Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
F
FML Project
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Meet Narendra
FML Project
Commits
45de1076
Commit
45de1076
authored
Oct 02, 2022
by
Meet Narendra
💬
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
First run of gradient descent
parent
f6105fb6
Changes
7
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
64 additions
and
30 deletions
+64
-30
.gitignore
.gitignore
+3
-1
1508.06576/feature_maps.py
1508.06576/feature_maps.py
+7
-3
1508.06576/loss.py
1508.06576/loss.py
+9
-8
1508.06576/optimizer.py
1508.06576/optimizer.py
+16
-14
1508.06576/preprocess.py
1508.06576/preprocess.py
+3
-3
1508.06576/style_transfer.py
1508.06576/style_transfer.py
+26
-1
1508.06576/styled.png
1508.06576/styled.png
+0
-0
No files found.
.gitignore
View file @
45de1076
...
@@ -4,3 +4,5 @@
...
@@ -4,3 +4,5 @@
*.ipynb
*.ipynb
*Logs*
*Logs*
*.log
*.log
*test*
*.ipynb*
1508.06576/feature_maps.py
View file @
45de1076
import
torch
import
torch
import
torch.nn
as
NN
from
logger
import
Logger
from
logger
import
Logger
LOGGER
=
Logger
()
.
logger
()
LOGGER
=
Logger
()
.
logger
()
LOGGER
.
info
(
"Started Feature Maps"
)
LOGGER
.
info
(
"Started Feature Maps"
)
device
=
torch
.
device
(
"cuda"
if
(
torch
.
cude
.
is_available
())
else
'cpu'
)
device
=
torch
.
device
(
"cuda"
if
(
torch
.
cuda
.
is_available
())
else
'cpu'
)
LOGGER
.
info
(
"Running the model cuda_available = "
+
str
(
torch
.
cuda
.
is_available
()))
#Author: @meetdoshi
#Author: @meetdoshi
class
FeatureMaps
:
class
FeatureMaps
()
:
def
__init__
(
self
,
arch
=
"vgg19"
):
def
__init__
(
self
,
arch
=
"vgg19"
):
'''
'''
Init function
Init function
@params
@params
arch: str {vgg11,vgg13,vgg16,vgg19,vgg19bn}
arch: str {vgg11,vgg13,vgg16,vgg19,vgg19bn}
'''
'''
super
()
try
:
try
:
self
.
model
=
torch
.
hub
.
load
(
'pytorch/vision:v0.10.0'
,
arch
,
pretrained
=
True
)
self
.
model
=
torch
.
hub
.
load
(
'pytorch/vision:v0.10.0'
,
arch
,
pretrained
=
True
)
except
:
except
:
...
@@ -49,7 +52,7 @@ class FeatureMaps:
...
@@ -49,7 +52,7 @@ class FeatureMaps:
fmaps
.
append
(
img
)
fmaps
.
append
(
img
)
layer_num
+=
1
layer_num
+=
1
return
fmaps
return
fmaps
'''
if __name__ == "__main__":
if __name__ == "__main__":
fmap = FeatureMaps()
fmap = FeatureMaps()
model = fmap.get_model()
model = fmap.get_model()
...
@@ -58,3 +61,4 @@ if __name__ == "__main__":
...
@@ -58,3 +61,4 @@ if __name__ == "__main__":
print(len(weights))
print(len(weights))
for weight in weights:
for weight in weights:
print(type(weight),weight.shape)
print(type(weight),weight.shape)
'''
1508.06576/loss.py
View file @
45de1076
...
@@ -16,10 +16,10 @@ class Loss:
...
@@ -16,10 +16,10 @@ class Loss:
l2_norm_sq
=
None
l2_norm_sq
=
None
try
:
try
:
diff
=
F
-
P
diff
=
F
-
P
l2_norm_sq
=
np
.
sum
(
diff
**
2
)
l2_norm_sq
=
torch
.
norm
(
diff
)
**
2
except
Exception
as
e
:
except
Exception
as
e
:
LOGGER
.
error
(
"Error computing loss"
,
e
)
LOGGER
.
error
(
"Error computing loss"
,
e
)
return
l2_norm_sq
/
2.0
return
l2_norm_sq
@
staticmethod
@
staticmethod
def
gram_matrix
(
F
):
def
gram_matrix
(
F
):
...
@@ -40,21 +40,22 @@ class Loss:
...
@@ -40,21 +40,22 @@ class Loss:
@params
@params
Author: @soumyagupta
Author: @soumyagupta
'''
'''
num_channels
=
F
[
1
]
num_channels
=
F
.
shape
[
1
]
h
=
F
[
2
]
h
=
F
.
shape
[
2
]
w
=
F
[
3
]
w
=
F
.
shape
[
3
]
style_gram_matrix
=
Loss
.
gram_matrix
(
F
)
style_gram_matrix
=
Loss
.
gram_matrix
(
F
)
target_gram_matrix
=
Loss
.
gram_matrix
(
A
)
target_gram_matrix
=
Loss
.
gram_matrix
(
A
)
loss_s
=
np
.
sum
((
style_gram_matrix
-
target_gram_matrix
)
**
2
)
loss_s
=
torch
.
norm
(
style_gram_matrix
-
target_gram_matrix
)
**
2
constant
=
1
/
(
4.0
*
(
num_channels
**
2
)
*
((
h
*
w
)
**
2
))
constant
=
1
/
(
4.0
*
(
num_channels
**
2
)
*
((
h
*
w
)
**
2
))
return
constant
*
loss_s
return
constant
*
loss_s
@
staticmethod
@
staticmethod
def
total_loss
(
alpha
,
beta
,
cont_fmap_real
,
cont_fmap_noise
,
style_fmap_real
,
style_fmap_noise
):
def
total_loss
(
alpha
,
beta
,
cont_fmap_real
,
style_fmap_real
,
content_fmap_gen
):
'''
'''
Function which computes total loss and returns it
Function which computes total loss and returns it
@params
@params
Author: @jiteshg
Author: @jiteshg
'''
'''
loss_t
=
alpha
*
Loss
.
content_loss
(
cont_fmap_real
,
cont_fmap_noise
)
+
beta
*
Loss
.
style_loss
(
style_fmap_real
,
style_fmap_noise
)
for
gen
,
cont
,
sty
in
zip
(
content_fmap_gen
,
cont_fmap_real
,
style_fmap_real
):
loss_t
=
alpha
*
Loss
.
content_loss
(
cont
,
gen
)
+
beta
*
Loss
.
style_loss
(
sty
,
gen
)
return
loss_t
return
loss_t
\ No newline at end of file
1508.06576/optimizer.py
View file @
45de1076
from
loss
import
Loss
from
loss
import
Loss
from
feature_maps
import
FeatureMaps
from
feature_maps
import
LOGGER
,
FeatureMaps
import
torch.optim
as
optim
import
torch.optim
as
optim
from
torchvision.utils
import
save_image
from
torchvision.utils
import
save_image
import
matplotlib.pyplot
as
plt
plt
.
ion
()
class
Optimizer
:
class
Optimizer
:
@
staticmethod
@
staticmethod
def
gradient_descent
(
content_img
,
style_img
,
content_img_clone
):
def
gradient_descent
(
content_img
,
style_img
,
content_img_clone
):
...
@@ -14,24 +15,25 @@ class Optimizer:
...
@@ -14,24 +15,25 @@ class Optimizer:
content_img_clone: Copy of Original Image
content_img_clone: Copy of Original Image
Author: @gaurangathavale
Author: @gaurangathavale
'''
'''
epoch
=
1000
LOGGER
.
info
(
"Running gradient descent with the following parameters"
)
epoch
=
5000
learning_rate
=
0.001
learning_rate
=
0.001
alpha
=
10
alpha
=
10
beta
=
100
beta
=
100
LOGGER
.
info
(
f
"{epoch},{learning_rate},{alpha},{beta}"
)
optimizer
=
optim
.
Adam
([
content_img_clone
],
lr
=
learning_rate
)
optimizer
=
optim
.
Adam
([
content_img_clone
],
lr
=
learning_rate
)
print
(
optimizer
)
LOGGER
.
info
(
"Optimizer = "
+
str
(
optimizer
))
#fig = plt.figure()
#ax = fig.add_subplot(111)
feature_maps
=
FeatureMaps
()
for
e
in
range
(
epoch
):
for
e
in
range
(
epoch
):
feature_maps
=
FeatureMaps
()
content_fmaps
=
feature_maps
.
get_fmaps
(
content_img
)
content_fmaps
=
feature_maps
.
get_fmaps
(
content_img
)
style_fmaps
=
feature_maps
.
get_fmaps
(
style_img
)
style_fmaps
=
feature_maps
.
get_fmaps
(
style_img
)
# content_clone_fmaps = feature_maps.get_fmaps(content_img_clone)
content_generated_fmaps
=
feature_maps
.
get_fmaps
(
content_img_clone
)
content_white_noise_fmaps
=
feature_maps
.
get_fmaps
(
content_img
,
[
21
])
style_white_noise_fmaps
=
feature_maps
.
get_fmaps
(
style_img
,
[
21
])
total_loss
=
Loss
.
total_loss
(
alpha
,
beta
,
content_fmaps
,
content_white_noise_fmaps
,
style_fmaps
,
style_white_noise
_fmaps
)
total_loss
=
Loss
.
total_loss
(
alpha
,
beta
,
content_fmaps
,
style_fmaps
,
content_generated
_fmaps
)
# clears x.grad for every parameter x in the optimizer.
# clears x.grad for every parameter x in the optimizer.
# It’s important to call this before total_loss.backward(), otherwise it will accumulate the gradients from multiple passes.
