Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
FML Project
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Meet Narendra
FML Project
Commits
c926f916
Commit
c926f916
authored
Oct 04, 2022
by
Himali saini
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added 4_2 as content layer
parent
e1e608b2
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
39 additions
and
18 deletions
+39
-18
1508.06576/feature_maps.py
1508.06576/feature_maps.py
+17
-1
1508.06576/image2gif.py
1508.06576/image2gif.py
+1
-1
1508.06576/logger.py
1508.06576/logger.py
+1
-1
1508.06576/loss.py
1508.06576/loss.py
+11
-7
1508.06576/optimizer.py
1508.06576/optimizer.py
+9
-8
No files found.
1508.06576/feature_maps.py
View file @
c926f916
...
...
@@ -37,7 +37,23 @@ class FeatureMaps():
LOGGER
.
error
(
"Could not fetch layer "
+
str
(
layer
))
return
weights
def
get_fmaps
(
self
,
img
,
layer
=
[
0
,
5
,
10
,
19
,
28
]):
def
get_fmaps_content
(
self
,
img
,
layer
=
[
21
]):
'''
Function which will pass the image through the model and get the respective fmaps
@params
img: numpy image f64
layer: list
'''
fmaps
=
[]
layer_num
=
0
for
layer_i
in
self
.
model
.
features
:
img
=
layer_i
(
img
)
if
layer_num
in
layer
:
fmaps
.
append
(
img
)
layer_num
+=
1
return
fmaps
def
get_fmaps_style
(
self
,
img
,
layer
=
[
0
,
5
,
10
,
19
,
28
]):
'''
Function which will pass the image through the model and get the respective fmaps
@params
...
...
1508.06576/image2gif.py
View file @
c926f916
...
...
@@ -2,7 +2,7 @@ import imageio
import
os
fnames
=
[]
newNameFolder
=
''
newNameFolder
=
'
content-4_2
'
path
=
'styled_images/'
+
newNameFolder
for
img
in
os
.
listdir
(
path
):
...
...
1508.06576/logger.py
View file @
c926f916
...
...
@@ -11,7 +11,7 @@ class Logger:
_formatter
=
logging
.
Formatter
(
'
%(asctime)
s
%(levelname)
s
%(message)
s'
)
def
__new__
(
cls
,
*
args
,
**
kwargs
):
if
not
cls
.
_instance
:
identifier
=
''
identifier
=
'
content-4_2
'
if
not
os
.
path
.
isdir
(
"Logs/"
):
os
.
mkdir
(
"Logs/"
)
logHandler
=
logging
.
FileHandler
(
"Logs/style_transfer_"
+
identifier
+
".log"
)
...
...
1508.06576/loss.py
View file @
c926f916
...
...
@@ -50,7 +50,7 @@ class Loss:
return
loss_s
@
staticmethod
def
total_loss
(
alpha
,
beta
,
cont_fmap_real
,
style_fmap_real
,
content_fmap_gen
):
def
total_loss
(
alpha
,
beta
,
cont_fmap_real
,
style_fmap_real
,
generated_fmaps_content
,
generated_fmaps_style
):
'''
Function which computes total loss and returns it
@params
...
...
@@ -59,10 +59,14 @@ class Loss:
loss_t
=
0.0
a
=
0.0
b
=
0.0
for
gen
,
cont
,
sty
in
zip
(
content_fmap_gen
,
cont_fmap_real
,
style_fmap_real
):
loss_cont
=
Loss
.
content_loss
(
cont
,
gen
)
loss_style
=
Loss
.
style_loss
(
sty
,
gen
)
for
cont
,
gen_cont
in
zip
(
cont_fmap_real
,
generated_fmaps_content
):
loss_cont
=
Loss
.
content_loss
(
cont
,
gen_cont
)
a
+=
loss_cont
for
gen_style
,
sty
in
zip
(
generated_fmaps_style
,
style_fmap_real
):
loss_style
=
Loss
.
style_loss
(
sty
,
gen_style
)
b
+=
loss_style
loss_t
+=
alpha
*
loss_cont
+
beta
*
loss_style
loss_t
+=
alpha
*
a
+
beta
*
b
return
loss_t
,
a
,
b
\ No newline at end of file
1508.06576/optimizer.py
View file @
c926f916
...
...
@@ -3,6 +3,7 @@ from feature_maps import LOGGER, FeatureMaps
import
torch.optim
as
optim
from
torchvision.utils
import
save_image
import
matplotlib.pyplot
as
plt
import
os
plt
.
ion
()
class
Optimizer
:
@
staticmethod
...
...
@@ -16,10 +17,12 @@ class Optimizer:
Author: @gaurangathavale
'''
LOGGER
.
info
(
"Running gradient descent with the following parameters"
)
epoch
=
5
000
epoch
=
4
000
learning_rate
=
0.01
alpha
=
1
beta
=
0.01
identifier
=
"content-4_2"
os
.
mkdir
(
"styled_images/"
+
identifier
)
LOGGER
.
info
(
f
"{epoch},{learning_rate},{alpha},{beta}"
)
optimizer
=
optim
.
Adam
([
content_img_clone
],
lr
=
learning_rate
)
...
...
@@ -29,11 +32,12 @@ class Optimizer:
feature_maps
=
FeatureMaps
()
for
e
in
range
(
epoch
):
content_fmaps
=
feature_maps
.
get_fmaps
(
content_img
)
style_fmaps
=
feature_maps
.
get_fmaps
(
style_img
)
content_generated_fmaps
=
feature_maps
.
get_fmaps
(
content_img_clone
)
content_fmaps
=
feature_maps
.
get_fmaps_content
(
content_img
)
style_fmaps
=
feature_maps
.
get_fmaps_style
(
style_img
)
generated_fmaps_content
=
feature_maps
.
get_fmaps_content
(
content_img_clone
)
generated_fmaps_style
=
feature_maps
.
get_fmaps_style
(
content_img_clone
)
total_loss
,
total_cont_loss
,
total_style_loss
=
Loss
.
total_loss
(
alpha
,
beta
,
content_fmaps
,
style_fmaps
,
content_generated_fmaps
)
total_loss
,
total_cont_loss
,
total_style_loss
=
Loss
.
total_loss
(
alpha
,
beta
,
content_fmaps
,
style_fmaps
,
generated_fmaps_content
,
generated_fmaps_style
)
# clears x.grad for every parameter x in the optimizer.
# It’s important to call this before total_loss.backward(), otherwise it will accumulate the gradients from multiple passes.
...
...
@@ -48,8 +52,5 @@ class Optimizer:
#plt.plot(content_img_clone)
if
(
e
%
10
==
0
):
LOGGER
.
info
(
f
"Epoch = {e} Total Loss = {total_loss} content Loss = {total_cont_loss} style Loss = {total_style_loss}"
)
identifier
=
""
name
=
"styled_images/"
+
identifier
+
"/styled_"
+
str
(
e
)
+
".png"
save_image
(
content_img_clone
,
name
)
\ No newline at end of file
save_image
(
content_img_clone
,
name
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment