end
end
fprintf('\n');
The author of "jsonlab" toolbox is Qianqian Fang. Qianqian
is currently an Assistant Professor at Massachusetts General Hospital,
Harvard Medical School.
Address: Martinos Center for Biomedical Imaging,
Massachusetts General Hospital,
Harvard Medical School
Bldg 149, 13th St, Charlestown, MA 02129, USA
URL: http://nmr.mgh.harvard.edu/~fangq/
Email: <fangq at nmr.mgh.harvard.edu> or <fangqq at gmail.com>
The script loadjson.m was built upon previous works by
- Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
date: 2009/11/02
- François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
date: 2009/03/22
- Joel Feenstra: http://www.mathworks.com/matlabcentral/fileexchange/20565
date: 2008/07/03
This toolbox contains patches submitted by the following contributors:
- Blake Johnson <bjohnso at bbn.com>
part of revision 341
- Niclas Borlin <Niclas.Borlin at cs.umu.se>
various fixes in revision 394, including
- loadjson crashes for all-zero sparse matrix.
- loadjson crashes for empty sparse matrix.
- Non-zero size of 0-by-N and N-by-0 empty matrices is lost after savejson/loadjson.
- loadjson crashes for sparse real column vector.
- loadjson crashes for sparse complex column vector.
- Data is corrupted by savejson for sparse real row vector.
- savejson crashes for sparse complex row vector.
- Yul Kang <yul.kang.on at gmail.com>
patches for svn revision 415.
- savejson saves an empty cell array as [] instead of null
- loadjson differentiates an empty struct from an empty array
============================================================================
JSONlab - a toolbox to encode/decode JSON/UBJSON files in MATLAB/Octave
----------------------------------------------------------------------------
JSONlab ChangeLog (key features marked by *):
== JSONlab 1.0 (codename: Optimus - Final), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2015/01/02 polish help info for all major functions, update examples, finalize 1.0
2014/12/19 fix a bug to strictly respect NoRowBracket in savejson
== JSONlab 1.0.0-RC2 (codename: Optimus - RC2), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2014/11/22 show progress bar in loadjson ('ShowProgress')
2014/11/17 add Compact option in savejson to output compact JSON format ('Compact')
2014/11/17 add FastArrayParser in loadjson to specify fast parser applicable levels
2014/09/18 start official github mirror: https://github.com/fangq/jsonlab
== JSONlab 1.0.0-RC1 (codename: Optimus - RC1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2014/09/17 fix several compatibility issues when running on octave versions 3.2-3.8
2014/09/17 support 2D cell and struct arrays in both savejson and saveubjson
2014/08/04 escape special characters in a JSON string
2014/02/16 fix a bug when saving ubjson files
== JSONlab 0.9.9 (codename: Optimus - beta), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2014/01/22 use binary read and write in saveubjson and loadubjson
== JSONlab 0.9.8-1 (codename: Optimus - alpha update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2013/10/07 better round-trip conservation for empty arrays and structs (patch submitted by Yul Kang)
== JSONlab 0.9.8 (codename: Optimus - alpha), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2013/08/23 *universal Binary JSON (UBJSON) support, including both saveubjson and loadubjson
== JSONlab 0.9.1 (codename: Rodimus, update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2012/12/18 *handling of various empty and sparse matrices (fixes submitted by Niclas Borlin)
== JSONlab 0.9.0 (codename: Rodimus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2012/06/17 *new format for an invalid leading char, unpacking hex code in savejson
2012/06/01 support JSONP in savejson
2012/05/25 fix the empty cell bug (reported by Cyril Davin)
2012/04/05 savejson can save to a file (suggested by Patrick Rapin)
== JSONlab 0.8.1 (codename: Sentiel, Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2012/02/28 loadjson quotation mark escape bug, see http://bit.ly/yyk1nS
2012/01/25 patch to handle root-less objects, contributed by Blake Johnson
== JSONlab 0.8.0 (codename: Sentiel), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2012/01/13 *speed up loadjson by 20 fold when parsing large data arrays in matlab
2012/01/11 remove row bracket if an array has 1 element, suggested by Mykel Kochenderfer
2011/12/22 *accept sequence of 'param',value input in savejson and loadjson
2011/11/18 fix struct array bug reported by Mykel Kochenderfer
== JSONlab 0.5.1 (codename: Nexus Update 1), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2011/10/21 fix a bug in loadjson, previous code does not use any of the acceleration
2011/10/20 loadjson supports JSON collections - concatenated JSON objects
== JSONlab 0.5.0 (codename: Nexus), FangQ <fangq (at) nmr.mgh.harvard.edu> ==
2011/10/16 package and release jsonlab 0.5.0
2011/10/15 *add json demo and regression test, support cpx numbers, fix double quote bug
2011/10/11 *speed up readjson dramatically, interpret _Array* tags, show data in root level
2011/10/10 create jsonlab project, start jsonlab website, add online documentation
2011/10/07 *speed up savejson by 25x using sprintf instead of mat2str, add options support
2011/10/06 *savejson works for structs, cells and arrays
2011/09/09 derive loadjson from JSON parser from MATLAB Central, draft savejson.m
Copyright 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed
or implied, of the copyright holders.
===============================================================================
= JSONLab =
= An open-source MATLAB/Octave JSON encoder and decoder =
===============================================================================
*Copyright (C) 2011-2015 Qianqian Fang <fangq at nmr.mgh.harvard.edu>
*License: BSD License, see License_BSD.txt for details
*Version: 1.0 (Optimus - Final)
-------------------------------------------------------------------------------
Table of Content:
I. Introduction
II. Installation
III.Using JSONLab
IV. Known Issues and TODOs
V. Contribution and feedback
-------------------------------------------------------------------------------
I. Introduction
JSON ([http://www.json.org/ JavaScript Object Notation]) is a highly portable,
human-readable and "[http://en.wikipedia.org/wiki/JSON fat-free]" text format
to represent complex and hierarchical data. It is as powerful as
[http://en.wikipedia.org/wiki/XML XML], but less verbose. JSON format is widely
used for data-exchange in applications, and is essential for the wild success
of [http://en.wikipedia.org/wiki/Ajax_(programming) Ajax] and
[http://en.wikipedia.org/wiki/Web_2.0 Web2.0].
UBJSON (Universal Binary JSON) is a binary JSON format, specifically
optimized for compact file size and better performance while keeping
the semantics as simple as the text-based JSON format. Using the UBJSON
format allows to wrap complex binary data in a flexible and extensible
structure, making it possible to process complex and large dataset
without accuracy loss due to text conversions.
We envision that both JSON and its binary version will serve as part of
the mainstream data-exchange formats for scientific research in the future.
It will provide the flexibility and generality achieved by other popular
general-purpose file specifications, such as
[http://www.hdfgroup.org/HDF5/whatishdf5.html HDF5], with significantly
reduced complexity and enhanced performance.
JSONLab is a free and open-source implementation of a JSON/UBJSON encoder
and a decoder in the native MATLAB language. It can be used to convert a MATLAB
data structure (array, struct, cell, struct array and cell array) into
JSON/UBJSON formatted strings, or to decode a JSON/UBJSON file into MATLAB
data structure. JSONLab supports both MATLAB and
[http://www.gnu.org/software/octave/ GNU Octave] (a free MATLAB clone).
-------------------------------------------------------------------------------
II. Installation
The installation of JSONLab is no different than any other simple
MATLAB toolbox. You only need to download/unzip the JSONLab package
to a folder, and add the folder's path to MATLAB/Octave's path list
by using the following command:
addpath('/path/to/jsonlab');
If you want to add this path permanently, you need to type "pathtool",
browse to the jsonlab root folder and add to the list, then click "Save".
Then, run "rehash" in MATLAB, and type "which loadjson", if you see an
output, that means JSONLab is installed for MATLAB/Octave.
-------------------------------------------------------------------------------
III.Using JSONLab
JSONLab provides two functions, loadjson.m -- a MATLAB->JSON decoder,
and savejson.m -- a MATLAB->JSON encoder, for the text-based JSON, and
two equivallent functions -- loadubjson and saveubjson for the binary
JSON. The detailed help info for the four functions can be found below:
=== loadjson.m ===
<pre>
data=loadjson(fname,opt)
or
data=loadjson(fname,'param1',value1,'param2',value2,...)
parse a JSON (JavaScript Object Notation) file or string
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
created on 2011/09/09, including previous works from
Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
created on 2009/11/02
François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
created on 2009/03/22
Joel Feenstra:
http://www.mathworks.com/matlabcentral/fileexchange/20565
created on 2008/07/03
$Id: loadjson.m 452 2014-11-22 16:43:33Z fangq $
input:
fname: input file name, if fname contains "{}" or "[]", fname
will be interpreted as a JSON string
opt: a struct to store parsing options, opt can be replaced by
a list of ('param',value) pairs - the param string is equivallent
to a field in opt. opt can have the following
fields (first in [.|.] is the default)
opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
for each element of the JSON data, and group
arrays based on the cell2mat rules.
opt.FastArrayParser [1|0 or integer]: if set to 1, use a
speed-optimized array parser when loading an
array object. The fast array parser may
collapse block arrays into a single large
array similar to rules defined in cell2mat; 0 to
use a legacy parser; if set to a larger-than-1
value, this option will specify the minimum
dimension to enable the fast array parser. For
example, if the input is a 3D array, setting
FastArrayParser to 1 will return a 3D array;
setting to 2 will return a cell array of 2D
arrays; setting to 3 will return to a 2D cell
array of 1D vectors; setting to 4 will return a
3D cell array.
opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
output:
dat: a cell array, where {...} blocks are converted into cell arrays,
and [...] are converted to arrays
examples:
dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
dat=loadjson(['examples' filesep 'example1.json'])
dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
</pre>
=== savejson.m ===
<pre>
json=savejson(rootname,obj,filename)
or
json=savejson(rootname,obj,opt)
json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
Object Notation) string
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
created on 2011/09/09
$Id: savejson.m 458 2014-12-19 22:17:17Z fangq $
input:
rootname: the name of the root-object, when set to '', the root name
is ignored, however, when opt.ForceRootName is set to 1 (see below),
the MATLAB variable name will be used as the root name.
obj: a MATLAB object (array, cell, cell array, struct, struct array).
filename: a string for the file name to save the output JSON data.
opt: a struct for additional options, ignore to use default values.
opt can have the following fields (first in [.|.] is the default)
opt.FileName [''|string]: a file name to save the output JSON data
opt.FloatFormat ['%.10g'|string]: format to show each numeric element
of a 1D/2D array;
opt.ArrayIndent [1|0]: if 1, output explicit data array with
precedent indentation; if 0, no indentation
opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
array in JSON array format; if sets to 1, an
array will be shown as a struct with fields
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
sparse arrays, the non-zero elements will be
saved to _ArrayData_ field in triplet-format i.e.
(ix,iy,val) and "_ArrayIsSparse_" will be added
with a value of 1; for a complex array, the
_ArrayData_ array will include two columns
(4 for sparse) to record the real and imaginary
parts, and also "_ArrayIsComplex_":1 is added.
opt.ParseLogical [0|1]: if this is set to 1, logical array elem
will use true/false rather than 1/0.
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
numerical element will be shown without a square
bracket, unless it is the root object; if 0, square
brackets are forced for any numerical arrays.
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
will use the name of the passed obj variable as the
root object name; if obj is an expression and
does not have a name, 'root' will be used; if this
is set to 0 and rootname is empty, the root level
will be merged down to the lower level.
opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
to represent +/-Inf. The matched pattern is '([-+]*)Inf'
and $1 represents the sign. For those who want to use
1e999 to represent Inf, they can set opt.Inf to '$11e999'
opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
to represent NaN
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
for example, if opt.JSONP='foo', the JSON data is
wrapped inside a function call as 'foo(...);'
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
back to the string form
opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
opt can be replaced by a list of ('param',value) pairs. The param
string is equivallent to a field in opt and is case sensitive.
output:
json: a string in the JSON format (see http://json.org)
examples:
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
'SpecialData',[nan, inf, -inf]);
savejson('jmesh',jsonmesh)
savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
</pre>
=== loadubjson.m ===
<pre>
data=loadubjson(fname,opt)
or
data=loadubjson(fname,'param1',value1,'param2',value2,...)
parse a JSON (JavaScript Object Notation) file or string
authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
created on 2013/08/01
$Id: loadubjson.m 436 2014-08-05 20:51:40Z fangq $
input:
fname: input file name, if fname contains "{}" or "[]", fname
will be interpreted as a UBJSON string
opt: a struct to store parsing options, opt can be replaced by
a list of ('param',value) pairs - the param string is equivallent
to a field in opt. opt can have the following
fields (first in [.|.] is the default)
opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
for each element of the JSON data, and group
arrays based on the cell2mat rules.
opt.IntEndian [B|L]: specify the endianness of the integer fields
in the UBJSON input data. B - Big-Endian format for
integers (as required in the UBJSON specification);
L - input integer fields are in Little-Endian order.
output:
dat: a cell array, where {...} blocks are converted into cell arrays,
and [...] are converted to arrays
examples:
obj=struct('string','value','array',[1 2 3]);
ubjdata=saveubjson('obj',obj);
dat=loadubjson(ubjdata)
dat=loadubjson(['examples' filesep 'example1.ubj'])
dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
</pre>
=== saveubjson.m ===
<pre>
json=saveubjson(rootname,obj,filename)
or
json=saveubjson(rootname,obj,opt)
json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
convert a MATLAB object (cell, struct or array) into a Universal
Binary JSON (UBJSON) binary string
author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
created on 2013/08/17
$Id: saveubjson.m 440 2014-09-17 19:59:45Z fangq $
input:
rootname: the name of the root-object, when set to '', the root name
is ignored, however, when opt.ForceRootName is set to 1 (see below),
the MATLAB variable name will be used as the root name.
obj: a MATLAB object (array, cell, cell array, struct, struct array)
filename: a string for the file name to save the output UBJSON data
opt: a struct for additional options, ignore to use default values.
opt can have the following fields (first in [.|.] is the default)
opt.FileName [''|string]: a file name to save the output JSON data
opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
array in JSON array format; if sets to 1, an
array will be shown as a struct with fields
"_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
sparse arrays, the non-zero elements will be
saved to _ArrayData_ field in triplet-format i.e.
(ix,iy,val) and "_ArrayIsSparse_" will be added
with a value of 1; for a complex array, the
_ArrayData_ array will include two columns
(4 for sparse) to record the real and imaginary
parts, and also "_ArrayIsComplex_":1 is added.
opt.ParseLogical [1|0]: if this is set to 1, logical array elem
will use true/false rather than 1/0.
opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
numerical element will be shown without a square
bracket, unless it is the root object; if 0, square
brackets are forced for any numerical arrays.
opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
will use the name of the passed obj variable as the
root object name; if obj is an expression and
does not have a name, 'root' will be used; if this
is set to 0 and rootname is empty, the root level
will be merged down to the lower level.
opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
for example, if opt.JSON='foo', the JSON data is
wrapped inside a function call as 'foo(...);'
opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
back to the string form
opt can be replaced by a list of ('param',value) pairs. The param
string is equivallent to a field in opt and is case sensitive.
output:
json: a binary string in the UBJSON format (see http://ubjson.org)
examples:
jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
'MeshCreator','FangQ','MeshTitle','T6 Cube',...
'SpecialData',[nan, inf, -inf]);
saveubjson('jsonmesh',jsonmesh)
saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
</pre>
=== examples ===
Under the "examples" folder, you can find several scripts to demonstrate the
basic utilities of JSONLab. Running the "demo_jsonlab_basic.m" script, you
will see the conversions from MATLAB data structure to JSON text and backward.
In "jsonlab_selftest.m", we load complex JSON files downloaded from the Internet
and validate the loadjson/savejson functions for regression testing purposes.
Similarly, a "demo_ubjson_basic.m" script is provided to test the saveubjson
and loadubjson pairs for various matlab data structures.
Please run these examples and understand how JSONLab works before you use
it to process your data.
-------------------------------------------------------------------------------
IV. Known Issues and TODOs
JSONLab has several known limitations. We are striving to make it more general
and robust. Hopefully in a few future releases, the limitations become less.
Here are the known issues:
# 3D or higher dimensional cell/struct-arrays will be converted to 2D arrays;
# When processing names containing multi-byte characters, Octave and MATLAB \
can give different field-names; you can use feature('DefaultCharacterSet','latin1') \
in MATLAB to get consistant results
# savejson can not handle class and dataset.
# saveubjson converts a logical array into a uint8 ([U]) array
# an unofficial N-D array count syntax is implemented in saveubjson. We are \
actively communicating with the UBJSON spec maintainer to investigate the \
possibility of making it upstream
# loadubjson can not parse all UBJSON Specification (Draft 9) compliant \
files, however, it can parse all UBJSON files produced by saveubjson.
-------------------------------------------------------------------------------
V. Contribution and feedback
JSONLab is an open-source project. This means you can not only use it and modify
it as you wish, but also you can contribute your changes back to JSONLab so
that everyone else can enjoy the improvement. For anyone who want to contribute,
please download JSONLab source code from it's subversion repository by using the
following command:
svn checkout svn://svn.code.sf.net/p/iso2mesh/code/trunk/jsonlab jsonlab
You can make changes to the files as needed. Once you are satisfied with your
changes, and ready to share it with others, please cd the root directory of
JSONLab, and type
svn diff > yourname_featurename.patch
You then email the .patch file to JSONLab's maintainer, Qianqian Fang, at
the email address shown in the beginning of this file. Qianqian will review
the changes and commit it to the subversion if they are satisfactory.
We appreciate any suggestions and feedbacks from you. Please use iso2mesh's
mailing list to report any questions you may have with JSONLab:
http://groups.google.com/group/iso2mesh-users?hl=en&pli=1
(Subscription to the mailing list is needed in order to post messages).
function val=jsonopt(key,default,varargin)
%
% val=jsonopt(key,default,optstruct)
%
% setting options based on a struct. The struct can be produced
% by varargin2struct from a list of 'param','value' pairs
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
%
% $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $
%
% input:
% key: a string with which one look up a value from a struct
% default: if the key does not exist, return default
% optstruct: a struct where each sub-field is a key
%
% output:
% val: if key exists, val=optstruct.key; otherwise val=default
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
val=default;
if(nargin<=2) return; end
opt=varargin{1};
if(isstruct(opt) && isfield(opt,key))
val=getfield(opt,key);
end
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
function s=mergestruct(s1,s2)
%
% s=mergestruct(s1,s2)
%
% merge two struct objects into one
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% date: 2012/12/22
%
% input:
% s1,s2: a struct object, s1 and s2 can not be arrays
%
% output:
% s: the merged struct object. fields in s1 and s2 will be combined in s.
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(~isstruct(s1) || ~isstruct(s2))
error('input parameters contain non-struct');
end
if(length(s1)>1 || length(s2)>1)
error('can not merge struct arrays');
end
fn=fieldnames(s2);
s=s1;
for i=1:length(fn)
s=setfield(s,fn{i},getfield(s2,fn{i}));
end
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
function opt=varargin2struct(varargin)
%
% opt=varargin2struct('param1',value1,'param2',value2,...)
% or
% opt=varargin2struct(...,optstruct,...)
%
% convert a series of input parameters into a structure
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% date: 2012/12/22
%
% input:
% 'param', value: the input parameters should be pairs of a string and a value
% optstruct: if a parameter is a struct, the fields will be merged to the output struct
%
% output:
% opt: a struct where opt.param1=value1, opt.param2=value2 ...
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of jsonlab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
len=length(varargin);
opt=struct;
if(len==0) return; end
i=1;
while(i<=len)
if(isstruct(varargin{i}))
opt=mergestruct(opt,varargin{i});
elseif(ischar(varargin{i}) && i<len)
opt=setfield(opt,varargin{i},varargin{i+1});
i=i+1;
else
error('input must be in the form of ...,''name'',value,... pairs or structs');
end
i=i+1;
end
function str = makeValidFieldName(str)
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
isoct=exist('OCTAVE_VERSION','builtin');
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
function movieList = loadMovieList()
%GETMOVIELIST reads the fixed movie list in movie.txt and returns a
%cell array of the words
% movieList = GETMOVIELIST() reads the fixed movie list in movie.txt
% and returns a cell array of the words in movieList.
%% Read the fixed movieulary list
fid = fopen('movie_ids.txt');
% Store all movies in cell array movie{}
n = 1682; % Total number of movies
movieList = cell(n, 1);
for i = 1:n
% Read line
line = fgets(fid);
% Word Index (can ignore since it will be = i)
[idx, movieName] = strtok(line, ' ');
% Actual Word
movieList{i} = strtrim(movieName);
end
fclose(fid);
end
1 Toy Story (1995)
2 GoldenEye (1995)
3 Four Rooms (1995)
4 Get Shorty (1995)
5 Copycat (1995)
6 Shanghai Triad (Yao a yao yao dao waipo qiao) (1995)
7 Twelve Monkeys (1995)
8 Babe (1995)
9 Dead Man Walking (1995)
10 Richard III (1995)
11 Seven (Se7en) (1995)
12 Usual Suspects, The (1995)
13 Mighty Aphrodite (1995)
14 Postino, Il (1994)
15 Mr. Holland's Opus (1995)
16 French Twist (Gazon maudit) (1995)
17 From Dusk Till Dawn (1996)
18 White Balloon, The (1995)
19 Antonia's Line (1995)
20 Angels and Insects (1995)
21 Muppet Treasure Island (1996)
22 Braveheart (1995)
23 Taxi Driver (1976)
24 Rumble in the Bronx (1995)
25 Birdcage, The (1996)
26 Brothers McMullen, The (1995)
27 Bad Boys (1995)
28 Apollo 13 (1995)
29 Batman Forever (1995)
30 Belle de jour (1967)
31 Crimson Tide (1995)
32 Crumb (1994)
33 Desperado (1995)
34 Doom Generation, The (1995)
35 Free Willy 2: The Adventure Home (1995)
36 Mad Love (1995)
37 Nadja (1994)
38 Net, The (1995)
39 Strange Days (1995)
40 To Wong Foo, Thanks for Everything! Julie Newmar (1995)
41 Billy Madison (1995)
42 Clerks (1994)
43 Disclosure (1994)
44 Dolores Claiborne (1994)
45 Eat Drink Man Woman (1994)
46 Exotica (1994)
47 Ed Wood (1994)
48 Hoop Dreams (1994)
49 I.Q. (1994)
50 Star Wars (1977)
51 Legends of the Fall (1994)
52 Madness of King George, The (1994)
53 Natural Born Killers (1994)
54 Outbreak (1995)
55 Professional, The (1994)
56 Pulp Fiction (1994)
57 Priest (1994)
58 Quiz Show (1994)
59 Three Colors: Red (1994)
60 Three Colors: Blue (1993)
61 Three Colors: White (1994)
62 Stargate (1994)
63 Santa Clause, The (1994)
64 Shawshank Redemption, The (1994)
65 What's Eating Gilbert Grape (1993)
66 While You Were Sleeping (1995)
67 Ace Ventura: Pet Detective (1994)
68 Crow, The (1994)
69 Forrest Gump (1994)
70 Four Weddings and a Funeral (1994)
71 Lion King, The (1994)
72 Mask, The (1994)
73 Maverick (1994)
74 Faster Pussycat! Kill! Kill! (1965)
75 Brother Minister: The Assassination of Malcolm X (1994)
76 Carlito's Way (1993)
77 Firm, The (1993)
78 Free Willy (1993)
79 Fugitive, The (1993)
80 Hot Shots! Part Deux (1993)
81 Hudsucker Proxy, The (1994)
82 Jurassic Park (1993)
83 Much Ado About Nothing (1993)
84 Robert A. Heinlein's The Puppet Masters (1994)
85 Ref, The (1994)
86 Remains of the Day, The (1993)
87 Searching for Bobby Fischer (1993)
88 Sleepless in Seattle (1993)
89 Blade Runner (1982)
90 So I Married an Axe Murderer (1993)
91 Nightmare Before Christmas, The (1993)
92 True Romance (1993)
93 Welcome to the Dollhouse (1995)
94 Home Alone (1990)
95 Aladdin (1992)
96 Terminator 2: Judgment Day (1991)
97 Dances with Wolves (1990)
98 Silence of the Lambs, The (1991)
99 Snow White and the Seven Dwarfs (1937)
100 Fargo (1996)
101 Heavy Metal (1981)
102 Aristocats, The (1970)
103 All Dogs Go to Heaven 2 (1996)
104 Theodore Rex (1995)
105 Sgt. Bilko (1996)
106 Diabolique (1996)
107 Moll Flanders (1996)
108 Kids in the Hall: Brain Candy (1996)
109 Mystery Science Theater 3000: The Movie (1996)
110 Operation Dumbo Drop (1995)
111 Truth About Cats & Dogs, The (1996)
112 Flipper (1996)
113 Horseman on the Roof, The (Hussard sur le toit, Le) (1995)
114 Wallace & Gromit: The Best of Aardman Animation (1996)
115 Haunted World of Edward D. Wood Jr., The (1995)
116 Cold Comfort Farm (1995)
117 Rock, The (1996)
118 Twister (1996)
119 Maya Lin: A Strong Clear Vision (1994)
120 Striptease (1996)
121 Independence Day (ID4) (1996)
122 Cable Guy, The (1996)
123 Frighteners, The (1996)
124 Lone Star (1996)
125 Phenomenon (1996)
126 Spitfire Grill, The (1996)
127 Godfather, The (1972)
128 Supercop (1992)
129 Bound (1996)
130 Kansas City (1996)
131 Breakfast at Tiffany's (1961)
132 Wizard of Oz, The (1939)
133 Gone with the Wind (1939)
134 Citizen Kane (1941)
135 2001: A Space Odyssey (1968)
136 Mr. Smith Goes to Washington (1939)
137 Big Night (1996)
138 D3: The Mighty Ducks (1996)
139 Love Bug, The (1969)
140 Homeward Bound: The Incredible Journey (1993)
141 20,000 Leagues Under the Sea (1954)
142 Bedknobs and Broomsticks (1971)
143 Sound of Music, The (1965)
144 Die Hard (1988)
145 Lawnmower Man, The (1992)
146 Unhook the Stars (1996)
147 Long Kiss Goodnight, The (1996)
148 Ghost and the Darkness, The (1996)
149 Jude (1996)
150 Swingers (1996)
151 Willy Wonka and the Chocolate Factory (1971)
152 Sleeper (1973)
153 Fish Called Wanda, A (1988)
154 Monty Python's Life of Brian (1979)
155 Dirty Dancing (1987)
156 Reservoir Dogs (1992)
157 Platoon (1986)
158 Weekend at Bernie's (1989)
159 Basic Instinct (1992)
160 Glengarry Glen Ross (1992)
161 Top Gun (1986)
162 On Golden Pond (1981)
163 Return of the Pink Panther, The (1974)
164 Abyss, The (1989)
165 Jean de Florette (1986)
166 Manon of the Spring (Manon des sources) (1986)
167 Private Benjamin (1980)
168 Monty Python and the Holy Grail (1974)
169 Wrong Trousers, The (1993)
170 Cinema Paradiso (1988)
171 Delicatessen (1991)
172 Empire Strikes Back, The (1980)
173 Princess Bride, The (1987)
174 Raiders of the Lost Ark (1981)
175 Brazil (1985)
176 Aliens (1986)
177 Good, The Bad and The Ugly, The (1966)
178 12 Angry Men (1957)
179 Clockwork Orange, A (1971)
180 Apocalypse Now (1979)
181 Return of the Jedi (1983)
182 GoodFellas (1990)
183 Alien (1979)
184 Army of Darkness (1993)
185 Psycho (1960)
186 Blues Brothers, The (1980)
187 Godfather: Part II, The (1974)
188 Full Metal Jacket (1987)
189 Grand Day Out, A (1992)
190 Henry V (1989)
191 Amadeus (1984)
192 Raging Bull (1980)
193 Right Stuff, The (1983)
194 Sting, The (1973)
195 Terminator, The (1984)
196 Dead Poets Society (1989)
197 Graduate, The (1967)
198 Nikita (La Femme Nikita) (1990)
199 Bridge on the River Kwai, The (1957)
200 Shining, The (1980)
201 Evil Dead II (1987)
202 Groundhog Day (1993)
203 Unforgiven (1992)
204 Back to the Future (1985)
205 Patton (1970)
206 Akira (1988)
207 Cyrano de Bergerac (1990)
208 Young Frankenstein (1974)
209 This Is Spinal Tap (1984)
210 Indiana Jones and the Last Crusade (1989)
211 M*A*S*H (1970)
212 Unbearable Lightness of Being, The (1988)
213 Room with a View, A (1986)
214 Pink Floyd - The Wall (1982)
215 Field of Dreams (1989)
216 When Harry Met Sally... (1989)
217 Bram Stoker's Dracula (1992)
218 Cape Fear (1991)
219 Nightmare on Elm Street, A (1984)
220 Mirror Has Two Faces, The (1996)
221 Breaking the Waves (1996)
222 Star Trek: First Contact (1996)
223 Sling Blade (1996)
224 Ridicule (1996)
225 101 Dalmatians (1996)
226 Die Hard 2 (1990)
227 Star Trek VI: The Undiscovered Country (1991)
228 Star Trek: The Wrath of Khan (1982)
229 Star Trek III: The Search for Spock (1984)
230 Star Trek IV: The Voyage Home (1986)
231 Batman Returns (1992)
232 Young Guns (1988)
233 Under Siege (1992)
234 Jaws (1975)
235 Mars Attacks! (1996)
236 Citizen Ruth (1996)
237 Jerry Maguire (1996)
238 Raising Arizona (1987)
239 Sneakers (1992)
240 Beavis and Butt-head Do America (1996)
241 Last of the Mohicans, The (1992)
242 Kolya (1996)
243 Jungle2Jungle (1997)
244 Smilla's Sense of Snow (1997)
245 Devil's Own, The (1997)
246 Chasing Amy (1997)
247 Turbo: A Power Rangers Movie (1997)
248 Grosse Pointe Blank (1997)
249 Austin Powers: International Man of Mystery (1997)
250 Fifth Element, The (1997)
251 Shall We Dance? (1996)
252 Lost World: Jurassic Park, The (1997)
253 Pillow Book, The (1995)
254 Batman & Robin (1997)
255 My Best Friend's Wedding (1997)
256 When the Cats Away (Chacun cherche son chat) (1996)
257 Men in Black (1997)
258 Contact (1997)
259 George of the Jungle (1997)
260 Event Horizon (1997)
261 Air Bud (1997)
262 In the Company of Men (1997)
263 Steel (1997)
264 Mimic (1997)
265 Hunt for Red October, The (1990)
266 Kull the Conqueror (1997)
267 unknown
268 Chasing Amy (1997)
269 Full Monty, The (1997)
270 Gattaca (1997)
271 Starship Troopers (1997)
272 Good Will Hunting (1997)
273 Heat (1995)
274 Sabrina (1995)
275 Sense and Sensibility (1995)
276 Leaving Las Vegas (1995)
277 Restoration (1995)
278 Bed of Roses (1996)
279 Once Upon a Time... When We Were Colored (1995)
280 Up Close and Personal (1996)
281 River Wild, The (1994)
282 Time to Kill, A (1996)
283 Emma (1996)
284 Tin Cup (1996)
285 Secrets & Lies (1996)
286 English Patient, The (1996)
287 Marvin's Room (1996)
288 Scream (1996)
289 Evita (1996)
290 Fierce Creatures (1997)
291 Absolute Power (1997)
292 Rosewood (1997)
293 Donnie Brasco (1997)
294 Liar Liar (1997)
295 Breakdown (1997)
296 Promesse, La (1996)
297 Ulee's Gold (1997)
298 Face/Off (1997)
299 Hoodlum (1997)
300 Air Force One (1997)
301 In & Out (1997)
302 L.A. Confidential (1997)
303 Ulee's Gold (1997)
304 Fly Away Home (1996)
305 Ice Storm, The (1997)
306 Mrs. Brown (Her Majesty, Mrs. Brown) (1997)
307 Devil's Advocate, The (1997)
308 FairyTale: A True Story (1997)
309 Deceiver (1997)
310 Rainmaker, The (1997)
311 Wings of the Dove, The (1997)
312 Midnight in the Garden of Good and Evil (1997)
313 Titanic (1997)
314 3 Ninjas: High Noon At Mega Mountain (1998)
315 Apt Pupil (1998)
316 As Good As It Gets (1997)
317 In the Name of the Father (1993)
318 Schindler's List (1993)
319 Everyone Says I Love You (1996)
320 Paradise Lost: The Child Murders at Robin Hood Hills (1996)
321 Mother (1996)
322 Murder at 1600 (1997)
323 Dante's Peak (1997)
324 Lost Highway (1997)
325 Crash (1996)
326 G.I. Jane (1997)
327 Cop Land (1997)
328 Conspiracy Theory (1997)
329 Desperate Measures (1998)
330 187 (1997)
331 Edge, The (1997)
332 Kiss the Girls (1997)
333 Game, The (1997)
334 U Turn (1997)
335 How to Be a Player (1997)
336 Playing God (1997)
337 House of Yes, The (1997)
338 Bean (1997)
339 Mad City (1997)
340 Boogie Nights (1997)
341 Critical Care (1997)
342 Man Who Knew Too Little, The (1997)
343 Alien: Resurrection (1997)
344 Apostle, The (1997)
345 Deconstructing Harry (1997)
346 Jackie Brown (1997)
347 Wag the Dog (1997)
348 Desperate Measures (1998)
349 Hard Rain (1998)
350 Fallen (1998)
351 Prophecy II, The (1998)
352 Spice World (1997)
353 Deep Rising (1998)
354 Wedding Singer, The (1998)
355 Sphere (1998)
356 Client, The (1994)
357 One Flew Over the Cuckoo's Nest (1975)
358 Spawn (1997)
359 Assignment, The (1997)
360 Wonderland (1997)
361 Incognito (1997)
362 Blues Brothers 2000 (1998)
363 Sudden Death (1995)
364 Ace Ventura: When Nature Calls (1995)
365 Powder (1995)
366 Dangerous Minds (1995)
367 Clueless (1995)
368 Bio-Dome (1996)
369 Black Sheep (1996)
370 Mary Reilly (1996)
371 Bridges of Madison County, The (1995)
372 Jeffrey (1995)
373 Judge Dredd (1995)
374 Mighty Morphin Power Rangers: The Movie (1995)
375 Showgirls (1995)
376 Houseguest (1994)
377 Heavyweights (1994)
378 Miracle on 34th Street (1994)
379 Tales From the Crypt Presents: Demon Knight (1995)
380 Star Trek: Generations (1994)
381 Muriel's Wedding (1994)
382 Adventures of Priscilla, Queen of the Desert, The (1994)
383 Flintstones, The (1994)
384 Naked Gun 33 1/3: The Final Insult (1994)
385 True Lies (1994)
386 Addams Family Values (1993)
387 Age of Innocence, The (1993)
388 Beverly Hills Cop III (1994)
389 Black Beauty (1994)
390 Fear of a Black Hat (1993)
391 Last Action Hero (1993)
392 Man Without a Face, The (1993)
393 Mrs. Doubtfire (1993)
394 Radioland Murders (1994)
395 Robin Hood: Men in Tights (1993)
396 Serial Mom (1994)
397 Striking Distance (1993)
398 Super Mario Bros. (1993)
399 Three Musketeers, The (1993)
400 Little Rascals, The (1994)
401 Brady Bunch Movie, The (1995)
402 Ghost (1990)
403 Batman (1989)
404 Pinocchio (1940)
405 Mission: Impossible (1996)
406 Thinner (1996)
407 Spy Hard (1996)
408 Close Shave, A (1995)
409 Jack (1996)
410 Kingpin (1996)
411 Nutty Professor, The (1996)
412 Very Brady Sequel, A (1996)
413 Tales from the Crypt Presents: Bordello of Blood (1996)
414 My Favorite Year (1982)
415 Apple Dumpling Gang, The (1975)
416 Old Yeller (1957)
417 Parent Trap, The (1961)
418 Cinderella (1950)
419 Mary Poppins (1964)
420 Alice in Wonderland (1951)
421 William Shakespeare's Romeo and Juliet (1996)
422 Aladdin and the King of Thieves (1996)
423 E.T. the Extra-Terrestrial (1982)
424 Children of the Corn: The Gathering (1996)
425 Bob Roberts (1992)
426 Transformers: The Movie, The (1986)
427 To Kill a Mockingbird (1962)
428 Harold and Maude (1971)
429 Day the Earth Stood Still, The (1951)
430 Duck Soup (1933)
431 Highlander (1986)
432 Fantasia (1940)
433 Heathers (1989)
434 Forbidden Planet (1956)
435 Butch Cassidy and the Sundance Kid (1969)
436 American Werewolf in London, An (1981)
437 Amityville 1992: It's About Time (1992)
438 Amityville 3-D (1983)
439 Amityville: A New Generation (1993)
440 Amityville II: The Possession (1982)
441 Amityville Horror, The (1979)
442 Amityville Curse, The (1990)
443 Birds, The (1963)
444 Blob, The (1958)
445 Body Snatcher, The (1945)
446 Burnt Offerings (1976)
447 Carrie (1976)
448 Omen, The (1976)
449 Star Trek: The Motion Picture (1979)
450 Star Trek V: The Final Frontier (1989)
451 Grease (1978)
452 Jaws 2 (1978)
453 Jaws 3-D (1983)
454 Bastard Out of Carolina (1996)
455 Jackie Chan's First Strike (1996)
456 Beverly Hills Ninja (1997)
457 Free Willy 3: The Rescue (1997)
458 Nixon (1995)
459 Cry, the Beloved Country (1995)
460 Crossing Guard, The (1995)
461 Smoke (1995)
462 Like Water For Chocolate (Como agua para chocolate) (1992)
463 Secret of Roan Inish, The (1994)
464 Vanya on 42nd Street (1994)
465 Jungle Book, The (1994)
466 Red Rock West (1992)
467 Bronx Tale, A (1993)
468 Rudy (1993)
469 Short Cuts (1993)
470 Tombstone (1993)
471 Courage Under Fire (1996)
472 Dragonheart (1996)
473 James and the Giant Peach (1996)
474 Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963)
475 Trainspotting (1996)
476 First Wives Club, The (1996)
477 Matilda (1996)
478 Philadelphia Story, The (1940)
479 Vertigo (1958)
480 North by Northwest (1959)
481 Apartment, The (1960)
482 Some Like It Hot (1959)
483 Casablanca (1942)
484 Maltese Falcon, The (1941)
485 My Fair Lady (1964)
486 Sabrina (1954)
487 Roman Holiday (1953)
488 Sunset Blvd. (1950)
489 Notorious (1946)
490 To Catch a Thief (1955)
491 Adventures of Robin Hood, The (1938)
492 East of Eden (1955)
493 Thin Man, The (1934)
494 His Girl Friday (1940)
495 Around the World in 80 Days (1956)
496 It's a Wonderful Life (1946)
497 Bringing Up Baby (1938)
498 African Queen, The (1951)
499 Cat on a Hot Tin Roof (1958)
500 Fly Away Home (1996)
501 Dumbo (1941)
502 Bananas (1971)
503 Candidate, The (1972)
504 Bonnie and Clyde (1967)
505 Dial M for Murder (1954)
506 Rebel Without a Cause (1955)
507 Streetcar Named Desire, A (1951)
508 People vs. Larry Flynt, The (1996)
509 My Left Foot (1989)
510 Magnificent Seven, The (1954)
511 Lawrence of Arabia (1962)
512 Wings of Desire (1987)
513 Third Man, The (1949)
514 Annie Hall (1977)
515 Boot, Das (1981)
516 Local Hero (1983)
517 Manhattan (1979)
518 Miller's Crossing (1990)
519 Treasure of the Sierra Madre, The (1948)
520 Great Escape, The (1963)
521 Deer Hunter, The (1978)
522 Down by Law (1986)
523 Cool Hand Luke (1967)
524 Great Dictator, The (1940)
525 Big Sleep, The (1946)
526 Ben-Hur (1959)
527 Gandhi (1982)
528 Killing Fields, The (1984)
529 My Life as a Dog (Mitt liv som hund) (1985)
530 Man Who Would Be King, The (1975)
531 Shine (1996)
532 Kama Sutra: A Tale of Love (1996)
533 Daytrippers, The (1996)
534 Traveller (1997)
535 Addicted to Love (1997)
536 Ponette (1996)
537 My Own Private Idaho (1991)
538 Anastasia (1997)
539 Mouse Hunt (1997)
540 Money Train (1995)
541 Mortal Kombat (1995)
542 Pocahontas (1995)
543 Misérables, Les (1995)
544 Things to Do in Denver when You're Dead (1995)
545 Vampire in Brooklyn (1995)
546 Broken Arrow (1996)
547 Young Poisoner's Handbook, The (1995)
548 NeverEnding Story III, The (1994)
549 Rob Roy (1995)
550 Die Hard: With a Vengeance (1995)
551 Lord of Illusions (1995)
552 Species (1995)
553 Walk in the Clouds, A (1995)
554 Waterworld (1995)
555 White Man's Burden (1995)
556 Wild Bill (1995)
557 Farinelli: il castrato (1994)
558 Heavenly Creatures (1994)
559 Interview with the Vampire (1994)
560 Kid in King Arthur's Court, A (1995)
561 Mary Shelley's Frankenstein (1994)
562 Quick and the Dead, The (1995)
563 Stephen King's The Langoliers (1995)
564 Tales from the Hood (1995)
565 Village of the Damned (1995)
566 Clear and Present Danger (1994)
567 Wes Craven's New Nightmare (1994)
568 Speed (1994)
569 Wolf (1994)
570 Wyatt Earp (1994)
571 Another Stakeout (1993)
572 Blown Away (1994)
573 Body Snatchers (1993)
574 Boxing Helena (1993)
575 City Slickers II: The Legend of Curly's Gold (1994)
576 Cliffhanger (1993)
577 Coneheads (1993)
578 Demolition Man (1993)
579 Fatal Instinct (1993)
580 Englishman Who Went Up a Hill, But Came Down a Mountain, The (1995)
581 Kalifornia (1993)
582 Piano, The (1993)
583 Romeo Is Bleeding (1993)
584 Secret Garden, The (1993)
585 Son in Law (1993)
586 Terminal Velocity (1994)
587 Hour of the Pig, The (1993)
588 Beauty and the Beast (1991)
589 Wild Bunch, The (1969)
590 Hellraiser: Bloodline (1996)
591 Primal Fear (1996)
592 True Crime (1995)
593 Stalingrad (1993)
594 Heavy (1995)
595 Fan, The (1996)
596 Hunchback of Notre Dame, The (1996)
597 Eraser (1996)
598 Big Squeeze, The (1996)
599 Police Story 4: Project S (Chao ji ji hua) (1993)
600 Daniel Defoe's Robinson Crusoe (1996)
601 For Whom the Bell Tolls (1943)
602 American in Paris, An (1951)
603 Rear Window (1954)
604 It Happened One Night (1934)
605 Meet Me in St. Louis (1944)
606 All About Eve (1950)
607 Rebecca (1940)
608 Spellbound (1945)
609 Father of the Bride (1950)
610 Gigi (1958)
611 Laura (1944)
612 Lost Horizon (1937)
613 My Man Godfrey (1936)
614 Giant (1956)
615 39 Steps, The (1935)
616 Night of the Living Dead (1968)
617 Blue Angel, The (Blaue Engel, Der) (1930)
618 Picnic (1955)
619 Extreme Measures (1996)
620 Chamber, The (1996)
621 Davy Crockett, King of the Wild Frontier (1955)
622 Swiss Family Robinson (1960)
623 Angels in the Outfield (1994)
624 Three Caballeros, The (1945)
625 Sword in the Stone, The (1963)
626 So Dear to My Heart (1949)
627 Robin Hood: Prince of Thieves (1991)
628 Sleepers (1996)
629 Victor/Victoria (1982)
630 Great Race, The (1965)
631 Crying Game, The (1992)
632 Sophie's Choice (1982)
633 Christmas Carol, A (1938)
634 Microcosmos: Le peuple de l'herbe (1996)
635 Fog, The (1980)
636 Escape from New York (1981)
637 Howling, The (1981)
638 Return of Martin Guerre, The (Retour de Martin Guerre, Le) (1982)
639 Tin Drum, The (Blechtrommel, Die) (1979)
640 Cook the Thief His Wife & Her Lover, The (1989)
641 Paths of Glory (1957)
642 Grifters, The (1990)
643 The Innocent (1994)
644 Thin Blue Line, The (1988)
645 Paris Is Burning (1990)
646 Once Upon a Time in the West (1969)
647 Ran (1985)
648 Quiet Man, The (1952)
649 Once Upon a Time in America (1984)
650 Seventh Seal, The (Sjunde inseglet, Det) (1957)
651 Glory (1989)
652 Rosencrantz and Guildenstern Are Dead (1990)
653 Touch of Evil (1958)
654 Chinatown (1974)
655 Stand by Me (1986)
656 M (1931)
657 Manchurian Candidate, The (1962)
658 Pump Up the Volume (1990)
659 Arsenic and Old Lace (1944)
660 Fried Green Tomatoes (1991)
661 High Noon (1952)
662 Somewhere in Time (1980)
663 Being There (1979)
664 Paris, Texas (1984)
665 Alien 3 (1992)
666 Blood For Dracula (Andy Warhol's Dracula) (1974)
667 Audrey Rose (1977)
668 Blood Beach (1981)
669 Body Parts (1991)
670 Body Snatchers (1993)
671 Bride of Frankenstein (1935)
672 Candyman (1992)
673 Cape Fear (1962)
674 Cat People (1982)
675 Nosferatu (Nosferatu, eine Symphonie des Grauens) (1922)
676 Crucible, The (1996)
677 Fire on the Mountain (1996)
678 Volcano (1997)
679 Conan the Barbarian (1981)
680 Kull the Conqueror (1997)
681 Wishmaster (1997)
682 I Know What You Did Last Summer (1997)
683 Rocket Man (1997)
684 In the Line of Fire (1993)
685 Executive Decision (1996)
686 Perfect World, A (1993)
687 McHale's Navy (1997)
688 Leave It to Beaver (1997)
689 Jackal, The (1997)
690 Seven Years in Tibet (1997)
691 Dark City (1998)
692 American President, The (1995)
693 Casino (1995)
694 Persuasion (1995)
695 Kicking and Screaming (1995)
696 City Hall (1996)
697 Basketball Diaries, The (1995)
698 Browning Version, The (1994)
699 Little Women (1994)
700 Miami Rhapsody (1995)
701 Wonderful, Horrible Life of Leni Riefenstahl, The (1993)
702 Barcelona (1994)
703 Widows' Peak (1994)
704 House of the Spirits, The (1993)
705 Singin' in the Rain (1952)
706 Bad Moon (1996)
707 Enchanted April (1991)
708 Sex, Lies, and Videotape (1989)
709 Strictly Ballroom (1992)
710 Better Off Dead... (1985)
711 Substance of Fire, The (1996)
712 Tin Men (1987)
713 Othello (1995)
714 Carrington (1995)
715 To Die For (1995)
716 Home for the Holidays (1995)
717 Juror, The (1996)
718 In the Bleak Midwinter (1995)
719 Canadian Bacon (1994)
720 First Knight (1995)
721 Mallrats (1995)
722 Nine Months (1995)
723 Boys on the Side (1995)
724 Circle of Friends (1995)
725 Exit to Eden (1994)
726 Fluke (1995)
727 Immortal Beloved (1994)
728 Junior (1994)
729 Nell (1994)
730 Queen Margot (Reine Margot, La) (1994)
731 Corrina, Corrina (1994)
732 Dave (1993)
733 Go Fish (1994)
734 Made in America (1993)
735 Philadelphia (1993)
736 Shadowlands (1993)
737 Sirens (1994)
738 Threesome (1994)
739 Pretty Woman (1990)
740 Jane Eyre (1996)
741 Last Supper, The (1995)
742 Ransom (1996)
743 Crow: City of Angels, The (1996)
744 Michael Collins (1996)
745 Ruling Class, The (1972)
746 Real Genius (1985)
747 Benny & Joon (1993)
748 Saint, The (1997)
749 MatchMaker, The (1997)
750 Amistad (1997)
751 Tomorrow Never Dies (1997)
752 Replacement Killers, The (1998)
753 Burnt By the Sun (1994)
754 Red Corner (1997)
755 Jumanji (1995)
756 Father of the Bride Part II (1995)
757 Across the Sea of Time (1995)
758 Lawnmower Man 2: Beyond Cyberspace (1996)
759 Fair Game (1995)
760 Screamers (1995)
761 Nick of Time (1995)
762 Beautiful Girls (1996)
763 Happy Gilmore (1996)
764 If Lucy Fell (1996)
765 Boomerang (1992)
766 Man of the Year (1995)
767 Addiction, The (1995)
768 Casper (1995)
769 Congo (1995)
770 Devil in a Blue Dress (1995)
771 Johnny Mnemonic (1995)
772 Kids (1995)
773 Mute Witness (1994)
774 Prophecy, The (1995)
775 Something to Talk About (1995)
776 Three Wishes (1995)
777 Castle Freak (1995)
778 Don Juan DeMarco (1995)
779 Drop Zone (1994)
780 Dumb & Dumber (1994)
781 French Kiss (1995)
782 Little Odessa (1994)
783 Milk Money (1994)
784 Beyond Bedlam (1993)
785 Only You (1994)
786 Perez Family, The (1995)
787 Roommates (1995)
788 Relative Fear (1994)
789 Swimming with Sharks (1995)
790 Tommy Boy (1995)
791 Baby-Sitters Club, The (1995)
792 Bullets Over Broadway (1994)
793 Crooklyn (1994)
794 It Could Happen to You (1994)
795 Richie Rich (1994)
796 Speechless (1994)
797 Timecop (1994)
798 Bad Company (1995)
799 Boys Life (1995)
800 In the Mouth of Madness (1995)
801 Air Up There, The (1994)
802 Hard Target (1993)
803 Heaven & Earth (1993)
804 Jimmy Hollywood (1994)
805 Manhattan Murder Mystery (1993)
806 Menace II Society (1993)
807 Poetic Justice (1993)
808 Program, The (1993)
809 Rising Sun (1993)
810 Shadow, The (1994)
811 Thirty-Two Short Films About Glenn Gould (1993)
812 Andre (1994)
813 Celluloid Closet, The (1995)
814 Great Day in Harlem, A (1994)
815 One Fine Day (1996)
816 Candyman: Farewell to the Flesh (1995)
817 Frisk (1995)
818 Girl 6 (1996)
819 Eddie (1996)
820 Space Jam (1996)
821 Mrs. Winterbourne (1996)
822 Faces (1968)
823 Mulholland Falls (1996)
824 Great White Hype, The (1996)
825 Arrival, The (1996)
826 Phantom, The (1996)
827 Daylight (1996)
828 Alaska (1996)
829 Fled (1996)
830 Power 98 (1995)
831 Escape from L.A. (1996)
832 Bogus (1996)
833 Bulletproof (1996)
834 Halloween: The Curse of Michael Myers (1995)
835 Gay Divorcee, The (1934)
836 Ninotchka (1939)
837 Meet John Doe (1941)
838 In the Line of Duty 2 (1987)
839 Loch Ness (1995)
840 Last Man Standing (1996)
841 Glimmer Man, The (1996)
842 Pollyanna (1960)
843 Shaggy Dog, The (1959)
844 Freeway (1996)
845 That Thing You Do! (1996)
846 To Gillian on Her 37th Birthday (1996)
847 Looking for Richard (1996)
848 Murder, My Sweet (1944)
849 Days of Thunder (1990)
850 Perfect Candidate, A (1996)
851 Two or Three Things I Know About Her (1966)
852 Bloody Child, The (1996)
853 Braindead (1992)
854 Bad Taste (1987)
855 Diva (1981)
856 Night on Earth (1991)
857 Paris Was a Woman (1995)
858 Amityville: Dollhouse (1996)
859 April Fool's Day (1986)
860 Believers, The (1987)
861 Nosferatu a Venezia (1986)
862 Jingle All the Way (1996)
863 Garden of Finzi-Contini, The (Giardino dei Finzi-Contini, Il) (1970)
864 My Fellow Americans (1996)
865 Ice Storm, The (1997)
866 Michael (1996)
867 Whole Wide World, The (1996)
868 Hearts and Minds (1996)
869 Fools Rush In (1997)
870 Touch (1997)
871 Vegas Vacation (1997)
872 Love Jones (1997)
873 Picture Perfect (1997)
874 Career Girls (1997)
875 She's So Lovely (1997)
876 Money Talks (1997)
877 Excess Baggage (1997)
878 That Darn Cat! (1997)
879 Peacemaker, The (1997)
880 Soul Food (1997)
881 Money Talks (1997)
882 Washington Square (1997)
883 Telling Lies in America (1997)
884 Year of the Horse (1997)
885 Phantoms (1998)
886 Life Less Ordinary, A (1997)
887 Eve's Bayou (1997)
888 One Night Stand (1997)
889 Tango Lesson, The (1997)
890 Mortal Kombat: Annihilation (1997)
891 Bent (1997)
892 Flubber (1997)
893 For Richer or Poorer (1997)
894 Home Alone 3 (1997)
895 Scream 2 (1997)
896 Sweet Hereafter, The (1997)
897 Time Tracers (1995)
898 Postman, The (1997)
899 Winter Guest, The (1997)
900 Kundun (1997)
901 Mr. Magoo (1997)
902 Big Lebowski, The (1998)
903 Afterglow (1997)
904 Ma vie en rose (My Life in Pink) (1997)
905 Great Expectations (1998)
906 Oscar & Lucinda (1997)
907 Vermin (1998)
908 Half Baked (1998)
909 Dangerous Beauty (1998)
910 Nil By Mouth (1997)
911 Twilight (1998)
912 U.S. Marshalls (1998)
913 Love and Death on Long Island (1997)
914 Wild Things (1998)
915 Primary Colors (1998)
916 Lost in Space (1998)
917 Mercury Rising (1998)
918 City of Angels (1998)
919 City of Lost Children, The (1995)
920 Two Bits (1995)
921 Farewell My Concubine (1993)
922 Dead Man (1995)
923 Raise the Red Lantern (1991)
924 White Squall (1996)
925 Unforgettable (1996)
926 Down Periscope (1996)
927 Flower of My Secret, The (Flor de mi secreto, La) (1995)
928 Craft, The (1996)
929 Harriet the Spy (1996)
930 Chain Reaction (1996)
931 Island of Dr. Moreau, The (1996)
932 First Kid (1996)
933 Funeral, The (1996)
934 Preacher's Wife, The (1996)
935 Paradise Road (1997)
936 Brassed Off (1996)
937 Thousand Acres, A (1997)
938 Smile Like Yours, A (1997)
939 Murder in the First (1995)
940 Airheads (1994)
941 With Honors (1994)
942 What's Love Got to Do with It (1993)
943 Killing Zoe (1994)
944 Renaissance Man (1994)
945 Charade (1963)
946 Fox and the Hound, The (1981)
947 Big Blue, The (Grand bleu, Le) (1988)
948 Booty Call (1997)
949 How to Make an American Quilt (1995)
950 Georgia (1995)
951 Indian in the Cupboard, The (1995)
952 Blue in the Face (1995)
953 Unstrung Heroes (1995)
954 Unzipped (1995)
955 Before Sunrise (1995)
956 Nobody's Fool (1994)
957 Pushing Hands (1992)
958 To Live (Huozhe) (1994)
959 Dazed and Confused (1993)
960 Naked (1993)
961 Orlando (1993)
962 Ruby in Paradise (1993)
963 Some Folks Call It a Sling Blade (1993)
964 Month by the Lake, A (1995)
965 Funny Face (1957)
966 Affair to Remember, An (1957)
967 Little Lord Fauntleroy (1936)
968 Inspector General, The (1949)
969 Winnie the Pooh and the Blustery Day (1968)
970 Hear My Song (1991)
971 Mediterraneo (1991)
972 Passion Fish (1992)
973 Grateful Dead (1995)
974 Eye for an Eye (1996)
975 Fear (1996)
976 Solo (1996)
977 Substitute, The (1996)
978 Heaven's Prisoners (1996)
979 Trigger Effect, The (1996)
980 Mother Night (1996)
981 Dangerous Ground (1997)
982 Maximum Risk (1996)
983 Rich Man's Wife, The (1996)
984 Shadow Conspiracy (1997)
985 Blood & Wine (1997)
986 Turbulence (1997)
987 Underworld (1997)
988 Beautician and the Beast, The (1997)
989 Cats Don't Dance (1997)
990 Anna Karenina (1997)
991 Keys to Tulsa (1997)
992 Head Above Water (1996)
993 Hercules (1997)
994 Last Time I Committed Suicide, The (1997)
995 Kiss Me, Guido (1997)
996 Big Green, The (1995)
997 Stuart Saves His Family (1995)
998 Cabin Boy (1994)
999 Clean Slate (1994)
1000 Lightning Jack (1994)
1001 Stupids, The (1996)
1002 Pest, The (1997)
1003 That Darn Cat! (1997)
1004 Geronimo: An American Legend (1993)
1005 Double vie de Véronique, La (Double Life of Veronique, The) (1991)
1006 Until the End of the World (Bis ans Ende der Welt) (1991)
1007 Waiting for Guffman (1996)
1008 I Shot Andy Warhol (1996)
1009 Stealing Beauty (1996)
1010 Basquiat (1996)
1011 2 Days in the Valley (1996)
1012 Private Parts (1997)
1013 Anaconda (1997)
1014 Romy and Michele's High School Reunion (1997)
1015 Shiloh (1997)
1016 Con Air (1997)
1017 Trees Lounge (1996)
1018 Tie Me Up! Tie Me Down! (1990)
1019 Die xue shuang xiong (Killer, The) (1989)
1020 Gaslight (1944)
1021 8 1/2 (1963)
1022 Fast, Cheap & Out of Control (1997)
1023 Fathers' Day (1997)
1024 Mrs. Dalloway (1997)
1025 Fire Down Below (1997)
1026 Lay of the Land, The (1997)
1027 Shooter, The (1995)
1028 Grumpier Old Men (1995)
1029 Jury Duty (1995)
1030 Beverly Hillbillies, The (1993)
1031 Lassie (1994)
1032 Little Big League (1994)
1033 Homeward Bound II: Lost in San Francisco (1996)
1034 Quest, The (1996)
1035 Cool Runnings (1993)
1036 Drop Dead Fred (1991)
1037 Grease 2 (1982)
1038 Switchback (1997)
1039 Hamlet (1996)
1040 Two if by Sea (1996)
1041 Forget Paris (1995)
1042 Just Cause (1995)
1043 Rent-a-Kid (1995)
1044 Paper, The (1994)
1045 Fearless (1993)
1046 Malice (1993)
1047 Multiplicity (1996)
1048 She's the One (1996)
1049 House Arrest (1996)
1050 Ghost and Mrs. Muir, The (1947)
1051 Associate, The (1996)
1052 Dracula: Dead and Loving It (1995)
1053 Now and Then (1995)
1054 Mr. Wrong (1996)
1055 Simple Twist of Fate, A (1994)
1056 Cronos (1992)
1057 Pallbearer, The (1996)
1058 War, The (1994)
1059 Don't Be a Menace to South Central While Drinking Your Juice in the Hood (1996)
1060 Adventures of Pinocchio, The (1996)
1061 Evening Star, The (1996)
1062 Four Days in September (1997)
1063 Little Princess, A (1995)
1064 Crossfire (1947)
1065 Koyaanisqatsi (1983)
1066 Balto (1995)
1067 Bottle Rocket (1996)
1068 Star Maker, The (Uomo delle stelle, L') (1995)
1069 Amateur (1994)
1070 Living in Oblivion (1995)
1071 Party Girl (1995)
1072 Pyromaniac's Love Story, A (1995)
1073 Shallow Grave (1994)
1074 Reality Bites (1994)
1075 Man of No Importance, A (1994)
1076 Pagemaster, The (1994)
1077 Love and a .45 (1994)
1078 Oliver & Company (1988)
1079 Joe's Apartment (1996)
1080 Celestial Clockwork (1994)
1081 Curdled (1996)
1082 Female Perversions (1996)
1083 Albino Alligator (1996)
1084 Anne Frank Remembered (1995)
1085 Carried Away (1996)
1086 It's My Party (1995)
1087 Bloodsport 2 (1995)
1088 Double Team (1997)
1089 Speed 2: Cruise Control (1997)
1090 Sliver (1993)
1091 Pete's Dragon (1977)
1092 Dear God (1996)
1093 Live Nude Girls (1995)
1094 Thin Line Between Love and Hate, A (1996)
1095 High School High (1996)
1096 Commandments (1997)
1097 Hate (Haine, La) (1995)
1098 Flirting With Disaster (1996)
1099 Red Firecracker, Green Firecracker (1994)
1100 What Happened Was... (1994)
1101 Six Degrees of Separation (1993)
1102 Two Much (1996)
1103 Trust (1990)
1104 C'est arrivé près de chez vous (1992)
1105 Firestorm (1998)
1106 Newton Boys, The (1998)
1107 Beyond Rangoon (1995)
1108 Feast of July (1995)
1109 Death and the Maiden (1994)
1110 Tank Girl (1995)
1111 Double Happiness (1994)
1112 Cobb (1994)
1113 Mrs. Parker and the Vicious Circle (1994)
1114 Faithful (1996)
1115 Twelfth Night (1996)
1116 Mark of Zorro, The (1940)
1117 Surviving Picasso (1996)
1118 Up in Smoke (1978)
1119 Some Kind of Wonderful (1987)
1120 I'm Not Rappaport (1996)
1121 Umbrellas of Cherbourg, The (Parapluies de Cherbourg, Les) (1964)
1122 They Made Me a Criminal (1939)
1123 Last Time I Saw Paris, The (1954)
1124 Farewell to Arms, A (1932)
1125 Innocents, The (1961)
1126 Old Man and the Sea, The (1958)
1127 Truman Show, The (1998)
1128 Heidi Fleiss: Hollywood Madam (1995)
1129 Chungking Express (1994)
1130 Jupiter's Wife (1994)
1131 Safe (1995)
1132 Feeling Minnesota (1996)
1133 Escape to Witch Mountain (1975)
1134 Get on the Bus (1996)
1135 Doors, The (1991)
1136 Ghosts of Mississippi (1996)
1137 Beautiful Thing (1996)
1138 Best Men (1997)
1139 Hackers (1995)
1140 Road to Wellville, The (1994)
1141 War Room, The (1993)
1142 When We Were Kings (1996)
1143 Hard Eight (1996)
1144 Quiet Room, The (1996)
1145 Blue Chips (1994)
1146 Calendar Girl (1993)
1147 My Family (1995)
1148 Tom & Viv (1994)
1149 Walkabout (1971)
1150 Last Dance (1996)
1151 Original Gangstas (1996)
1152 In Love and War (1996)
1153 Backbeat (1993)
1154 Alphaville (1965)
1155 Rendezvous in Paris (Rendez-vous de Paris, Les) (1995)
1156 Cyclo (1995)
1157 Relic, The (1997)
1158 Fille seule, La (A Single Girl) (1995)
1159 Stalker (1979)
1160 Love! Valour! Compassion! (1997)
1161 Palookaville (1996)
1162 Phat Beach (1996)
1163 Portrait of a Lady, The (1996)
1164 Zeus and Roxanne (1997)
1165 Big Bully (1996)
1166 Love & Human Remains (1993)
1167 Sum of Us, The (1994)
1168 Little Buddha (1993)
1169 Fresh (1994)
1170 Spanking the Monkey (1994)
1171 Wild Reeds (1994)
1172 Women, The (1939)
1173 Bliss (1997)
1174 Caught (1996)
1175 Hugo Pool (1997)
1176 Welcome To Sarajevo (1997)
1177 Dunston Checks In (1996)
1178 Major Payne (1994)
1179 Man of the House (1995)
1180 I Love Trouble (1994)
1181 Low Down Dirty Shame, A (1994)
1182 Cops and Robbersons (1994)
1183 Cowboy Way, The (1994)
1184 Endless Summer 2, The (1994)
1185 In the Army Now (1994)
1186 Inkwell, The (1994)
1187 Switchblade Sisters (1975)
1188 Young Guns II (1990)
1189 Prefontaine (1997)
1190 That Old Feeling (1997)
1191 Letter From Death Row, A (1998)
1192 Boys of St. Vincent, The (1993)
1193 Before the Rain (Pred dozhdot) (1994)
1194 Once Were Warriors (1994)
1195 Strawberry and Chocolate (Fresa y chocolate) (1993)
1196 Savage Nights (Nuits fauves, Les) (1992)
1197 Family Thing, A (1996)
1198 Purple Noon (1960)
1199 Cemetery Man (Dellamorte Dellamore) (1994)
1200 Kim (1950)
1201 Marlene Dietrich: Shadow and Light (1996)
1202 Maybe, Maybe Not (Bewegte Mann, Der) (1994)
1203 Top Hat (1935)
1204 To Be or Not to Be (1942)
1205 Secret Agent, The (1996)
1206 Amos & Andrew (1993)
1207 Jade (1995)
1208 Kiss of Death (1995)
1209 Mixed Nuts (1994)
1210 Virtuosity (1995)
1211 Blue Sky (1994)
1212 Flesh and Bone (1993)
1213 Guilty as Sin (1993)
1214 In the Realm of the Senses (Ai no corrida) (1976)
1215 Barb Wire (1996)
1216 Kissed (1996)
1217 Assassins (1995)
1218 Friday (1995)
1219 Goofy Movie, A (1995)
1220 Higher Learning (1995)
1221 When a Man Loves a Woman (1994)
1222 Judgment Night (1993)
1223 King of the Hill (1993)
1224 Scout, The (1994)
1225 Angus (1995)
1226 Night Falls on Manhattan (1997)
1227 Awfully Big Adventure, An (1995)
1228 Under Siege 2: Dark Territory (1995)
1229 Poison Ivy II (1995)
1230 Ready to Wear (Pret-A-Porter) (1994)
1231 Marked for Death (1990)
1232 Madonna: Truth or Dare (1991)
1233 Nénette et Boni (1996)
1234 Chairman of the Board (1998)
1235 Big Bang Theory, The (1994)
1236 Other Voices, Other Rooms (1997)
1237 Twisted (1996)
1238 Full Speed (1996)
1239 Cutthroat Island (1995)
1240 Ghost in the Shell (Kokaku kidotai) (1995)
1241 Van, The (1996)
1242 Old Lady Who Walked in the Sea, The (Vieille qui marchait dans la mer, La) (1991)
1243 Night Flier (1997)
1244 Metro (1997)
1245 Gridlock'd (1997)
1246 Bushwhacked (1995)
1247 Bad Girls (1994)
1248 Blink (1994)
1249 For Love or Money (1993)
1250 Best of the Best 3: No Turning Back (1995)
1251 A Chef in Love (1996)
1252 Contempt (Mépris, Le) (1963)
1253 Tie That Binds, The (1995)
1254 Gone Fishin' (1997)
1255 Broken English (1996)
1256 Designated Mourner, The (1997)
1257 Designated Mourner, The (1997)
1258 Trial and Error (1997)
1259 Pie in the Sky (1995)
1260 Total Eclipse (1995)
1261 Run of the Country, The (1995)
1262 Walking and Talking (1996)
1263 Foxfire (1996)
1264 Nothing to Lose (1994)
1265 Star Maps (1997)
1266 Bread and Chocolate (Pane e cioccolata) (1973)
1267 Clockers (1995)
1268 Bitter Moon (1992)
1269 Love in the Afternoon (1957)
1270 Life with Mikey (1993)
1271 North (1994)
1272 Talking About Sex (1994)
1273 Color of Night (1994)
1274 Robocop 3 (1993)
1275 Killer (Bulletproof Heart) (1994)
1276 Sunset Park (1996)
1277 Set It Off (1996)
1278 Selena (1997)
1279 Wild America (1997)
1280 Gang Related (1997)
1281 Manny & Lo (1996)
1282 Grass Harp, The (1995)
1283 Out to Sea (1997)
1284 Before and After (1996)
1285 Princess Caraboo (1994)
1286 Shall We Dance? (1937)
1287 Ed (1996)
1288 Denise Calls Up (1995)
1289 Jack and Sarah (1995)
1290 Country Life (1994)
1291 Celtic Pride (1996)
1292 Simple Wish, A (1997)
1293 Star Kid (1997)
1294 Ayn Rand: A Sense of Life (1997)
1295 Kicked in the Head (1997)
1296 Indian Summer (1996)
1297 Love Affair (1994)
1298 Band Wagon, The (1953)
1299 Penny Serenade (1941)
1300 'Til There Was You (1997)
1301 Stripes (1981)
1302 Late Bloomers (1996)
1303 Getaway, The (1994)
1304 New York Cop (1996)
1305 National Lampoon's Senior Trip (1995)
1306 Delta of Venus (1994)
1307 Carmen Miranda: Bananas Is My Business (1994)
1308 Babyfever (1994)
1309 Very Natural Thing, A (1974)
1310 Walk in the Sun, A (1945)
1311 Waiting to Exhale (1995)
1312 Pompatus of Love, The (1996)
1313 Palmetto (1998)
1314 Surviving the Game (1994)
1315 Inventing the Abbotts (1997)
1316 Horse Whisperer, The (1998)
1317 Journey of August King, The (1995)
1318 Catwalk (1995)
1319 Neon Bible, The (1995)
1320 Homage (1995)
1321 Open Season (1996)
1322 Metisse (Café au Lait) (1993)
1323 Wooden Man's Bride, The (Wu Kui) (1994)
1324 Loaded (1994)
1325 August (1996)
1326 Boys (1996)
1327 Captives (1994)
1328 Of Love and Shadows (1994)
1329 Low Life, The (1994)
1330 An Unforgettable Summer (1994)
1331 Last Klezmer: Leopold Kozlowski, His Life and Music, The (1995)
1332 My Life and Times With Antonin Artaud (En compagnie d'Antonin Artaud) (1993)
1333 Midnight Dancers (Sibak) (1994)
1334 Somebody to Love (1994)
1335 American Buffalo (1996)
1336 Kazaam (1996)
1337 Larger Than Life (1996)
1338 Two Deaths (1995)
1339 Stefano Quantestorie (1993)
1340 Crude Oasis, The (1995)
1341 Hedd Wyn (1992)
1342 Convent, The (Convento, O) (1995)
1343 Lotto Land (1995)
1344 Story of Xinghua, The (1993)
1345 Day the Sun Turned Cold, The (Tianguo niezi) (1994)
1346 Dingo (1992)
1347 Ballad of Narayama, The (Narayama Bushiko) (1958)
1348 Every Other Weekend (1990)
1349 Mille bolle blu (1993)
1350 Crows and Sparrows (1949)
1351 Lover's Knot (1996)
1352 Shadow of Angels (Schatten der Engel) (1976)
1353 1-900 (1994)
1354 Venice/Venice (1992)
1355 Infinity (1996)
1356 Ed's Next Move (1996)
1357 For the Moment (1994)
1358 The Deadly Cure (1996)
1359 Boys in Venice (1996)
1360 Sexual Life of the Belgians, The (1994)
1361 Search for One-eye Jimmy, The (1996)
1362 American Strays (1996)
1363 Leopard Son, The (1996)
1364 Bird of Prey (1996)
1365 Johnny 100 Pesos (1993)
1366 JLG/JLG - autoportrait de décembre (1994)
1367 Faust (1994)
1368 Mina Tannenbaum (1994)
1369 Forbidden Christ, The (Cristo proibito, Il) (1950)
1370 I Can't Sleep (J'ai pas sommeil) (1994)
1371 Machine, The (1994)
1372 Stranger, The (1994)
1373 Good Morning (1971)
1374 Falling in Love Again (1980)
1375 Cement Garden, The (1993)
1376 Meet Wally Sparks (1997)
1377 Hotel de Love (1996)
1378 Rhyme & Reason (1997)
1379 Love and Other Catastrophes (1996)
1380 Hollow Reed (1996)
1381 Losing Chase (1996)
1382 Bonheur, Le (1965)
1383 Second Jungle Book: Mowgli & Baloo, The (1997)
1384 Squeeze (1996)
1385 Roseanna's Grave (For Roseanna) (1997)
1386 Tetsuo II: Body Hammer (1992)
1387 Fall (1997)
1388 Gabbeh (1996)
1389 Mondo (1996)
1390 Innocent Sleep, The (1995)
1391 For Ever Mozart (1996)
1392 Locusts, The (1997)
1393 Stag (1997)
1394 Swept from the Sea (1997)
1395 Hurricane Streets (1998)
1396 Stonewall (1995)
1397 Of Human Bondage (1934)
1398 Anna (1996)
1399 Stranger in the House (1997)
1400 Picture Bride (1995)
1401 M. Butterfly (1993)
1402 Ciao, Professore! (1993)
1403 Caro Diario (Dear Diary) (1994)
1404 Withnail and I (1987)
1405 Boy's Life 2 (1997)
1406 When Night Is Falling (1995)
1407 Specialist, The (1994)
1408 Gordy (1995)
1409 Swan Princess, The (1994)
1410 Harlem (1993)
1411 Barbarella (1968)
1412 Land Before Time III: The Time of the Great Giving (1995) (V)
1413 Street Fighter (1994)
1414 Coldblooded (1995)
1415 Next Karate Kid, The (1994)
1416 No Escape (1994)
1417 Turning, The (1992)
1418 Joy Luck Club, The (1993)
1419 Highlander III: The Sorcerer (1994)
1420 Gilligan's Island: The Movie (1998)
1421 My Crazy Life (Mi vida loca) (1993)
1422 Suture (1993)
1423 Walking Dead, The (1995)
1424 I Like It Like That (1994)
1425 I'll Do Anything (1994)
1426 Grace of My Heart (1996)
1427 Drunks (1995)
1428 SubUrbia (1997)
1429 Sliding Doors (1998)
1430 Ill Gotten Gains (1997)
1431 Legal Deceit (1997)
1432 Mighty, The (1998)
1433 Men of Means (1998)
1434 Shooting Fish (1997)
1435 Steal Big, Steal Little (1995)
1436 Mr. Jones (1993)
1437 House Party 3 (1994)
1438 Panther (1995)
1439 Jason's Lyric (1994)
1440 Above the Rim (1994)
1441 Moonlight and Valentino (1995)
1442 Scarlet Letter, The (1995)
1443 8 Seconds (1994)
1444 That Darn Cat! (1965)
1445 Ladybird Ladybird (1994)
1446 Bye Bye, Love (1995)
1447 Century (1993)
1448 My Favorite Season (1993)
1449 Pather Panchali (1955)
1450 Golden Earrings (1947)
1451 Foreign Correspondent (1940)
1452 Lady of Burlesque (1943)
1453 Angel on My Shoulder (1946)
1454 Angel and the Badman (1947)
1455 Outlaw, The (1943)
1456 Beat the Devil (1954)
1457 Love Is All There Is (1996)
1458 Damsel in Distress, A (1937)
1459 Madame Butterfly (1995)
1460 Sleepover (1995)
1461 Here Comes Cookie (1935)
1462 Thieves (Voleurs, Les) (1996)
1463 Boys, Les (1997)
1464 Stars Fell on Henrietta, The (1995)
1465 Last Summer in the Hamptons (1995)
1466 Margaret's Museum (1995)
1467 Saint of Fort Washington, The (1993)
1468 Cure, The (1995)
1469 Tom and Huck (1995)
1470 Gumby: The Movie (1995)
1471 Hideaway (1995)
1472 Visitors, The (Visiteurs, Les) (1993)
1473 Little Princess, The (1939)
1474 Nina Takes a Lover (1994)
1475 Bhaji on the Beach (1993)
1476 Raw Deal (1948)
1477 Nightwatch (1997)
1478 Dead Presidents (1995)
1479 Reckless (1995)
1480 Herbie Rides Again (1974)
1481 S.F.W. (1994)
1482 Gate of Heavenly Peace, The (1995)
1483 Man in the Iron Mask, The (1998)
1484 Jerky Boys, The (1994)
1485 Colonel Chabert, Le (1994)
1486 Girl in the Cadillac (1995)
1487 Even Cowgirls Get the Blues (1993)
1488 Germinal (1993)
1489 Chasers (1994)
1490 Fausto (1993)
1491 Tough and Deadly (1995)
1492 Window to Paris (1994)
1493 Modern Affair, A (1995)
1494 Mostro, Il (1994)
1495 Flirt (1995)
1496 Carpool (1996)
1497 Line King: Al Hirschfeld, The (1996)
1498 Farmer & Chase (1995)
1499 Grosse Fatigue (1994)
1500 Santa with Muscles (1996)
1501 Prisoner of the Mountains (Kavkazsky Plennik) (1996)
1502 Naked in New York (1994)
1503 Gold Diggers: The Secret of Bear Mountain (1995)
1504 Bewegte Mann, Der (1994)
1505 Killer: A Journal of Murder (1995)
1506 Nelly & Monsieur Arnaud (1995)
1507 Three Lives and Only One Death (1996)
1508 Babysitter, The (1995)
1509 Getting Even with Dad (1994)
1510 Mad Dog Time (1996)
1511 Children of the Revolution (1996)
1512 World of Apu, The (Apur Sansar) (1959)
1513 Sprung (1997)
1514 Dream With the Fishes (1997)
1515 Wings of Courage (1995)
1516 Wedding Gift, The (1994)
1517 Race the Sun (1996)
1518 Losing Isaiah (1995)
1519 New Jersey Drive (1995)
1520 Fear, The (1995)
1521 Mr. Wonderful (1993)
1522 Trial by Jury (1994)
1523 Good Man in Africa, A (1994)
1524 Kaspar Hauser (1993)
1525 Object of My Affection, The (1998)
1526 Witness (1985)
1527 Senseless (1998)
1528 Nowhere (1997)
1529 Underground (1995)
1530 Jefferson in Paris (1995)
1531 Far From Home: The Adventures of Yellow Dog (1995)
1532 Foreign Student (1994)
1533 I Don't Want to Talk About It (De eso no se habla) (1993)
1534 Twin Town (1997)
1535 Enfer, L' (1994)
1536 Aiqing wansui (1994)
1537 Cosi (1996)
1538 All Over Me (1997)
1539 Being Human (1993)
1540 Amazing Panda Adventure, The (1995)
1541 Beans of Egypt, Maine, The (1994)
1542 Scarlet Letter, The (1926)
1543 Johns (1996)
1544 It Takes Two (1995)
1545 Frankie Starlight (1995)
1546 Shadows (Cienie) (1988)
1547 Show, The (1995)
1548 The Courtyard (1995)
1549 Dream Man (1995)
1550 Destiny Turns on the Radio (1995)
1551 Glass Shield, The (1994)
1552 Hunted, The (1995)
1553 Underneath, The (1995)
1554 Safe Passage (1994)
1555 Secret Adventures of Tom Thumb, The (1993)
1556 Condition Red (1995)
1557 Yankee Zulu (1994)
1558 Aparajito (1956)
1559 Hostile Intentions (1994)
1560 Clean Slate (Coup de Torchon) (1981)
1561 Tigrero: A Film That Was Never Made (1994)
1562 Eye of Vichy, The (Oeil de Vichy, L') (1993)
1563 Promise, The (Versprechen, Das) (1994)
1564 To Cross the Rubicon (1991)
1565 Daens (1992)
1566 Man from Down Under, The (1943)
1567 Careful (1992)
1568 Vermont Is For Lovers (1992)
1569 Vie est belle, La (Life is Rosey) (1987)
1570 Quartier Mozart (1992)
1571 Touki Bouki (Journey of the Hyena) (1973)
1572 Wend Kuuni (God's Gift) (1982)
1573 Spirits of the Dead (Tre passi nel delirio) (1968)
1574 Pharaoh's Army (1995)
1575 I, Worst of All (Yo, la peor de todas) (1990)
1576 Hungarian Fairy Tale, A (1987)
1577 Death in the Garden (Mort en ce jardin, La) (1956)
1578 Collectionneuse, La (1967)
1579 Baton Rouge (1988)
1580 Liebelei (1933)
1581 Woman in Question, The (1950)
1582 T-Men (1947)
1583 Invitation, The (Zaproszenie) (1986)
1584 Symphonie pastorale, La (1946)
1585 American Dream (1990)
1586 Lashou shentan (1992)
1587 Terror in a Texas Town (1958)
1588 Salut cousin! (1996)
1589 Schizopolis (1996)
1590 To Have, or Not (1995)
1591 Duoluo tianshi (1995)
1592 Magic Hour, The (1998)
1593 Death in Brunswick (1991)
1594 Everest (1998)
1595 Shopping (1994)
1596 Nemesis 2: Nebula (1995)
1597 Romper Stomper (1992)
1598 City of Industry (1997)
1599 Someone Else's America (1995)
1600 Guantanamera (1994)
1601 Office Killer (1997)
1602 Price Above Rubies, A (1998)
1603 Angela (1995)
1604 He Walked by Night (1948)
1605 Love Serenade (1996)
1606 Deceiver (1997)
1607 Hurricane Streets (1998)
1608 Buddy (1997)
1609 B*A*P*S (1997)
1610 Truth or Consequences, N.M. (1997)
1611 Intimate Relations (1996)
1612 Leading Man, The (1996)
1613 Tokyo Fist (1995)
1614 Reluctant Debutante, The (1958)
1615 Warriors of Virtue (1997)
1616 Desert Winds (1995)
1617 Hugo Pool (1997)
1618 King of New York (1990)
1619 All Things Fair (1996)
1620 Sixth Man, The (1997)
1621 Butterfly Kiss (1995)
1622 Paris, France (1993)
1623 Cérémonie, La (1995)
1624 Hush (1998)
1625 Nightwatch (1997)
1626 Nobody Loves Me (Keiner liebt mich) (1994)
1627 Wife, The (1995)
1628 Lamerica (1994)
1629 Nico Icon (1995)
1630 Silence of the Palace, The (Saimt el Qusur) (1994)
1631 Slingshot, The (1993)
1632 Land and Freedom (Tierra y libertad) (1995)
1633 Á köldum klaka (Cold Fever) (1994)
1634 Etz Hadomim Tafus (Under the Domin Tree) (1994)
1635 Two Friends (1986)
1636 Brothers in Trouble (1995)
1637 Girls Town (1996)
1638 Normal Life (1996)
1639 Bitter Sugar (Azucar Amargo) (1996)
1640 Eighth Day, The (1996)
1641 Dadetown (1995)
1642 Some Mother's Son (1996)
1643 Angel Baby (1995)
1644 Sudden Manhattan (1996)
1645 Butcher Boy, The (1998)
1646 Men With Guns (1997)
1647 Hana-bi (1997)
1648 Niagara, Niagara (1997)
1649 Big One, The (1997)
1650 Butcher Boy, The (1998)
1651 Spanish Prisoner, The (1997)
1652 Temptress Moon (Feng Yue) (1996)
1653 Entertaining Angels: The Dorothy Day Story (1996)
1654 Chairman of the Board (1998)
1655 Favor, The (1994)
1656 Little City (1998)
1657 Target (1995)
1658 Substance of Fire, The (1996)
1659 Getting Away With Murder (1996)
1660 Small Faces (1995)
1661 New Age, The (1994)
1662 Rough Magic (1995)
1663 Nothing Personal (1995)
1664 8 Heads in a Duffel Bag (1997)
1665 Brother's Kiss, A (1997)
1666 Ripe (1996)
1667 Next Step, The (1995)
1668 Wedding Bell Blues (1996)
1669 MURDER and murder (1996)
1670 Tainted (1998)
1671 Further Gesture, A (1996)
1672 Kika (1993)
1673 Mirage (1995)
1674 Mamma Roma (1962)
1675 Sunchaser, The (1996)
1676 War at Home, The (1996)
1677 Sweet Nothing (1995)
1678 Mat' i syn (1997)
1679 B. Monkey (1998)
1680 Sliding Doors (1998)
1681 You So Crazy (1994)
1682 Scream of Stone (Schrei aus Stein) (1991)
function p = multivariateGaussian(X, mu, Sigma2)
%MULTIVARIATEGAUSSIAN Computes the probability density function of the
%multivariate gaussian distribution.
% p = MULTIVARIATEGAUSSIAN(X, mu, Sigma2) Computes the probability
% density function of the examples X under the multivariate gaussian
% distribution with parameters mu and Sigma2. If Sigma2 is a matrix, it is
% treated as the covariance matrix. If Sigma2 is a vector, it is treated
% as the \sigma^2 values of the variances in each dimension (a diagonal
% covariance matrix)
%
k = length(mu);
if (size(Sigma2, 2) == 1) || (size(Sigma2, 1) == 1)
Sigma2 = diag(Sigma2);
end
X = bsxfun(@minus, X, mu(:)');
p = (2 * pi) ^ (- k / 2) * det(Sigma2) ^ (-0.5) * ...
exp(-0.5 * sum(bsxfun(@times, X * pinv(Sigma2), X), 2));
end
\ No newline at end of file
function [Ynorm, Ymean] = normalizeRatings(Y, R)
%NORMALIZERATINGS Preprocess data by subtracting mean rating for every
%movie (every row)
% [Ynorm, Ymean] = NORMALIZERATINGS(Y, R) normalized Y so that each movie
% has a rating of 0 on average, and returns the mean rating in Ymean.
%
[m, n] = size(Y);
Ymean = zeros(m, 1);
Ynorm = zeros(size(Y));
for i = 1:m
idx = find(R(i, :) == 1);
Ymean(i) = mean(Y(i, idx));
Ynorm(i, idx) = Y(i, idx) - Ymean(i);
end
end
function [bestEpsilon bestF1] = selectThreshold(yval, pval)
%SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting
%outliers
% [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best
% threshold to use for selecting outliers based on the results from a
% validation set (pval) and the ground truth (yval).
%
bestEpsilon = 0;
bestF1 = 0;
F1 = 0;
n = size(yval,1);
stepsize = (max(pval) - min(pval)) / 1000;
for epsilon = min(pval):stepsize:max(pval)
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the F1 score of choosing epsilon as the
% threshold and place the value in F1. The code at the
% end of the loop will compare the F1 score for this
% choice of epsilon and set it to be the best epsilon if
% it is better than the current choice of epsilon.
%
% Note: You can use predictions = (pval < epsilon) to get a binary vector
% of 0's and 1's of the outlier predictions
true_pos = 0;
false_neg = 0;
false_pos = 0;
for i = 1:n
predicted = (pval(i) < epsilon);
true_val = yval(i);
if and((true_val == 1), (predicted == 1))
true_pos = true_pos + 1;
elseif and((true_val == 0), (predicted == 1))
false_pos = false_pos + 1;
elseif and((predicted == 0), (true_val == 1))
false_neg = false_neg + 1;
end
end
precision = true_pos/(true_pos+false_pos);
recall = true_pos/(true_pos + false_neg);
F1 = 2*precision*recall/(precision+recall);
% =============================================================
if F1 > bestF1
bestF1 = F1;
bestEpsilon = epsilon;
end
end
end
function submit()
addpath('./lib');
conf.assignmentSlug = 'anomaly-detection-and-recommender-systems';
conf.itemName = 'Anomaly Detection and Recommender Systems';
conf.partArrays = { ...
{ ...
'1', ...
{ 'estimateGaussian.m' }, ...
'Estimate Gaussian Parameters', ...
}, ...
{ ...
'2', ...
{ 'selectThreshold.m' }, ...
'Select Threshold', ...
}, ...
{ ...
'3', ...
{ 'cofiCostFunc.m' }, ...
'Collaborative Filtering Cost', ...
}, ...
{ ...
'4', ...
{ 'cofiCostFunc.m' }, ...
'Collaborative Filtering Gradient', ...
}, ...
{ ...
'5', ...
{ 'cofiCostFunc.m' }, ...
'Regularized Cost', ...
}, ...
{ ...
'6', ...
{ 'cofiCostFunc.m' }, ...
'Regularized Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
n_u = 3; n_m = 4; n = 5;
X = reshape(sin(1:n_m*n), n_m, n);
Theta = reshape(cos(1:n_u*n), n_u, n);
Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u);
R = Y > 0.5;
pval = [abs(Y(:)) ; 0.001; 1];
Y = (Y .* double(R)); % set 'Y' values to 0 for movies not reviewed
yval = [R(:) ; 1; 0];
params = [X(:); Theta(:)];
if partId == '1'
[mu sigma2] = estimateGaussian(X);
out = sprintf('%0.5f ', [mu(:); sigma2(:)]);
elseif partId == '2'
[bestEpsilon bestF1] = selectThreshold(yval, pval);
out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]);
elseif partId == '3'
[J] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 0);
out = sprintf('%0.5f ', J(:));
elseif partId == '4'
[J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 0);
out = sprintf('%0.5f ', grad(:));
elseif partId == '5'
[J] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 1.5);
out = sprintf('%0.5f ', J(:));
elseif partId == '6'
[J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 1.5);
out = sprintf('%0.5f ', grad(:));
end
end
kHznDgulAUqo00Ig
\ No newline at end of file
function visualizeFit(X, mu, sigma2)
%VISUALIZEFIT Visualize the dataset and its estimated distribution.
% VISUALIZEFIT(X, p, mu, sigma2) This visualization shows you the
% probability density function of the Gaussian distribution. Each example
% has a location (x1, x2) that depends on its feature values.
%
[X1,X2] = meshgrid(0:.5:35);
Z = multivariateGaussian([X1(:) X2(:)],mu,sigma2);
Z = reshape(Z,size(X1));
plot(X(:, 1), X(:, 2),'bx');
hold on;
% Do not plot if there are infinities
if (sum(isinf(Z)) == 0)
contour(X1, X2, Z, 10.^(-20:3:0)');
end
hold off;
end
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment