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Abstract

In recent years, the malware industry has become a well organized market in-
volving large amounts of money. Well funded, multi-player syndicates invest
heavily in technologies and capabilities built to evade traditional protection,
requiring anti-malware vendors to develop counter mechanisms for finding
and deactivating them. In the meantime, they inflict real financial and emo-
tional pain to users of computer systems.

One of the major challenges that anti-malware faces today is the vast amounts
of data and files which need to be evaluated for potential malicious in-
tent. For example, Microsoft’s real-time detection anti-malware products
are present on over 160M computers worldwide and inspect over 700M com-
puters monthly. This generates tens of millions of daily data points to be
analyzed as potential malware. One of the main reasons for these high vol-
umes of different files is the fact that, in order to evade detection, malware
authors introduce polymorphism to the malicious components. This means
that malicious files belonging to the same malware ”family”, with the same
forms of malicious behavior, are constantly modified and/or obfuscated using
various tactics, such that they look like many different files.

In order to be effective in analyzing and classifying such large amounts of
files, we need to be able to group them into groups and identify their re-
spective families. In addition, such grouping criteria may be applied to new
files encountered on computers in order to detect them as malicious and of
a certain family.
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1 Problem Statement

In the past few years, the malware industry has grown very rapidly that,
the syndicates invest heavily in technologies to evade traditional protection,
forcing the anti-malware groups/communities to build more robust softwares
to detect and terminate these attacks. The major part of protecting a com-
puter system from a malware attack is to identify whether a given piece of
file/software is a malware.

2 Goal and Objective

e Minimize multi-class error.

e Multi-class probability estimates.

e Malware detection should not take hours and block the user’s computer.
It should finish in a few seconds or a minute.

3 Data

Source : https://www.kaggle.com/c/malware-classification/data
For every malware, we have two files

.asm file

.bytes file (the raw data contains the hexadecimal representation
binary content, without the PE header).

.asm file

.text:00401000

gs:nothing

.text:00401000 56

.1ext:00401061 8D 44 24 08
.text:00401005 50

.1ext:00401006 8B F1
.text:00401068 E8 1C 1B 00 00

exception: :exception(char const * const &)

.text:0040106D C7 06 08 BB 42 00
.text:00401013 8B C6
.text:00401015 SE
.text:00401016 C2 04 00
.text:00401016
€C CC cc cC
BB 42 00
00 00
.text:0040102B CC CC CC  CC CC
.text:00401030 56
.text:00401031 8B F1
.text:00401033 C7 06 08 BB 42 00
.text:00401039 E8 13 1C 00 00
.text:0040103E F6 44 24 08 01
.text:00401043 74 09
.text:00401045 56
.text:00401046 E8 6C 1E 00 00

d*)

.text:0040104B 83 C4 04
.text:0040104E
.text:0040104E
.text:0040104E 8B C6
.text:00401050 5E
.text:00401051 C2 04 00
.text:00401051

assume es:nothing, ss:nothing, ds: data,  fs:nothing,

push  esi

lea 2ax, [esp+8]
push  eax
mov esi, ecx
call  ?78exception@std@EQAEGABQBDGZ ; std::
mov dword ptr [esi], offset off 428868
mov eax, esi
pop esi
retn 4
align 16h
mov  dword ptr [ecx],  offset off 428808

jmp  sub 46251

align 10h
push  esi
mov  esi, ecx
mov  dword ptr [esi],  offset off 428868
call  sub_402¢51
test  byte ptr  [esp+8], 1
jz short loc_40164E
push  esi
call  ?73QVAXPAXEZ  ; operator delete(voi

add esp, 4

Toc_40104E
mov  eax, esi
pop  esi

; CODE XREF: .text:004010430j

.bytes file

00401000 00
00401010 00
00401020 460
00401030 40
00401040 82
00401050 18
00401060 00
00401070 060
00401080 00
00401090 08
004010A0 00
00401080 10
004010C0 06
004601000 860
004010EQ 90
004010F0 B4
004601100 08
00401110 00
00401120 00
00401130 4C
00401140 4E
004601150 6C
00461160 6C
00401170 EC
00401180 EC
00401190 OE

00
00
00
82
20
00
02
00
0o
AB
40
00
el
18
0o
00
Le]
80
82
el
11
a1
10
el
el
00

80 40 40
20 09 2A
62 01 00
62 63 20
08 83 00
00 20 A9
00 08 20
60 00 11
61 60 00
61 01 44
60 00 00
40 00 68
02 00 40
90 06 00
26 10 00
00 40 00
60 50 00
00 80 60
40 02 00
22 00 64
8E 11 C2
A@ 11 CE
6C 11 A2
08 11 A2
2A 10 2A
EC 11 24

28 00 1C
62 00 00
90 21 0@
60 00 09
08 00 00
00 00 00
12 00 @0
20 80 04
64 00 10
28 00 00
34 40 40
02 40 04
00 00 00
10 A0 00
00 04 00
62 20 25
68 40 50
00 09 00
11 46 o1
00 AE 01
00 6C 00
10 2C 11
61 AE 00
01 AE 10
01 AE 00
10 4A 10

of the file’s

62 42 00 C4 00 20 04 20
00 00 8E 10 41 0A 21 Ol
32 40 00 1C @1 40 C8 18
10 01 62 21 0@ 82 00 04
00 00 02 00 60 80 10 8O
00 04 04 78 01 02 70 90
00 40 10 00 80 00 40 19
80 10 00 20 00 @0
62 C1 80 80 00 20
68 16 20 00 82 08 00 0O
60 84 00 08 80 08 00 08
E1 00 28 14 00 08 20 0A
00 00 00 20 00 02 00 B4
45 @9 00 10 04 40 44 82
82 00 00 00 20 40 00 B0
68 00 00 00 @O 00 00 0O
60 82 06 22 @8 85 30 00
64 20 00 00 00 00 00 0O
4A @1 8C 01 E6 00 86 10
EA 01 2A 11 E8 10 26 11
6C 11 60 01 CA 00 62 10
4E 10 8C 00 CE 01 AE 01
46 11 EE 10 22 00 A8 B0
6C 00 6E 00 AC 11 8C 090
40 00 C8 10 48 01 4E 11
64 01 C8 11 E6 01 C2 00


https://www.kaggle.com/c/malware-classification/data

Total train dataset consist of 200GB data out of which 50Gb of data
is .bytes files and 150GB of data is .asm files.
There are total 10,868 .bytes files and 10,868 asm files total 21,736 files
There are 9 types of malwares (9 classes) in our given data:

e Ramnit

e Lollipop

e Kelihos_ver3

e Vundo

e Simda

e Tracur

e Kelihos_verl

e Obfuscator. ACY
o Gatak
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Figure 1: Data Distribution of various classes



4 Related Literature

e Microsoft Malware Winners’ Interview: 1st place,” NO to overfitting!”
http://blog.kaggle.com/2015/05/26 /microsoft-malware-winners-interview-
1st-place-no-to-overfitting /

e Novel Feature Extraction, Selection and Fusion for Effective Malware
Family Classification
https://arxiv.org/pdf/1511.04317.pdf

e First place approach in Microsoft Malware Classification Challenge
(BIG 2015)
https://www.youtube.com/watch?v=VLQTRILGz5Y

e Malware Detection github
https://github.com/dchad/malware-detection


http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-overfitting/
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-overfitting/
https://arxiv.org/pdf/1511.04317.pdf
https://www.youtube.com/watch?v=VLQTRlLGz5Y
https://github.com/dchad/malware-detection

5 Description of the set of approaches tried

e Logistic Regression- We first tried with the Logistic Regression Model
and using this model, 0.0473 fraction of points are misclassified. This
gave a lower accuracy.

e Random Forest- Using this model, 0.0473 fraction of points are getting
misclassified.

6 Experiments

6.1 Code

The code is developed in Python with the help of libraries mainly mat-
plotlib,numpy,pandas and sklearn.

The code started by first of all visualising the data distribution among vari-

ous classes.

The code can be found on this link: https://git.cse.iitb.ac.in/pranavchaudhary/
CS725

6.2 Experimental Platform

The code was developed and tested on Windows using Jupyter Notebook.
The code was run on a machine with configurations as:

e Processor: i7-9th Gen
e RAM: 16GB
e SSD: 256GB

The code ran on this machine for 60 hours(approx.)


https://git.cse.iitb.ac.in/pranavchaudhary/CS725
https://git.cse.iitb.ac.in/pranavchaudhary/CS725

6.3 Experimental Results
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Figure 2: Logistic Regression Classifier Alpha vs. Loss Graph
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Figure 3: Random Forest Classifier Alpha vs. Loss Graph

7 Effort

The different parts of the project along with fraction of time taken by each
part:

e Learning about Malwares and bytes and asm files-0.05

e Data Visualization-0.05
e Data Preprocessing-0.4
e Training-0.2

e Validation-0.2



o Testing-0.1

The most challenging and time taking part in this project was the pre-
processing of dataset to a reasonable size without loss of information as the
original dataset was large enough to train the model on our machines(around
184 GB). Fraction of work done by different team members:

e Anurag Chaudhary-0.25
e Himanshu Aswal-0.25
e Pranav Chaudhary-0.25

e Sanyam Raj-0.25

8 Conclusion

The dataset provided by Microsoft was of a very large size and had to be
preprocessed using Feature Extraction to bring it to a size which could be
run on our machines. The model was trained on bytes files as well as asm files
using Logistic Regression Model and Random Forest Classifier Model. The
results achieved by the Random Forest Model was much better as compared
to the results achieved by the Logistic Regression Model.
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