Ly
“ Y,

N Z

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

Project Report on

MALWARE DETECTION

SUBMITTED TOWARDS THE
PARTTAL FULFILLMENT OF THE REQUIREMENTS OF

CS725:Foundations of Machine Learning (Computer
Science and Engineering)

BY
Anurag Chaudhary Roll No0:193050061
Himanshu Aswal Roll No0:193059001
Pranav Chaudhary Roll No0:193059004
Sanyam Raj Roll No0:193050096

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

2 VATt

- %7/)

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Project Entitled

MALWARE DETECTION
Submitted by

Anurag Chaudhary Roll No0:193050061
Himanshu Aswal Roll No0:193059001
Pranav Chaudhary Roll No0:193059004
Sanyam Raj Roll No0:193050096

is a bonafide work carried out by students and it is submitted towards the par-
tial fulfillment of the requirement of CS725:Foundations of Machine Learning
(Computer Science and Engineering).

Prof. Sunita Sarawagi
Department of Computer Science, II'T Bombay

Abstract

In recent years, the malware industry has become a well organized market in-
volving large amounts of money. Well funded, multi-player syndicates invest
heavily in technologies and capabilities built to evade traditional protection,
requiring anti-malware vendors to develop counter mechanisms for finding
and deactivating them. In the meantime, they inflict real financial and emo-
tional pain to users of computer systems.

One of the major challenges that anti-malware faces today is the vast amounts
of data and files which need to be evaluated for potential malicious in-
tent. For example, Microsoft’s real-time detection anti-malware products
are present on over 160M computers worldwide and inspect over 700M com-
puters monthly. This generates tens of millions of daily data points to be
analyzed as potential malware. One of the main reasons for these high vol-
umes of different files is the fact that, in order to evade detection, malware
authors introduce polymorphism to the malicious components. This means
that malicious files belonging to the same malware ”family”, with the same
forms of malicious behavior, are constantly modified and/or obfuscated using
various tactics, such that they look like many different files.

In order to be effective in analyzing and classifying such large amounts of
files, we need to be able to group them into groups and identify their re-
spective families. In addition, such grouping criteria may be applied to new
files encountered on computers in order to detect them as malicious and of
a certain family.

Contents

1__Problem Statement 5
2 Goal and Objective| 5
B_Datal 5
4_Related Literaturel 7
[Description of the set of approaches tried| 8
[6 Experiments| 8

BI _Codd 8

[6.2 Experimental Platform| 8

[6.3 Experimental Results 9
[7_Effortl 9
8 Conclusion| 10

1 Problem Statement

In the past few years, the malware industry has grown very rapidly that,
the syndicates invest heavily in technologies to evade traditional protection,
forcing the anti-malware groups/communities to build more robust softwares
to detect and terminate these attacks. The major part of protecting a com-
puter system from a malware attack is to identify whether a given piece of
file/software is a malware.

2 Goal and Objective

e Minimize multi-class error.

e Multi-class probability estimates.

e Malware detection should not take hours and block the user’s computer.
It should finish in a few seconds or a minute.

3 Data

Source : https://www.kaggle.com/c/malware-classification/data
For every malware, we have two files

.asm file

.bytes file (the raw data contains the hexadecimal representation
binary content, without the PE header).

.asm file

.text:00401000

gs:nothing

.text:00401000 56

.1ext:00401061 8D 44 24 08
.text:00401005 50

.1ext:00401006 8B F1
.text:00401068 E8 1C 1B 00 00

exception: :exception(char const * const &)

.text:0040106D C7 06 08 BB 42 00
.text:00401013 8B C6
.text:00401015 SE
.text:00401016 C2 04 00
.text:00401016
€C CC cc cC
BB 42 00
00 00
.text:0040102B CC CC CC CC CC
.text:00401030 56
.text:00401031 8B F1
.text:00401033 C7 06 08 BB 42 00
.text:00401039 E8 13 1C 00 00
.text:0040103E F6 44 24 08 01
.text:00401043 74 09
.text:00401045 56
.text:00401046 E8 6C 1E 00 00

d*)

.text:0040104B 83 C4 04
.text:0040104E
.text:0040104E
.text:0040104E 8B C6
.text:00401050 5E
.text:00401051 C2 04 00
.text:00401051

assume es:nothing, ss:nothing, ds: data, fs:nothing,

push esi

lea 2ax, [esp+8]
push eax
mov esi, ecx
call ?78exception@std@EQAEGABQBDGZ ; std::
mov dword ptr [esi], offset off 428868
mov eax, esi
pop esi
retn 4
align 16h
mov dword ptr [ecx], offset off 428808

jmp sub 46251

align 10h
push esi
mov esi, ecx
mov dword ptr [esi], offset off 428868
call sub_402¢51
test byte ptr [esp+8], 1
jz short loc_40164E
push esi
call ?73QVAXPAXEZ ; operator delete(voi

add esp, 4

Toc_40104E
mov eax, esi
pop esi

; CODE XREF: .text:004010430j

.bytes file

00401000 00
00401010 00
00401020 460
00401030 40
00401040 82
00401050 18
00401060 00
00401070 060
00401080 00
00401090 08
004010A0 00
00401080 10
004010C0 06
004601000 860
004010EQ 90
004010F0 B4
004601100 08
00401110 00
00401120 00
00401130 4C
00401140 4E
004601150 6C
00461160 6C
00401170 EC
00401180 EC
00401190 OE

00
00
00
82
20
00
02
00
0o
AB
40
00
el
18
0o
00
Le]
80
82
el
11
a1
10
el
el
00

80 40 40
20 09 2A
62 01 00
62 63 20
08 83 00
00 20 A9
00 08 20
60 00 11
61 60 00
61 01 44
60 00 00
40 00 68
02 00 40
90 06 00
26 10 00
00 40 00
60 50 00
00 80 60
40 02 00
22 00 64
8E 11 C2
A@ 11 CE
6C 11 A2
08 11 A2
2A 10 2A
EC 11 24

28 00 1C
62 00 00
90 21 0@
60 00 09
08 00 00
00 00 00
12 00 @0
20 80 04
64 00 10
28 00 00
34 40 40
02 40 04
00 00 00
10 A0 00
00 04 00
62 20 25
68 40 50
00 09 00
11 46 o1
00 AE 01
00 6C 00
10 2C 11
61 AE 00
01 AE 10
01 AE 00
10 4A 10

of the file’s

62 42 00 C4 00 20 04 20
00 00 8E 10 41 0A 21 Ol
32 40 00 1C @1 40 C8 18
10 01 62 21 0@ 82 00 04
00 00 02 00 60 80 10 8O
00 04 04 78 01 02 70 90
00 40 10 00 80 00 40 19
80 10 00 20 00 @0
62 C1 80 80 00 20
68 16 20 00 82 08 00 0O
60 84 00 08 80 08 00 08
E1 00 28 14 00 08 20 0A
00 00 00 20 00 02 00 B4
45 @9 00 10 04 40 44 82
82 00 00 00 20 40 00 B0
68 00 00 00 @O 00 00 0O
60 82 06 22 @8 85 30 00
64 20 00 00 00 00 00 0O
4A @1 8C 01 E6 00 86 10
EA 01 2A 11 E8 10 26 11
6C 11 60 01 CA 00 62 10
4E 10 8C 00 CE 01 AE 01
46 11 EE 10 22 00 A8 B0
6C 00 6E 00 AC 11 8C 090
40 00 C8 10 48 01 4E 11
64 01 C8 11 E6 01 C2 00

https://www.kaggle.com/c/malware-classification/data

Total train dataset consist of 200GB data out of which 50Gb of data
is .bytes files and 150GB of data is .asm files.
There are total 10,868 .bytes files and 10,868 asm files total 21,736 files
There are 9 types of malwares (9 classes) in our given data:

e Ramnit

e Lollipop

e Kelihos_ver3

e Vundo

e Simda

e Tracur

e Kelihos_verl

e Obfuscator. ACY
o Gatak

N count

¥ ~N
(=] v

(=
v

count_percent

s

dass

Figure 1: Data Distribution of various classes

4 Related Literature

e Microsoft Malware Winners’ Interview: 1st place,” NO to overfitting!”
http://blog.kaggle.com/2015/05/26 /microsoft-malware-winners-interview-
1st-place-no-to-overfitting /

e Novel Feature Extraction, Selection and Fusion for Effective Malware
Family Classification
https://arxiv.org/pdf/1511.04317.pdf

e First place approach in Microsoft Malware Classification Challenge
(BIG 2015)
https://www.youtube.com/watch?v=VLQTRILGz5Y

e Malware Detection github
https://github.com/dchad/malware-detection

http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-overfitting/
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-overfitting/
https://arxiv.org/pdf/1511.04317.pdf
https://www.youtube.com/watch?v=VLQTRlLGz5Y
https://github.com/dchad/malware-detection

5 Description of the set of approaches tried

e Logistic Regression- We first tried with the Logistic Regression Model
and using this model, 0.0473 fraction of points are misclassified. This
gave a lower accuracy.

e Random Forest- Using this model, 0.0473 fraction of points are getting
misclassified.

6 Experiments

6.1 Code

The code is developed in Python with the help of libraries mainly mat-
plotlib,numpy,pandas and sklearn.

The code started by first of all visualising the data distribution among vari-

ous classes.

The code can be found on this link: https://git.cse.iitb.ac.in/pranavchaudhary/
CS725

6.2 Experimental Platform

The code was developed and tested on Windows using Jupyter Notebook.
The code was run on a machine with configurations as:

e Processor: i7-9th Gen
e RAM: 16GB
e SSD: 256GB

The code ran on this machine for 60 hours(approx.)

https://git.cse.iitb.ac.in/pranavchaudhary/CS725
https://git.cse.iitb.ac.in/pranavchaudhary/CS725

6.3 Experimental Results

1 1s 0.403417001251513

10 is 9.2800322738539702
100 is ©.23146665117482457
1000 is ©.24121827492367482

log_loss for ¢ =
log_loss for ¢ =
log_loss for ¢ =
log_loss for ¢ =

Cross Validation Error for each alpha
16 1 a5l 5596

Error measure

 (1000,0241)

0 200 400 600 800 1000
Alpha i's

log loss for train data 9.21292385914963557
log loss for cv data ©.23146665117482457
log loss for test data ©.2249717022715482

Figure 2: Logistic Regression Classifier Alpha vs. Loss Graph

10 is 0.047716095315105386
50 is ©.042859630699671816
100 is ©.04369260598280953
500 is ©.04295321911674641
1000 is ©.04255114042507899
2000 is ©.04273066203790236
3000 is ©.042966302582/0441

log_loss for
log_loss for
log_loss for
log_loss for
log_loss for
log_loss for
log_loss for

annnn66
o

Cross Validation Error for each alpha

10, 0.048)

0047
© 0046
£ o045
&

0044

0043 sz 00, 0.043)

[) 500 1000 1500 2000 2500 3000
Alpha i's

For values of best alpha
For values of best alpha
For values of best alpha

100 The train log loss is: ©.01644034189871256
100 The cross validation log loss is: ©.04255114042507899
1000 The test log loss is: ©.03794906769143639

Figure 3: Random Forest Classifier Alpha vs. Loss Graph

7 Effort

The different parts of the project along with fraction of time taken by each
part:

e Learning about Malwares and bytes and asm files-0.05

e Data Visualization-0.05
e Data Preprocessing-0.4
e Training-0.2

e Validation-0.2

o Testing-0.1

The most challenging and time taking part in this project was the pre-
processing of dataset to a reasonable size without loss of information as the
original dataset was large enough to train the model on our machines(around
184 GB). Fraction of work done by different team members:

e Anurag Chaudhary-0.25
e Himanshu Aswal-0.25
e Pranav Chaudhary-0.25

e Sanyam Raj-0.25

8 Conclusion

The dataset provided by Microsoft was of a very large size and had to be
preprocessed using Feature Extraction to bring it to a size which could be
run on our machines. The model was trained on bytes files as well as asm files
using Logistic Regression Model and Random Forest Classifier Model. The
results achieved by the Random Forest Model was much better as compared
to the results achieved by the Logistic Regression Model.

10

	Problem Statement
	Goal and Objective
	Data
	Related Literature
	Description of the set of approaches tried
	 Experiments
	Code
	Experimental Platform
	Experimental Results

	Effort
	Conclusion

