
LSM TREE INDEX
CS 631 Project

Paras Garg
203050004

Praneeth Reddy
203050019

15 December 2020

1

Github Link : https://git.cse.iitb.ac.in/parasgarg/lsm

Introduction
Every minute 600,000 visits on amazon, Facebook server, and more than 100,000
writes and read operations are sent to the database. With such a high amount of
data being stored, viewed and analysed, a demand for high performance comes
as a must. Hence, the need of the hour is that the data should be stored and
retrieved quite efficiently without the performance being compromised.

Objective
In this project, our aim is to modify the index access layer of PostgreSQL to add
a LSM Tree Based Index over existing Btree based index access "src/backend/access/nbtree"
so that our LSM Tree Based index optimize write performance over existing
btree based index implementation.

Key idea
1. Creating a new extension in the existing postgres database.

2. By creating two levels of index called L0 and L1. Initial inserts are made
into L0, when L0 exceeds it’s size, flush L0 into L1.

3. L0 and L1 are modified Existing Btree indexes.

4. We implemented searching using custom index access method.

System Architecture

Front-end
It is just the existing psql interface that PostgreSQL provide.

Back-end
Implemented a structure similar to Log structured Merge trees to organize the
incoming data on the basis of clustering by search key.

• Worked in single-user mode

• Not handled concurrency control issues.

• Implemented in C language

• Used visual studio code IDE for building code and GCC-GDB for debug-
ging and PG_CONFIG for building and installing the extension.

2

https://git.cse.iitb.ac.in/parasgarg/lsm

Steps to Install the LSM Extension
• Set the following variables appropriately:

– export PATH=/usr/local/pgsql/bin:$PATH
– export PG_CONFIG=POSTGRES_INSTAlLDIR/bin/pg_config

• Move to the lsm(Extension folder) directory

– cd lsm/*extension folder*/

• To use the PGXS infrastructure for your extension run the following com-
mands

– make USE_PGXS=1
– make install USE_PGXS=1

• Start the Postgres Server(restart the server if it’s already running)

• To create extension use

– Create Extension lsm

Implementation Details
We have created a LSM TREE Based index called LSM. LSM index consists of
two levels, L0 and L1 where L0 is used to insert from the user and when L0
exceeds it’s size, flush L0 into L1.

Our Main goals
1. Store metadata for the index. We found two ways to store it.

(a) Create a datastructure called shared memory hash table in shared
memory of postgres in extension _PG_init() and use hashsearch to
retrieve and store our metadata.

(b) Each Btree index called nbtree in postgres store its metadata in a
separate page (PAGE 0) and store datastructire Btree Metadata. We
use the same approach, appended our metadata to end of metadata
page (page 0) of btree, which is represented in the form of LSM
Metadata . To avoid metadata loss when page shrink occurs we
make Page Structure lower address to point to the end of metadata.

2. Index access methods

(a) Each index access method is described by a row in the pg_am sys-
tem catalog. The pg_am entry specifies a name and a handler func-
tion for the index access method. These entries can be created and
deleted using the CREATE ACCESS METHOD and DROP AC-
CESS METHOD SQL commands.

3

(b) CREATE ACCESS METHOD register a handler function which ac-
cepts a IndexAmRoutine which will contains pointer to all the func-
tionality and address of function to our index.

(c) The IndexAmRoutine struct, also called the access method’s API
struct, includes fields specifying assorted fixed properties of the access
method.

3. Creating index support class, operator support function and operator fam-
ily.

(a) The routines for an index method do not directly know anything
about the data types that the index method will operate on. In-
stead, an operator class identifies the set of operations that the index
method needs to use to work with a particular data type.

(b) Since Btree support 5 operator strategies and support function 5 .
We create LSM opertors and operator family using existing operator
support functions used by nbtree implementation.

(c) Operator classes are used to compare the operands of same data type.

(d) To compare cross data type operators operator families are created.In
operator family left operand is always taken as index operators.

4. Index Build
Implemented in a function lsmbuild . lsmbuild create the L0 level index
by calling internally btree build which will create btree index and add our
metadata to Btree Metadata.

5. Insert

(a) Initial N (fixed) insert is made into L0 when L0 reaches its maximum
size

(b) If L1 is not created it will be created and its OID is inserted into lo
metadata.

(c) L1 is created internally using index_concurrently_create_copy method
using existing Index Info from L0 and same name as L0 by prepend-
ing L1 to its name such that both L0 and L1 are unique in the
database.

6. Merging : Merging is done in 3 steps.

(a) Creating indexscan on L0 btree using index_beginscan method.Scanning
over entire Btree L0 using btreescan and inserting each node from
scan to L1 node. Instead of deleting tuple from L0 we truncate L0
to single page using RelationTruncate

(b) Rebuilding L0 tree using index_build and existing index_info struc-
ture from L0 index

4

(c) Rewriting metadata to L0 node since all page including Page 0 has
been deleted except index_info metadata maintained by system cat-
alog.

7. Functions created

(a) Datum lsm_handler(PG_FUNCTION_ARGS)
Create and return a am_handler

(b) Static bool lsm_insert(Relation rel, Datum *values, bool *isnull,ItemPointer
ht_ctid, Relation heapRel,IndexUniqueCheck checkUnique,IndexInfo
*indexInfo)
Handles insert into Lsm index. internally maintains L0 and L1 and
insert data in L0 initially.If required merge L0 into L1.

(c) void lsm_create_L1_if_not_exits(Relation heap,Relation index,LsmMetaData*
lsmMetaCopy)
Create l1 index if not exist in LSM index

(d) lsmbuild(Relation heap, Relation index, IndexInfo *indexInfo)
Used to build a lsm tree internally call btree function to create btree
index. If heap relation already contains data than it will be inserted
into L0 . When next insert occurs if it exceeds size, then L0 is flushed
into L1.

(e) void lsmbuildempty(Relation index)
Used to create a empty btree.

(f) static void lsm_merge_indexes(Oid dst_oid, Relation top_index,
Oid heap_oid)
Used to merge L0 into L1 created on given heap relation.

(g) static void lsm_truncate_index(Relation index, Oid heap_oid)
Used to truncate L0 to zero buffer and rebuild L0.

(h) static void lsm_init_entry(LsmMetaData* entry, Relation index)
Used to initialize the lsmMetaData entry

Files created
1. lsm.h

Contains function prototype and struct for LSMMetaData

2. lsm.control
Parameter used by pgsx to install the extension

3. lsm.c
contains function used by lsm to handle the index implementation

4. lsm–1.0.sql
Contains handler definition, operator class and operator families used by
lsm index.

5

5. Makefile
Make file to build the shared library using the postgres source code.

6. lsm.o
Object file generated for the compiled c code.

7. lsm.so
Shared library generated for installation.

Files Modified
Files modified due to make install

1. POSTGRES_INSTDIR/share/extension/lsm.control

2. POSTGRES_INSTDIR/share/extension/lsm–1.0.sql

3. POSTGRES_INSTDIR/lib/lsm.so

Run Through
Two tree levels L0 and L1 with n=2

• create extension lsm; /*creates a new extension*/

• create table t(k bigint, val bigint); /* create a table t */

• create index lsm_index on t using lsm(k); /* create a lsm based index
lsm_index on table t*/

• insert into t values (1,10);
/* inserted into L0. Now L1 contains 1 entry*/

• insert into t values (2,10);
/* inserted into L0 .Now,L0 contains 2 enties*/

• insert into t values (3,10);
/*inserted into L0. Now L0 exceeds max size, since L1 is not created L1
is created, L0 is flushed into L1, L0 become empty L1 contains 3 entries*/

• insert into t values (2,10); /* insert into L0 . now lo size become 0 and
L1 contains 3 tuples*/

6

Further work that can be implemented
1. Implementation of locking strategies to make it multithreaded using RowEx-

clusiveLock

2. Handling unique insertion by scanning both L0 and L1 to check whether
given entry

3. Deletion of tuple from index by maintaining extra column in index tuple to
maintain whether tuple has been deleted.When scanning returning those
tuple only whose entry is not marked deleted.

Learning
1. Page layout mechanism of database.

2. How database manage multiple index access method in the catalog, by
keeping entries in pg_am then defining generic index methods in index.c
which will internally call index related method using pg_am handler reg-
istered.

3. yao and lehman btree code.

4. Vacuum processing.

5. How postgres scan the index using ambeginscan and amgetbitmap handler
in am entry.

6. How to access locking mechanism.

7. Buffer management by database ,pinning and unpinning of buffer using
rel_buf

8. Metadata storage.

Conclusion
Postgres provide a optimized version of btree called nbtree based on lehman
paper. But btree may suffer when insertion in index are happen in random
order and lot of buffer scan in random order is required. To optimize write we
use a LSM based index using existing btree.Our LSM Based index can optimize
further to reduce searching time because now we have to search in multiple
trees simultaneous.Postgres provide a good knowledge how database works and
manage all its data.

7

References
1. Postgresql 13 Documentation: Database page Layout

https://www.postgresql.org/docs/current/storage-page-layout.html

2. Postgresql 13 Documentation :c-language functions
https://www.postgresql.org/docs/current/xfunc-c.html

3. Postgresql 13 Documentation : Packaging Related Objects into an Exten-
sion
https://www.postgresql.org/docs/current/extend-extensions.html

4. Postgres13 documenation : Operator Optimization Information
https://www.postgresql.org/docs/current/xoper-optimization.html

5. Postgres13 Documentation : Index Access Method Interface Definition
https://www.postgresql.org/docs/13/indexam.html

6. Discovering the Computer Science Behind Postgres Indexes
http://patshaughnessy.net/2014/11/11/discovering-the-computer-science-behind-postgres-indexes

8

https://www.postgresql.org/docs/current/storage-page-layout.html
https://www.postgresql.org/docs/current/xfunc-c.html
https://www.postgresql.org/docs/current/extend-extensions.html
https://www.postgresql.org/docs/current/xoper-optimization.html
https://www.postgresql.org/docs/13/indexam.html
http://patshaughnessy.net/2014/11/11/discovering-the-computer-science-behind-postgres-indexes