# It’s important to call this before total_loss.backward(), otherwise it will accumulate the gradients from multiple passes.
...
@@ -42,8 +44,8 @@ class Optimizer:
...
@@ -42,8 +44,8 @@ class Optimizer:
# Optimization Step / Update Rule
# Optimization Step / Update Rule
optimizer
.
step
()
optimizer
.
step
()
#plt.clf()
if
(
not
(
e
%
100
)):
#plt.plot(content_img_clone)
print
(
total_loss
)
if
(
e
%
10
):
LOGGER
.
info
(
f
"Epoch = {e} Total Loss = {total_loss}"
)
save_image
(
content_img_clone
,
"styled.png"
)
save_image
(
content_img_clone
,
"styled.png"
)
\ No newline at end of file
1508.06576/preprocess.py
View file @
45de1076
...
@@ -5,7 +5,7 @@ import torchvision.transforms as transforms
...
@@ -5,7 +5,7 @@ import torchvision.transforms as transforms
from
PIL
import
Image
from
PIL
import
Image
import
numpy
as
np
import
numpy
as
np
LOGGER
=
Logger
()
.
logger
()
LOGGER
=
Logger
()
.
logger
()
device
=
torch
.
device
(
"cuda"
if
(
torch
.
cud
e
.
is_available
())
else
'cpu'
)
device
=
torch
.
device
(
"cuda"
if
(
torch
.
cud
a
.
is_available
())
else
'cpu'
)
#Author: @meetdoshi
#Author: @meetdoshi
class
Preprocessor
:
class
Preprocessor
:
@
staticmethod
@
staticmethod
...
@@ -35,9 +35,9 @@ class Preprocessor:
...
@@ -35,9 +35,9 @@ class Preprocessor:
@params
@params
img: 3d numpy array
img: 3d numpy array
'''
'''
loader
=
transforms
.
Compose
([
transforms
.
ToTensor
(),
transforms
.
Resize
([
224
,
224
]),
transforms
.
Normalize
(
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
],),])
loader
=
transforms
.
Compose
([
transforms
.
ToTensor
(),
transforms
.
Resize
([
512
,
512
]),
transforms
.
Normalize
(
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
],),])
img
=
loader
(
img
)
.
unsqueeze
(
0
)
img
=
loader
(
img
)
.
unsqueeze
(
0
)
assert
img
.
shape
==
(
1
,
3
,
224
,
224
)
assert
img
.
shape
==
(
1
,
3
,
512
,
512
)
return
img
.
to
(
device
,
torch
.
float
)
return
img
.
to
(
device
,
torch
.
float
)
...
...
1508.06576/style_transfer.py
View file @
45de1076
import
os
import
os
import
warnings
from
optimizer
import
Optimizer
from
loss
import
Loss
from
preprocess
import
Preprocessor
from
feature_maps
import
FeatureMaps
import
numpy
as
np
import
numpy
as
np
import
time
import
time
import
torch
import
torch
import
argparse
import
argparse
import
torchvision.models
as
models
import
torch.optim
as
optim
from
torchvision.utils
import
save_image
warnings
.
filterwarnings
(
'ignore'
)
from
logger
import
Logger
from
logger
import
Logger
LOGGER
=
Logger
()
.
logger
()
LOGGER
=
Logger
()
.
logger
()
LOGGER
.
info
(
"Started Style Transfer"
)
LOGGER
.
info
(
"Started Style Transfer"
)
class
StyleTransfer
:
class
StyleTransfer
:
'''
'''
Style Transfer Base Class
Style Transfer Base Class
...
@@ -22,5 +31,21 @@ class StyleTransfer:
...
@@ -22,5 +31,21 @@ class StyleTransfer:
Author: @gaurangathavale
Author: @gaurangathavale
'''
'''
device
=
torch
.
device
(
"cuda"
if
(
torch
.
cuda
.
is_available
())
else
'cpu'
)
content_img_path
=
'test/content.jpg'
style_img_path
=
'test/style.jpg'
content_img
=
Preprocessor
.
process
(
content_img_path
)
style_img
=
Preprocessor
.
process
(
style_img_path
)
content_img_clone
=
content_img
.
clone
()
.
requires_grad_
(
True
)
Optimizer
.
gradient_descent
(
content_img
,
style_img
,
content_img_clone
)
if
__name__
==
"__main__"
:
stf
=
StyleTransfer
()
stf
.
pipeline
()
\ No newline at end of file
1508.06576/styled.png
0 → 100644
View file @
45de1076
187 KB
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment