
Xanadu: Mitigating cascading cold starts in serverless
function chain deployments

ABSTRACT
Organization of tasks as workflows are an essential feature to ex-
pand the applicability of the serverless computing framework. Ex-
isting serverless platforms are either agnostic to function chains
(workflows as a composition of functions) or rely on naive provision-
ing and management mechanisms of the serverless framework—an
example is that they provision resources after the trigger to each
function in a workflow arrives thereby forcing a setup latency for
each function in the workflow. In this work, we focus on mitigating
the cascading cold start problem— the latency overheads in trig-
gering a sequence of serverless functions according to a workflow
specification. We first establish the nature and extent of the cascad-
ing effects in cold start situations across multiple commercial server
platforms and cloud providers. Towards mitigating these cascading
overheads, we design and develop several optimizations, that are
built into our tool Xanadu . Xanadu offers multiple instantiation
options based on the desired runtime isolation requirements and
supports function chaining with or without explicit workflow spec-
ifications. Xanadu’s optimizations to address the cascading cold
start problem are built on speculative and just-in-time provisioning
of resources. Our evaluation of the Xanadu system reveals almost
complete elimination of cascading cold starts at minimal cost over-
heads, outperforming the available state of the art platforms. For
even relatively short workflows, Xanadu reduces platform over-
heads by almost 18x compared to Knative and 10x compared to
Apache Openwhisk.

ACM Reference Format:
. 2020. Xanadu: Mitigating cascading cold starts in serverless function
chain deployments. In middleware ’20: ACM/IFIP Middleware 2020, Delft,
The Netherlands. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/1122445.1122456

1 INTRODUCTION
Serverless computing, the new-kid-on-the-block in cloud services,
obviates the need to rent and manage runtime environments such
as virtual machines or containers [18, 23, 39]. Its commercial avatar,
Function as a Service (FaaS), accepts autonomous and stateless
compute tasks (aka functions)—along with specifications of trig-
gers used to invoke functions. The provider provisions a runtime
environment for functions to execute in, dispatches the requests
and deals with the elasticity of resource provisioning and other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

management tasks as needed. In exchange, the provider charges
for resources consumed per instance of the function execution.
Typically functions are small blocks of code needing fine-grained
resources to execute for short periods of time. The flexibility that
this model affords to the provider to manage resources allows for
higher resource utilization and efficiency while offering inexpen-
sive pay-as-you-use models to clients deploying applications in
the FaaS mode. The attractiveness of such a proposition has made
primary cloud service providers support serverless platforms such
as AWS Lambda [6], Google Cloud Functions [12], and Azure Func-
tions [9] coexisting alongside open-source efforts such as Knative
[16] and Apache OpenWhisk [5]. However this flexibility comes at
the cost of provider-side resource management complexity - the
typical trade-off is between the competing factors of having to keep
pre-provisioned resources ready to offer low latency for function
responses (thereby reducing efficiency for the provider) vs allowing
client requests to suffer high latency (while it waits for resources
to be provisioned on the fly before the function can execute).

Real-world applications are often complex [18, 55] involving
interactions between smaller tasks—MapReduce based data pro-
cessing [25, 42], algebraic operations at scale [34, 53], video ana-
lytics [22, 63]. In the serverless paradigm, this requirement trans-
lates to control and data flow between functions, resulting in com-
plex workflows of these functions (also referred to as function
chains). Recognising the need for such function chains, service
providers support explicit specification ofworkflows involving func-
tions [7, 8, 13]. Providers allow clients to use conditional branching,
parallel execution with synchronisation barriers and simple se-
quencing of functions as part of their workflow specification.

The latency VS efficiency tradeoff that the provider must juggle
depends on the level of isolation guarantees of runtime environ-
ments [10, 19, 23, 26, 27, 44] used to execute functions. Examples of
these runtime sandboxes include containers and lightweight virtual
machines. A key performance parameter is the startup latency—the
duration between the occurrence of the user-specified trigger and
the start of function execution. Studies have established that a cold
start (where the execution environment for the function to run
when the trigger arrives does not exist and one is provisioned on
demand) can take up to 70% of a function’s lifetime [31]. Subse-
quent triggers can reuse existing execution sandboxes (warm start)
only if they arrive within a platform-specific interval. The inter-
val between the arrival of these triggers represents provisioned
resources not yielding any returns for the provider and hence repre-
sent wasted resource allocation. Reducing the startup latency while
minimising resource wastage and under-utilisation is an active area
of work [23, 48, 49, 61]–—our paper deals with this tricky trade-off
in the context of function chains.

Function chains amplify the cold start problem since the impact
cascades through the depth of the chain—the initial trigger starts
the first function which in turn causes an internal trigger to start

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

1 2 3 4 5 6
Chain Length

0

10

20

30

40

50

La
te

nc
y

(i
n

s)

Function Execution Latency
E2E Function Chain Execution Latency

Figure 1: Cascading cold start overheads for a linear chain
of functions instantiated using Docker containers.

the next function(s) and so on till the workflow terminates. The
severity of this cascading cold start is due to the fact that current
FaaS platforms treat functions as autonomous entities for provision-
ing and resource management purposes and hence are chaining
agnostic (despite support for workflow of functions). Figure 1 shows
the impact of increasing the chain length of a simple linear chain on
cold start latency. The provisioning overhead of a chain increases
linearly with the chain length (Observation 1) and for a function
execution duration of 5s each, a cascading cold start can account
for 46% of the total workflow duration for a chain length of 6 and
for smaller functions with execution times of 500 ms, the cascading
cold start overhead increases to up to 90% for a workflow of same
length.

Further, the impact of cascading cold starts depends on the
sandboxing environment employed to meet isolation requirements.
The requirements of robust isolation are met by employing light
weight VMs and containers (cold start latency ~3000ms), which have
higher startup latency compared to processes and threads (cold
start latency ~1000ms). Correspondingly, the impact of cascading
cold start is more dramatic with stronger isolation sandbox setups
(Observation 2). The naive approach of provisioning all resources
of a function chain at the beginning of the workflow is highly
resource-inefficient, and this inefficiency is proportional to length
and structure of the chain. Further, implicit chains, where work-
flows are not explicitly specified but are coded into the functions
themselves are not even considered for optimizations in existing
solutions (Observation 3).

Towards mitigating the cascading cold start overheads with func-
tion chains, we propose Xanadu . Xanadu employs a just-in-time
resource provisioning technique to prevent cascading cold starts
while at the same time maintaining high resource usage efficiency.
The key ideas stem from the observation that function dependen-
cies are either known a priori (with explicit specification) or can be
inferred by the FaaS platform (Observation 4). We employ a prob-
abilistic model of the function chain execution path to speculatively
deploy resources just before they are required for progressing the
execution of the chain. Xanadu offers a speculation aggressiveness
parameter to control the extent of proactive deployment which

is tuned dynamically based on function chain characteristics and
deployment costs. We measure the performance of Xanadu under
multiple chaining scenarios and real-world applications and com-
pare it with both open source platforms as well as with commercial
proprietary cloud offerings. Our evaluation shows that Xanadu
eliminates cascading cold starts, reducing the linear growth of the
overhead latency to a constant overhead. This results in up to 5x-7x
overhead reduction in emulated real-world workloads.

The main contributions of our work are:

(1) A detailed analysis of cascading cold starts for workflows
instantiated using function chains on popular platforms.

(2) A novel platform for providing Function as a Service offering,
that has speculative and just-in-time resource provisioning
to eliminate the linearly increasing cascading cold start over-
heads as well as techniques to detect implicit chains and
apply the provisioning optimizations.

(3) Comprehensive evaluation with multiple chaining scenar-
ios, platforms and real-world applications to demonstrate
efficacy of our solution.

The rest of the paper is structured as follows. We provide a brief
background into function chains and cascading cold starts in Section
2, and introduce the key ideas behind Xanadu in Section 3. We
discuss Xanadu ’s implementation in Section 4 and performance
evaluation in Section 5, followed by discussing related work in
Section 6 finally concluding in Section 7.

2 BACKGROUND & MOTIVATION
We now formally define function chains and establish the severity
of the problem empirically by looking into the effects of cascading
cold starts, under different conditions like depth of the chain, re-
quest arrival pattern & the choice of sandbox technique. We also
present evidence of cascading cold starts in public cloud infrastruc-
ture. Based on the evidence, we motivate the need for speculative
resource provisioning in function chains.

2.1 Function Chaining
A function chain is a workflow of functions meant to deliver com-
prehensive functionality of an application. While, in the most gen-
eral case, there may be cycles/loops in this ordering of functions,
we assume the workflow to be a directed acyclic graph (DAG) for
the purposes of this effort. Control flow in such graphs allow all
or a subset of one-to-one (1:1), one-to-many (1:m), many-to-one
(m:1) and many-to-many (m:n) relationships between functions
of a chain, as shown in Figure 2. The direction of arrows in the
figure refer to the direction of flow of control for the functions; for
example in the 1:1 scenario, f2 must wait till the completion of the
function f1, while in the 1:m case, the completion of the function
f1 acts as a multi-cast trigger to functions f2 to f5. A variant of
the 1 :𝑚 relationship is one where only one the of𝑚 downstream
children (we refer to this behaviour as XOR cast) is invoked based
on the output of the parent function. In the m:1 relationship, f5
must wait till all its dependencies complete, effectively behaving
as a barrier for multiple parallel functions f1 to f4. The m:n rela-
tionship combines the features of 1:m and m:1 relationships with a
subset of functions acting as multi-cast triggers while some others

Xanadu: Mitigating cascading cold starts in serverless
function chain deployments Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

Figure 2: Types of inter-function relationships in function
Chains.

acting as synchronization barriers. Based on how these relation-
ships are expressed, function chains can be classified into, explicit
and implicit function chains.

2.1.1 Explicit Function Chains. Explicit function chains are those
which have a developer specified workflow schema in the form
of a processable descriptor that is interpreted by a platform to or-
chestrate the workflow. AWS Step Functions allow such explicit
workflows using a JSON based structured states language called the
Amazon States Language [1], IBM Cloud Functions uses a pseudo-
programming language-based API [13] to generate the workflow
schemas. Azure Durable functions provide APIs to implement cus-
tom function chaining logic.

2.1.2 Implicit Function Chains. The presence of an externalized
workflow schema opens up avenues to optimise resource allocation
needed for the functions of the workflow. However, functions can
themselves invoke other functions specified as part of function body,
which can cascade (synchronously or asynchronously), building
an implicit chain. With implicit function chains, each function in
the chain behaves as a part of a distributed orchestrator, without
the platform playing any role in the orchestration. Implicit chains
are challenging to detect and optimise and can lead to unexpected
performance degradation in seemingly standalone functions.

Regardless of whether the schema is externalized, function chains
can also be classified into deterministic and conditional function
chains based on their behaviour of following a deterministic path
on every run or dynamically selecting a path based on the inputs
and outputs of each function in the workflow.

2.2 Cascading cold starts in Function Chains
Cold start latency can account for a significant portion of a func-
tion’s runtime overhead. It has been shown that for short func-
tions, cold start latency can occupy up to 90% of a function’s total
response time [50]. This latency overhead aggravates in case of
function workflows. A single trigger to a workflow can generate
multiple cold starts, one per function that needs to be invoked as
part of the workflow. In the worst case, this overhead latency is
proportional to the depth of the chain.

1 2 3 4 5
Chain Length

0

500

1000

1500

2000

Ru
nt
im

e
O
ve

rh
ea

d
(i
n
m
s)

ASF Warm
ASF Cold
ADF Warm
ADF Cold

Figure 3: Cascading cold starts in AWS Step Functions (ASF)
and Azure Durable functions(ADF).

2.3 Empirical Analysis of FaaS Platforms
We divide our investigation into the impact of cascading cold starts
into three categories. First, we investigated the extent to which per-
formance of a workflow degrades when it suffers from cascading
cold starts. Cold start overhead is the latency suffered by a func-
tion beyond its actual execution time, due to resource provisioning
delays, networking delays & user space setup and orchestration
delays. For a workflow, cascading cold start latency is the aggregate
latency of the slowest control flow branch of the workflow. A func-
tion workflow F, with overall runtime 𝑅𝐹 consisting of 𝑛 linearly
ordered functions 𝑖 ∈ {1 . . . 𝑛}, each with individual runtime 𝑟𝑖 , has
an overhead latency 𝐶𝐷 defined as,

𝐶𝐷 = 𝑅𝐹 −
𝑛∑
𝑖=1

𝑟𝑖 (1)

We deployed a simple linear function chain with individual function
runtime (𝑟𝑖) of 500ms on the AWS and Azure serverless platforms.
In both cases, we use the workflow management tools of the corre-
sponding platforms, AWS Step Functions (ASF) and Azure Durable
Functions (ADF) to execute the chains and report latency. We varied
the size of the chains from 1 to 5 functions, and executed the chains
under both cold start and warm start conditions to contrast the
effect of cascading cold starts on chain performance. As shown in
Figure 3, both AWS Step functions and Azure Durable functions
show strong linear behaviour with 𝑅2 value of 0.993 and 0.953, re-
spectively. On an average, cold start overheads accounted for 48.5%
of the total runtime on ASF and 41.2% on ADF compared to 13.2%
and 13.8% for warm start on the respective platforms.

To ensure that the buildup of latency is due to cascading cold
starts and not because of other platform specific factors, we re-
peated our tests on two open source platforms, Knative, originally
developed by Google and Apache OpenWhisk, which forms the
basis for IBM’s serverless platform. Both these platforms exhibit the
same behavioural patterns of linearly increasing cold start latency,
with even more overhead compared to ASF and ADF (Figure 4). The
open source solutions use general purpose Docker containers to
isolate workers, with high cold start latency, instead of optimised

Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

1 2 3 4 5
Chain Length

0

5000

10000

15000

20000

25000

30000

35000

40000

Ru
nt

im
e

O
ve

rh
ea

d
(i

n
m

s)

OpenWhisk Warm
Knative Warm
OpenWhisk Cold
Knative Cold

Figure 4: Cascading cold starts in Knative Implicit Functions
and OpenWhisk Sequences.

solutions (such as light weight VMs). We also observed that Open-
Whisk in standalone mode keeps a limited number of containers
warm, even for consecutive requests, which explains the sudden
increase in cold start latency for chain length 5.

Second, we investigated the frequency with which the ASF and
ADF serverless platforms reclaim function (isolation sandbox) re-
sources which result in cascading cold starts in subsequent requests
to the chain. We started two linear no-op function chains, of depth
5 using AWS Step functions and Azure Durable Functions. Requests
were sent at a decreasing arithmetic progression of intervals starting
at 60 minutes with a common difference of 10 minutes. To increase
the granularity of investigation, we decreased the common differ-
ence to 5 minutes when the interval of sending requests came down
to 30 minutes and further decreased the common difference to 1
minute when the interval of request came down to 10 minutes. We
repeated the experiment 5 times with a cumulative experimentation
time of about 20 hours. As shown in Figure 5, we found that the
ASF platform reclaims workflow resources after around 10 minutes
of idle time on an average, noticeable by the drop in overhead time
to below a threshold time of 1000ms (dashed line in the figure) at an
inter-arrival time of about 9 minutes, while the ADF platform does
the same after about 20 minutes of idle time noticeable by general
drop in average latency below 1500ms at around 20 minutes (dotted
line). To further explore the effects of cascading cold starts, we
simulated a lightly loaded function workflow (~2 requests/hour) on
both the platforms with requests for the two workflows generated
at random intervals drawn from a uniform distribution between
0 minutes and 60 minutes (𝑈 (0, 60)) and ran the experiment for
about 16 hours. A timeline diagram is provided in Figure 6. We
threshold a latency of 1000ms as the highest warm start latency for
the workflow deployed on ASF, and 1500ms as the corresponding
threshold for the ADF workflow. We observed about 62.5% of the
requests to ADF suffering from cascading cold starts, while on ASF
about 78.1% of the requests suffered cascading cold starts. This
demonstrates that both the platforms suffer from a high frequency
of cascading cold starts with an average overhead of 1400ms on
ADF and 1800ms on ASF.

6050403025201510 9 8 7 6 5 4 3 2 1 0
Inter-arrival Time (in min)

500

1000

1500

2000

2500

Ru
nt
im
e
O
ve
rh
ea
d
(i
n
m
s) Azure Step Function

1500ms
AWS Step Function
1000ms

Figure 5: Cascading cold start profiles for function chains
with decreasing request intervals.

0 200 400 600 800 1000
Timeline (in min)

500

1000

1500

2000

2500

3000

3500

Ru
nt
im

e
O
ve

rh
ea

d
(i
n
m
s)

AWS Step Function
1000ms
Azure Durable Function
1500ms

Figure 6: Runtime overhead profile of an emulated lightly-
loaded functionworkflowdepicting a large concentration of
Cascading cold starts.

The cold start profile of both the platforms remained fairly stable
over the entire duration of the experiment further revealing that
neither of the platforms employ any learning optimisations to miti-
gate cascading cold start effects. A sub-note from the experiment is
that the performance metrics obtained from ASF were more stable
compared to that obtained from ADF, Our findings are in line with
the findings of [24] for parallel workloads, which also reported
variability in performance for Azure Durable Functions.

Lastly, we empirically determined the impact of the choice of
execution environment (isolation sandbox) on cascading cold starts
in function chains. Most public clouds use a homogeneous isolation
environment such as a container or a light weight VM to execute
functions, settling on a trade-off between performance and security.
However, depending on a function’s security sensitivity, picking the
right isolation sandbox can lead to better performance and when
required better security. We investigate the effects of isolation envi-
ronments used by different platforms — V8 isolates [10], processes
and containers [5, 16]. Figure 7 shows the runtime overhead of a
linear chain whose length has been varied from 1 to 5. As expected
the overheads for container based environments are higher than

Xanadu: Mitigating cascading cold starts in serverless
function chain deployments Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

1 2 3 4 5
Chain Length

0

2

4

6

8

10

12

14

16

O
ve

rh
ea

d
(i

n
s)

Isolate
Process
Container

Figure 7: Runtime overhead of different Isolation Environ-
ments

that with processes or isolates, with container-based chains exhibit-
ing up to a 2.5x to 2.9x increased overhead compared to processes
and isolates respectively. For latency sensitive function workflows,
these execution specific environments need to avoid the high cold
start overheads and provide required isolation requirements (and
Xanadu provides these optimizations).

2.4 Metrics of Goodness and Cost
Our empirical studies of cascading cold start on the cloud platforms
show significant performance degradation for function chains com-
pared to what we would expect if resources had been pre-allocated
for each instantiation of the chain. To formally quantify the cas-
cading cold start penalty, we introduce two overhead cost factors,
Latency overhead cost 𝐶𝐷 , and Resource provisioning overhead cost
𝐶𝑅 . Cost 𝐶𝐷 is the additional latency which function chains pay
(beyond that needed to execute the functions in the longest path
of the workflow) due to cascading cold starts (Equation 1). Cost
𝐶𝑅 captures the costs of resources (CPU and memory) provisioned
and locked before the actual function execution begins and the re-
sources are put to use. CPU resource cost or𝐶𝑅𝐶𝑃𝑈

is the aggregate
CPU time slices (measured in seconds) spent by a worker, across
all allocated CPU cores before the worker starts executing a request,
while the memory resource cost or𝐶𝑅𝑚𝑒𝑚𝑜𝑟𝑦

is the aggregate prod-
uct of the memory allocated to each worker and the time before
being put to use (measured in MBs). Formally, for a function chain
of depth n the memory cost with is defined as,

𝐶𝑅𝑚𝑒𝑚𝑜𝑟𝑦
=

𝑛∑
𝑖=1

𝑚𝑒𝑚𝑜𝑟𝑦𝑖 ∗ (𝑟𝑡𝑜𝑡𝑎𝑙𝑖 − 𝑟𝑒𝑥𝑒𝑐𝑖) (2)

where𝑚𝑒𝑚𝑜𝑟𝑦𝑖 is thememory allocated to functionworker iwhose
total runtime and actual function execution time are 𝑟𝑡𝑜𝑡𝑎𝑙

𝑖
and

𝑟𝑒𝑥𝑒𝑐
𝑖

respectively. We combine the notions of latency overhead and
resource allocation overhead into a single penalty factor, which is
the product of the cost factors 𝐶𝐷 and 𝐶𝑅 , again subdivided into
𝜙𝑐𝑝𝑢 (defined as𝐶𝑅𝐶𝑃𝑈

∗𝐶𝐷), measured in 𝑠2, and𝜙𝑚𝑒𝑚𝑜𝑟𝑦 (defined
as 𝐶𝑅𝑚𝑒𝑚𝑜𝑟𝑦

∗𝐶𝐷), measured in𝑀𝐵𝑠2.
The goal of any FaaS platform must be to minimise 𝜙 to reduce

latency overhead without infrastructure expenditure overruns. Cur-
rent systems suffer from high 𝐶𝐷 costs while minimising 𝐶𝑅 , due

to lack of workflow level cold start optimisations. On the other
hand, naively over-provisioning resources to mitigate 𝐶𝐷 , such as
pre-crafted resource pools [43, 50, 52] increases 𝐶𝑅 . Either of these
approaches increases the joint factor 𝜙 .

We propose Xanadu , a speculative, just-in-time, multi-granular
isolation based function orchestration system which uses function
profiling to eliminate linearly increasing cascading cold starts in
function workflows. Xanadu adopts a combination of techniques
to eliminate cascading cold starts, it profiles functions to predict
implicit chains in correlated functions. predicts the Most Likely
Estimated Path (MLP) taken by a function workflow when invoked
and proactively deploys resources on the MLP reducing 𝐶𝐷 . To
reduce resource idle time, workers are deployed just ahead of a
function invocation, providing warm start latency at minimal cost
overhead, limiting 𝐶𝑅 for an overall low 𝜙𝑐𝑝𝑢 and low 𝜙𝑚𝑒𝑚𝑜𝑟𝑦 .

3 XANADU: KEY IDEAS
In this section we discuss the building blocks of Xanadu that enable
it to eliminate cascading cold start starts while keeping resource
provisioning cost overheads minimal. We first describe how Xanadu
detects the most likely path a function workflow will execute, fol-
lowed by how to perform Just-in-time deployment of resources,
and finally how Xanadu detects implicit chains and pre-provisions
resources just in time for them as well.

3.1 Inferring the Most Likely Path
Availability of workflow information in explicit chains lends itself
to pre-deployment of resources for all the functions of the workflow.
While this succeeds in getting rid of the cold start overhead for
deterministic chains, it would lead to resource wastage in case of
conditional workflows. Consider the case of a multicast workflow as
shown in Figure 8. With such workflows, deploying the entire func-
tion chain implies provisioning of worker sandboxes for functions
along all possible paths, while actual resource utilization will occur
along a single path of execution. To prevent such over-deployment
of resources, we estimate the most likely path (MLP) that may be
taken by a workflow and only provision sandboxes along the MLP.
Xanadu uses a generative model to estimate the most likely path in
the workflow DAG. 𝜌 (𝐶 𝑗 |𝑃𝑖) denotes the probability of executing
child node 𝐶 𝑗 , given that the parent node 𝑃𝑖 executes. The likeli-
hood that child node 𝐶 𝑗 executes next is dependent on possible
parent nodes 𝑃𝑖 , (𝑖 ∈ 1 . . . 𝑛) and is estimated using a likelihood
factor L which is the summation across all parent nodes as follows:

𝐿𝑗 =

𝑛∑
𝑖=1

𝜌𝑖 (𝐶 𝑗 |𝑃𝑖) (3)

The function with the maximum likelihood factor among all its
siblings is appended to the MLP. In case of 1:1 and XOR cast
relationships, the factor is L is upper bounded by 1 and behaves
like a probability factor. However, the upper bound does not hold
for multicasts and m:n relationships. Algorithm 1 lays out the steps
to estimate the MLP. The probability of each node being in the path
depends on the probability that one of its parent nodes executes
and the probability of it executing next.

Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

Algorithm 1: Generating the MLP
Input: workflow
Output: mlp

1 parents← workflow.root;
2 while parent in parents do
3 siblings← parent.children;
4 foreach sibling ∈ siblings do
5 sibling.prob← parent.branch [sibling] ∗

parent.prob;
6 parents.Append (sibling);
7 end
8 mlp.Append (Max (siblings));
9 end

B3B1

C1 C2 C3 C4

B2

A1

E2E1

D2D1

Figure 8: A XOR cast DAGwith solid arrows indicating a 70%
probability of being triggered. All other siblings at each level
are equally likely to be triggered.

To test the effectiveness of the algorithm we deployed a function
chain structured as a conditional branching DAG as shown in Figure
8.

We, triggered the workflow with 20 requests to observe the
algorithms behavior. The branch detection and MLP algorithms ran
in parallel to detect the workflow branches and their probabilities,
while at the same time, generating a MLP based on the available
data. The algorithm was able to infer the entire function workflow
within 8 triggers to the function chain, visiting each function the
tree at least once.

We show the evolution stages of the MLP in Figure 9. As can
be observed, in the initial stages, the MLP does not represent the
actual MLP as the branch probabilities are not accurate and the
entire workflow has not been mapped. During the first 3 triggers
for example, C1 was chosen as a possible candidate for MLP, even
though its likelihood factor𝐿𝐶1 is around 0.15. As such, after the first
3 requests (Round 3), D2 and E1 were the only functions correctly
identified as part of the MLP. However, with more triggers to the
workflow, theMLP starts converging, with 80% of theMLP functions
being correctly detected after Round 5. The inference algorithm

B3B1

C1 C2 C3 C4

B2

A1

E2E1

D2D1

B3B1

C1 C2 C3 C4

B2

A1

E2E1

D2D1

B3B1

C1 C2 C3 C4

B2

A1

E2E1

D2D1

B3B1

C1 C2 C3 C4

B2

A1

E2E1

D2D1

Round 1 Round 3

Round 5 Round 7

Figure 9: Stages of MLP inferred based on fraction of tree
discovered

was able to converge to the MLP within 7 triggers to the chain. We
also observed that after the convergence, there was no oscillation
in the MLP, and it stayed the same at the end of the 20 triggers.
We provide a more detailed evaluation of the efficacy of the MLP
detection algorithm in Section 5.

On invocation of a particular workflow, Xanadu speculatively
deploys all the nodes (functions) identified to be part of the function
chain at the onset of the chain execution. This results in chained re-
quests experiencing warm starts since the workers are provisioned
and ready.

3.2 Minimizing Pre-provisioning Overheads
Speculatively provisioning sandboxes at the onset of a function
workflow can be expensive, especially for extended function chains
with large depths. Sandboxes provisioned for functions at the tail of
the MLP of such chains incur large idle times resulting in resource
wastage, which while mitigates cascading cold start overheads (𝐶𝐷),
is counterproductive with respect to resource utilisation (increasing
the resource cost 𝐶𝑅). Furthermore, speculative provisioning on
conditional chains can suffer from prediction misses, which occurs
when the function chain under consideration deviates from its ex-
pected path of execution. Deploying the entire MLP upfront can
lead to large resource wastage in such cases of prediction misses.
The speculatively deployed resources have to be discarded and new
isolation sandbox instances have to be provisioned to serve the
actual path taken by the workflow. This results in both increased
latency and resource wastage increasing both the costs 𝐶𝐷 and
𝐶𝑅 . Table 1 shows the effect of prediction misses in a function
chain of depth 5 with 3 conditional points, for 10 cold start trig-
gers. We observe that the worker count (and hence the resource

Xanadu: Mitigating cascading cold starts in serverless
function chain deployments Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

Speculation
On (in s)

Speculation
Off (in s)

Speculation
Miss

Worker
Count

Average
Case 7.621 15.652 0.6 5.6

Worst
Case 17.7 17.17 3 8

Best
Case 4.8 14.12 0 5

Table 1: Cold start latency and Resource Cost under Specu-
lation Prediction Misses

cost) and request latency increases considerably when the chain
suffers from prediction misses. For example, in the worst case of 3
prediction misses, the performance degradation, compounded by
Docker’s concurrent scalability issues [50, 52], lead to a cold start
performance worse than that observed with no optimisation.

We propose two techniques to reduce the impact of prediction
misses in speculative provisioning.

3.2.1 Deployment Aggressiveness. The first of these is a provider-
side continuous-scale tunable parameter to control the aggressive-
ness with which resources are provisioned. This parameter con-
trols the fraction of the total depth to which execution sandboxes
for functions should be provisioned or how much should the pre-
provisioning algorithm look ahead. This prevents cost overrun due
to eager pre-deployment and reduces miss penalty in case the work-
flow deviates to a different path than that predicted by the MLP
estimation algorithm. The aggressiveness parameter allows service
providers to juggle the trade-off between cost overruns and cold
start overheads.

3.2.2 Just In Time Deployment. In case the predicted MLP is incor-
rect there will arise a situation in which we will speculatively have
deployed a sandbox that will not be used. The platform recovers
from this predictionmiss by shutting down the incorrectly deployed
container and starting up a new one for the path being now taken
by the workflow. The deployment aggressiveness parameter does
not overcome the double provisioning in case of a prediction miss.
We propose Just in Time (JIT) deployment to tackle this issue. The
idea is to provision a isolation sandbox just in time for its use as
opposed to provisioning it ahead of time speculatively. We profile
the runtime characteristics of the functions comprising a workflow
and estimate their cold-start time, worker startup time and warm-
start runtime using an exponential moving average function. For
implicit functions, we also measure the delay after which a parent
node invokes its child (next function in the chain). We use these
function profiles to speculatively provision sandboxes on the MLP
just-in-time for their expected invocation. This JIT deployment is
done by adding a planning phase to the orchestration component.
When a request arrives for a workflow execution, the orchestrator
starts invocation of the function at the start of the DAG while start-
ing the planning phase in parallel. The planning phase generates a
timeline estimating the time of deployment of the function nodes
based on startup times of the child sandbox (𝑆𝑐) and expected time
of invocation of the child.

Algorithm 2: Algorithm to Generate JIT deployment plan
for explicit workflows
Input: mlp
Output: jitPlan

1 while node in mlp do
2 if node.dependency is empty then

// root nodes without dependencies are

called immediately

3 jitPath.Append (node, 0);
4 node.maxDelay← node.coldtstart;
5 else
6 delay← Max (node.parents.maxDelay);
7 delay← delay- node.starttime;
8 jitPath.Append (node, delay);
9 delay← delay + node.warmtstart;

10 node.maxDelay← delay;
11 end
12 end

For explicit chains, the invocation delay for a child depends upon
the lifetime of the parent(s), since a child can only be invoked by the
orchestrator upon completion of its parent(s) on whom it depends.
In case of a m:1 barrier function,this translates to be the lifetime
of the slowest parent, which acts as the barrier bottleneck. The
complete algorithm to generate the JIT path is given in algorithm
2. Since the algorithm works transparently, without hooks into the
function runtime, it is not possible to estimate the exact lifetime of
any function. Instead we use the warmstart time as a reasonable
estimate of a functions lifetime. In case of implicit functions, how-
ever, child nodes are invoked directly by their parents’ runtime,
which invalidates our previous proposition of using the parents’
warmstart time as a measure of the delay in invoking the child. Al-
ternatively, Xanadu maintains an internal list of requests and their
arrival timestamps. We assume that parent to child requests main-
tain a chronological ordering, i.e. parent requests arriving earlier
invoke their child functions earlier, thus maintaining a one-to-one
mapping between parent and child requests based on their arrival
timestamps. Even though this assumption might not hold for every
request, it is statistically sound for a large number of requests. The
mapping is used to infer the call delay between a parent node and
a child node. Algorithm 2 thus needs to be slightly updated for
implicit chains, where coldstart time and warmstart time used in
line 5 and line 10 respectively needs to be replaced with the invoke
time calculated as discussed.

To tackle the problem of wasteful resource provisioning in case
of prediction misses, JIT deployment stops all planned, proactive
provisioning as soon as it detects a prediction miss. Thus even
though we pay the price of cascading cold starts due to miss penalty
𝐶𝐷 , we avoid the double cost of wasteful speculative provisioning
𝐶𝑅 .

3.3 Detecting Implicit Chains
The absence of a workflow schema with implicit chains makes it
challenging to identify workflow paths and pre-deploy resources.

Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

Algorithm 3: Algorithm to detect function chain branches
in implicit chains
Input: request, branchTree
Output: branchTree

1 if request.header.Has (parentID) then
2 parent← branchTree.get(request.header);
3 child← parent.branches.get(request.dest);
4 child.probability←

(child.𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦∗child.𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶𝑜𝑢𝑛𝑡)+1
(child.𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶𝑜𝑢𝑛𝑡++) ;

5 siblings← parent.branches;
6 foreach sibling ∈ siblings do
7 if sibling ≠ child then
8 sibling.probability←

sibling.𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦∗sibling.𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶𝑜𝑢𝑛𝑡
(sibling.𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶𝑜𝑢𝑛𝑡++) ;

9 end
10 end
11 else
12 parent← branchTree.get(request.header);
13 parent.requestCount← parent.requestCount + 1;
14 end

However, all requests originating from functions in a chain have
that their point of origin and the destination function as worker
nodes managed by Xanadu . Xanadu exploits this phenomenon to
identify function branches belonging to a chain. We patched the
HTTP request libraries to include a unique identifier as part of the
request header, identifying the function initiating such a function
request. A request received by the function dispatcher identifies the
caller and callee functions to build function chain. We calculate the
conditional probability of a (child) function C being invoked pro-
vided the parent function P was invoked 𝜌 (𝐶 |𝑃) as a ratio between
the total requests to the child to that of the parent and use it to
weigh the branches of function chain tree. For each request received
by C we increase the request count of C by one, and update the
probability of C and all its siblings. Each function in the workflow
thus begins to shadow the actual probability distribution of the
workflow as more requests are received. We iteratively update the
model and the workflow map based on the outcome and behaviour
of requests as further detailed in Algorithm 3.

This generative probabilistic model of the workflow’s runtime
branching behavior is treated as the workflow map for a implicit
chain used for proactive, ahead of time, pre-provisioning of re-
sources as discussed in the preceding sections.

3.4 Putting It All Together
Xanadu’s strategy for eliminating cascading cold starts consists of:

(i) Proactively detecting (implicit) function workflows,
(ii) Speculatively deploying resources ahead of time to reduce

cold starts for functions in the workflow &
(iii) Delaying proactive provisioning of resources to minimise

runtime overhead costs due to idle workers.
The typical sequence of operations with Xanadu are as shown

in Figure 10, and starts with a workflow execution request arriving

Figure 10: Sequence of operations with Xanadu employing
just-in-time speculative deployment.

at the orchestrator. The orchestrator asynchronously invokes the
JIT deployer while executing in parallel forwarding requests to
functions whose runtime dependencies are met. The JIT deployer
generates a deployment plan consisting of function deployment
timelines expected to eliminate cold start with minimal execution
overhead. The JIT deployer then performs proactive ahead of time
deployment of function resources such that when a function request
arrives, a runtime is already executing and it encounters a warm
start.

4 IMPLEMENTATION
We implemented the Xanadu system using Node.js. The architec-
ture of Xanadu is shown in Figure 11. The Dispatch Daemon(DD)
runs on individual host machines and performs resource provision-
ing, and maintenance of Xanadu workers. Workers are the encap-
sulation sandboxes within which functions execute. The Dispatch
Manager(DM) is the central orchestration component of Xanadu ,
comprising of two main sub-modules, the Function Resource Al-
locator which instructs the Dispatch Daemon about the size and
the nature of the resource to be provisioned and a Reverse Proxy,
forwarding incoming requests to respective host workers. The DM
also runs a metrics engine and a branch detector engine in parallel
to the reverse proxy which gathers function profile data and detects
implicit branches in incoming requests. We use Apache CouchDB
[2] to store metrics and function branch related metadata. CouchDB
supports native JSON data support, allowing us to efficiently mi-
grate structured data to and from the backend server without the
need for conversion of data across formats. We use Apache Kafka
[4] for internal communication between the Dispatch Manager and
the Dispatch Daemon and also for state management of Xanadu
workers.

Xanadu workers support multi-granular isolation, with func-
tion isolation levels pegged at thread level isolation implemented
using JavaScript V8 Isolates [15], process level isolation and con-
tainer level isolation implemented using Docker [11] Containers.
Users specify the level of isolation to be used for each function
as a request parameter during function deployment or as part of
workflow description for explicit function chains. Explicit chaining
support is provided using a state definition language we developed
based on JSON. An example of a state specification for an explicit
conditional chain is as shown in Listing 1. Functions are defined

Xanadu: Mitigating cascading cold starts in serverless
function chain deployments Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

Figure 11: Xanadu architecture. Dotted arrows represent
asynchronous calls

within blocks of type function, with parameters like memory size
allocation, isolation sandbox to use and its dependency list. Blocks
of type Conditional are used to define conditional branching in
the workflow, with their success and fail parameters pointing to
the respective branch to invoke.

When an explicit workflow request arrives, the explicit chain-
ing map for that workflow is interpreted by the Explicit Chain
Orchestrator module which coordinates with the Xanadu DM for
deploying functions and their resources and dispatching function
requests, while for an implicit chain, the request is handled directly
by the DM. Either way, the arrival of a request at the DM, sets
off parallel invocations to the Resource Allocator, Speculation En-
gine and the Metrics Engine (Communications 2.1 through 2.4 in
Figure 11). The Speculation Engine generates the pre-deployment
plan and deploys resources as required while the metrics engine
collects data related to the workflow’s runtime and behavior. When
the resources are ready, the Reverse Proxy forwards the function
chain requests to the Xanadu workers. The Branch detector works
in parallel to the Reverse Proxy, improving the workflow behavior
model and updating the MLP as required, while backing everything
up on the Metadata DB for persistence.

5 EVALUATION
This sections discusses evaluation of Xanadu’s speculative provi-
sioning of resources for function chains. We set up Xanadu on
a x86-64 linux machine (kernel v4.15.0) with 64 core Intel Xeon
2.1GHz processor and 128GB of memory. The workload was gen-
erated from other machines on the same network using JMeter[3].
We compare Xanadu ’s cascading cold start performance against
Knative (Commit #f87352b) and OpenWhisk (Commit #ffef0a9). We
deployed Knative on a single node Kubernetes deployment and de-
ployed OpenWhisk in standalone mode with Docker as a runtime
backend for both.

Our evaluation answers the following questions:

(i) What is the rate of increase of latency with speculative de-
ployment?

(ii) What is the cost overhead of speculative deployment?
(iii) How effective is the generative model and how long does it

take the model to converge to the MLP?

1 "f1":{
2 "type":"function", "memory": 512,
3 "runtime":"container",
4 "wait_for":[],
5 "conditional":"condition1"
6 },
7 "condition1":{
8 "type": "conditional",
9 "wait_for":["f1"],
10 "condition":{ "op1":"f1.x", "op2": 7, "op":"

lte" },
11 "success":"branch1", "fail":"branch2"
12 },
13 "branch1":{
14 "type": "branch",
15 "f3":{
16 ...
17 }
18 },
19 "branch2":{
20 ...
21 }
22 }

Listing 1: An Explicit Conditional Chain defined by
Xanadu’s State Definition Language

(iv) What is the average cost overhead and worst case cost and
runtime overhead for conditional chains?

(v) What is the effect of JIT deployment on cascading cold start?
(vi) What is the joint penalty factor for no optimization vs spec-

ulative deployment vs JIT deployment?
(vii) How does the choice of sandboxing technique, affect the

performance of function workflows?
(viii) How does the Speculative and JIT deployment improve per-

formance of real-world applications?

5.1 Speculative Provisioning
We discussed speculative provisioning of execution sandboxes in
Xanadu , where we detect the MLP in a function workflow and
proactively deploy functions to eliminate cascading cold starts. To
evaluate the effectiveness of Speculative Provisioning, we deployed
10 linear chains of depths ranging from chain depth 1 to chain
depth 10 (Node.js runtime) with Docker containers as the execution
environment. Each function in the workflow, has a runtime of 5s.
For each chain, we triggered 10 requests in cold start condition.
We ran Xanadu first in the no optimisation mode (Xanadu Cold),
then with only speculative provisioning (Xanadu Speculative) and
finally in the JIT mode (Xanadu JIT) and compare our results with
OpenWhisk and Knative.

Figure 12a shows the overhead latency (in logarithmic scale1)
as we vary the chain length. We observe that as expected Open-
Whisk, Knative and Xanadu Cold shows linearly increasing cold
start latency due to consecutive cold starts in the workflow. How-
ever, Xanadu Speculative shows a stable cold start profile remaining
almost constant with increasing chain length. At chain length 10, it

1All logarithmic scale plots are in base 𝑒

Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

had a latency overhead of 4.85s, compared to 76.34s for Knative and
44.38s for OpenWhisk, a 1.11x increase in overhead as opposed to
10.5x and 10.14x increase in overhead in Knative and OpenWhisk
respectively.

Takeaways: Xanadu Speculative has an almost constant latency
compared to linear growth on other platforms.

5.2 JIT Deployment
Speculative deployment shows an impressive improvement in 𝐶𝐷
costs. However, proactive provisioning can be resource expensive,
leading to an increase of 𝐶𝑅 costs. We measured the cumulative
idle CPU time (in ms), the amount of CPU time consumed while
the worker remains idle waiting for a request, and the cumulative
memory used, as a product of memory used and the worker idle
time(measured in MBs). Figure 13a and 13b shows that Specula-
tive Deployment can be up to 15.6% more expensive on the CPU
usage parameter and 250 times more expensive than Xanadu Cold
concerning memory usage. This can become prohibitively large for
practical use case purposes.

Just-in-deployment performs a tight ahead of time resource de-
ployment, significantly reducing 𝐶𝑅 costs. We observe that com-
pared to Xanadu Cold, Xanadu JIT is only 0.9% more CPU expensive
on an average and 2.18x more memory expensive. A more than
an order of magnitude cost improvement compared to Xanadu
Speculative.

Improvements in resource utilisation, while keeping performance
close to Xanadu Speculative results in reduced penalty factor 𝜙 as
evident in Figures 12b and 12c. Xanadu JIT has an average of 5.8x re-
duction in 𝜙𝑐𝑝𝑢 and 1.7x reduction in 𝜙𝑚𝑒𝑚𝑜𝑟𝑦 penalties compared
to Xanadu Cold, which means not only does it eliminate Cascad-
ing Cold starts, but it does that without significant cost overruns.
We further notice that Xanadu JIT has a better overhead latency
compared to Xanadu Speculative, on an average showing up to
10% improvement in 𝐶𝐷 . This can be attributed to Docker’s con-
current scalability bottlenecks as noted earlier. Xanadu Speculative
starts all MLP workers at the same time at the commencement
of the workflow, and this increases the initial cold start suffered
by the chain, compared to Xanadu JIT which spreads resource de-
ployment across the workflow’s lifetime alleviating the startup
bottleneck—cumulatively leading to an overhead improvement of
16.7x and 9.29x compared to Knative and OpenWhisk respectively.

Takeways: Xanadu JIT eliminates Cascading Cold starts with
negligible increase in resource provisioning costs leading to im-
proved penalty factors 𝜙𝑐𝑝𝑢 and 𝜙𝑚𝑒𝑚𝑜𝑟𝑦 .

5.3 Inferring the MLP
Fast, effective and accurate detection of the MLP path is necessary
to perform speculative deployment of resources. The convergence
time of the MLP path is a function of multiple factors like the depth
of the workflow, the number of conditional points in the workflow
and their probabilistic biases. To evaluate the effectiveness of the
algorithm and its convergence speed, we deployed 100 randomly
generated binary trees with 1 to 10 nodes each with random bi-
ases at conditional points. Each tree was explored ten times to
learn the workflow behaviour and infer the MLP. Figure 14a and
14b shows the MLP convergence behaviour across two different

parameters; the size of the workflow and number of conditional
branches. On average, workflows with up to 4 functions needed
around two requests to converge, which increased to an average
5.3 requests for workflows with more than eight functions. Similar
trends are shown by variance in the number of conditional points in
the workflow. Functions with a maximum of 1 conditional branch
needed an average of 2 requests to converge, increasing gradually
to above 5.2 requests when the number of conditional branches in-
creases to 3. We note that there is considerable variance in either of
plots. This can be attributed to the probabilistic biases at each con-
ditional points. A sharp bias expresses itself strongly, which helps
the inference algorithm to converge faster, compared to weaker
biases, where it might oscillate between equiprobable paths. We
also note that barring 1 instance, the inference algorithm was able
to converge to the actual MLP. The outlier case, had conditional
probabilities extremely close to 0.5, which caused it to oscillate
between two parallel branches.

Takeaways: The MLP inference algorithm’s convergence rate
varies as a function of workflow behavior; even then empirical
evaluation shows, under a diverse set of conditions the inference
algorithm has a fast convergence rate while maintaining a high
degree of accuracy.

5.4 Chains with conditional branching
Conditional branches in chains pose challenges in pre-provisioning
resources due to their non-deterministic nature. Execution sand-
boxes provisioned on the MLP may remain unused when the chain
deviates from its expected behavior. We evaluate our algorithm’s
performance on the 100 randomly generated trees discussed previ-
ously. Each tree was evaluated with 10 requests for a total of 1000
requests. Figure 15a shows the average latency overhead of the
trees sorted in increasing order of their function counts. On an
average, overhead latency gains in speculative and JIT mode range
from 29% to 45% with an average gain of 37% and 34% respectively
for chain lengths of more than two. This shows that even under pre-
diction misses, Xanadu provides better cascading latency compared
to other platforms. CPU overheads for Speculative deployment re-
main within 11.9% on average of Xanadu Cold, further reducing
to 1% in case of Xanadu JIT (Figure 15b). The average 𝐶𝑅 costs for
memory stood at 5.8x of Xanadu Cold for Speculative deployment
but improved to 2.7x in the JIT mode.

Takeaways: Even under prediction misses, Xanadu provides
significant performance benefits with slight increase in resource
provisioning costs.

5.5 Impact of Sandboxing Mechanisms
We had earlier reviewed the effects of isolation sandboxes on cold
start latencies in function chains. Lightweight sandboxes like V8
isolates and processes have shorter startup time leading to lower
cold start latencies. Figure 16 details our evaluation of how specu-
lative deployment can improve overhead latencies in irrespective
of sandboxing choices. We note that for a linear chain of depth 10,
with individual function lifetimes of 5000ms, isolate based sand-
boxes with Speculative deployment show an end-to-end overhead

Xanadu: Mitigating cascading cold starts in serverless
function chain deployments Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

1 2 3 4 5 6 7 8 9 10
Chain Length

0

1

2

3

4

O
ve

rh
ea

d
(i

n
s)
 [
Lo
g
Sc
al
e]

Xanadu Speculative
Xanadu JIT
Xanadu Cold
OpenWhisk
Knative

(a) Comparative

1 2 3 4 5 6 7 8 9 10
Chain Length

0

1

2

3

4

5

ϕ
cp
u(
in
 s
2)
 [
Lo
g
Sc
al
e]

Xanadu JIT
Xanadu Speculative
Xanadu Cold

(b) 𝜙𝑐𝑝𝑢

1 2 3 4 5 6 7 8 9 10
Chain Length

0

2

4

6

8

10

 ϕ
m
em

or
y(
in
 M
Bs

2)
 [
Lo
g
Sc
al
e] Xanadu JIT

Xanadu Speculative
Xanadu Cold

(c) 𝜙𝑚𝑒𝑚𝑜𝑟𝑦

Figure 12: Figure 12a: Cascading cold start profiles(𝐶𝐷) of Xanadu (Cold, Speculative, JIT), OpenWhisk and Knative. Figure 12b
and 12c: 𝜙𝑐𝑝𝑢 and 𝜙𝑚𝑒𝑚𝑜𝑟𝑦 profiles of different Xanadu modes with varying chain lengths.

1 2 3 4 5 6 7 8 9 10
Chain Length

0

2000

4000

6000

8000

CP
U
 u
sa
ge

 (
in
 m

s)

Xanadu JIT
Xanadu Speculative
Xanadu Cold

(a) CPU runtime cost profile

1 2 3 4 5 6 7 8 9 10
Chain Length

0

1

2

3

4

5

6

7

8

M
em
or
y
us
ag
e(
in
 M
Bs

)
[L

og
 S

ca
le

] Xanadu JIT
Xanadu Speculative
Xanadu Cold

(b) Memory runtime cost profile

Figure 13: CPU(𝐶𝑅𝐶𝑃𝑈
) & memory(𝐶𝑅𝑚𝑒𝑚𝑜𝑟𝑦

) runtime cost
profiles of different Xanadu modes.

2 4 6 8 10
Functions in Workflow

0

2

4

6

8

Av
er

ag
e

W
or

kf
lo

w
 T

ri
gg

er
 C

ou
nt

(a) Size of workflow

0 1 2 3
Conditions in Workflow

0

2

4

6

8

Av
er

ag
e

W
or

kf
lo

w
 T

ri
gg

er
 C

ou
nt

(b) Branching factor

Figure 14: Time to converge to the MLP (in terms of number
of triggers to the workflow) for different sized workflows
(Figure 14a) and the number of conditional branches (Figure
14b).

latency of only 1289ms, resulting in a mere 2.5% increase in end-to-
end latency. This is a significant improvement over baselines and
an acceptable penalty in most latency-sensitive scenarios.

Takeaways: Lightweight sandboxes coupled with Xanadu’s pre-
deployment strategy are ideal for latency sensitive workloads.

5.6 Case Studies
We present two end to end real world case studies, written in
Node.js, to illustrate how Xanadu can improve performance of

2 3 4 5 6 7 8 9 10
Function Count in Tree

5000

10000

15000

20000

25000

30000

35000

40000

O
ve

rh
ea

d(
m
s)

Overhead (Cold)
Overhead (Speculative)
Overhead (JIT)

(a) Latency Overhead

2 3 4 5 6 7 8 9 10
Function Count in Tree

0

1000

2000

3000

4000

CP
U
(i
n
m
s)
, M

em
or
y
(i
n
M
Bs
)

CPU (Cold)
Memory (Cold)
CPU (Speculative)
Memory (Speculative)
CPU (JIT)
Memory (JIT)

(b) Resource Overhead

Figure 15: Figure 15a Average cold start latency overheads
for randomly generated trees for Xanadu under Cold, Specu-
lative and JITmode. Figure 15b Average resource usage over-
heads for Xanadu

Container Process Isolate
0

5000

10000

15000

20000

25000

30000

La
te

nc
y

(i
n

m
s)

Cold
Speculative
JIT

Figure 16: Impact of sandboxing environments (Function
chains of depth 10).

function chains in the wild. In each case we report the execution
and overhead latency and compare the performance of Xanadu
with Knative and OpenWhisk.

5.6.1 E-Commerce Website. We emulate the checkout process of
an E-commerce website as an implicit chain. The chain is triggered

Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

En
d t
o E
nd

Or
de
r

Di
sc
ou
nt

pa
ym
en
t

Inv
oic
e

Sh
ipp
ing

0

5000

10000

15000

20000

25000

30000

35000

La
te
nc
y
(i
n
m
s)

Xanadu Cold
Xanadu Speculative
Xanadu JIT
Knative
OpenWhisk
Execution latency
Overhead latency

(a) E-commerce Website

En
d t
o E
nd

Sc
ale

Co
nt
ra
st

Ro
ta
te

Blu
r

Gr
ay
sc
ale

0

10000

20000

30000

40000

50000

La
te
nc
y
(i
n
m
s)

Xanadu Cold
Xanadu Speculative
Xanadu JIT
Knative
OpenWhisk
Execution latency
Overhead latency

(b) Image Processing Pipeline

Figure 17: Figure 17a and 17b: Emulation of an E-Commerce
and an image processing pipeline

by a customer placing an Order(~2000ms), which upon comple-
tion invokes the Discount(~100ms) module. The customer is then
taken to the Payment (~2500ms) gateway. On successful payment
an Invoice(~300ms) is generated before culminating with product
Shipping(~500ms). The results are shown in Figure 17a. Both Kna-
tive and OpenWhisk exhibit significant overhead latencies, with
cascading cold start latency being 520% and 130% of the end to end
execution latency. Xanadu improves the overhead latency to 70% of
end to end execution latency, which is a considerable improvement
compared to the baselines.

5.6.2 Image Processing Pipeline. Data and signal processing pipelines
are ideal candidates for explicit workflows owing to their pre-
structured control flows. We implement a five function image pro-
cessing pipeline using the JIMP [14] image processing library. The
pipeline accepts an image file, Scales(~400ms) it, adjusts its Con-
trast(~350ms), Rotates(~600ms) it by 180◦, Blurs (~500ms) and con-
verts it into Grayscale(~300ms). It uses an FTP server to store inter-
mediate stage results running locally on the same machine. Figure
17b shows the execution result of the pipeline. As expected, cascad-
ing cold starts dominates the pipeline execution latency. Xanadu
again shows significant performance improvements with overhead
latencies reducing by 5x and 2x compared to Knative and Open-
Whisk, respectively.

6 RELATEDWORK
Workflow based Serverless Applications. Serverless comput-
ing has grabbed considerable attention in different scenarios, with
its promise of bringing low cost computation [59]. Active research
is being done to find novel applications of this new paradigm in
diverse fields like IoT and industrial prcesses [21, 33, 36], scientific
workflows [30, 35, 47, 57, 62]. Extensive use of workflow based
function interactions are a recurrent theme in almost all solutions.
Tools like [38, 41, 54, 56] have been designed to aid in developing
highly parallel applications as serverless workflows. Solutions have
been developed to enable machine learning using serverless com-
puting [28, 29, 32, 37, 58, 60] and exploit parallelism in serverless
computing to enable video analytics [22]. All of these solutions
show that both implicit and explicit serverless workflows are es-
sential to present generation of hybrid solutions making it critical
to mitigate cascading cold start latency.

Lopez et al. [45] compared function workflow orchestration ser-
vices of Amazon, IBM and Microsoft under different loads; however,
their experiments were conducted under warm start conditions
disregarding the effects of cascading cold starts. [24] reported expo-
nential growth in overhead latency for AWS Step Functions, while
IBM’s composer had a more linear growth in latency. However, the
reports lacked information regarding cascading cold start latency.

ManagingCold start in ServerlessComputing.Notablework
has gone into mitigating side effects of cold start latency, with so-
lutions looking into possible bottlenecks in the cold start pipeline
and ways to reduce them. Mohan et al. [50] removed bottlenecks
in the networking namespace construction pipeline using Pause
Container pools, while Oakes et al. [51] looked into ways for shar-
ing user-level libraries. [52] formulated lean containers for faster
startup and enabled library sharing utilising a Zygote based library
management system. There have also been some scheduler level
optimisations[17, 46] enabling better function to host mapping for
reduced cold starts, using package affinity and function runtime
profiles as scheduling criteria. However, almost none of the solu-
tions address the problem of cascading cold start latency, which is
crucial because even if individual cold start latency is reduced, they
can quickly aggregate to be a significant fraction of a function’s
workflow.

ManagingCascadingCold starts in FunctionChains.Akkus
et al. [20] mentions that existing platforms manage components
of a function chain in isolation from one another, which leads to
significant latencies since they must traverse the entire end to end
call graph. Their solution, SAND employs multi-level fault isolation,
with applications running in separate sandboxes while functions be-
longing to the same application share the same isolation sandboxes.
SAND is based around the assumption that functions comprising an
application can be trusted to co-exist. Nevertheless, this assumption
can be hazardous for co-tenants, where an attack on one of the
functions can compromise other functions in the workflow housed
inside the same sandbox. Xanadu makes no such assumptions about
the security model of functions. Lin et al. [43] suggest the use of
pre-crafted worker pools as a measure to reduce cold start latency.
Even though this can be used to mitigate cascading cold starts, the
overhead running costs of a long-running pool can be significant.
Kijak et al[40] uses a Deadline-Budge heuristic based scheduling
algorithm to schedule DAG serverless workflows. Instead, Xanadu
proposes a Just-in-Time deployment procedure to reduce cascading
cold starts without paying for runtime overheads.

7 CONCLUSION
General-purposeworkflow support for serverless platforms presents
unique opportunities and challenges for performance, resource
utilisation and cost. We delved into the challenges of cold start
aggregation in function chains and introduced Xanadu , a specula-
tive resource provisioning based serverless platform to eliminate
cascading cold starts. Combined with our implicit chain detection
mechanism, Xanadu reduces overhead latencies even in standalone
correlated functions. The comparison with Knative and OpenWhisk
shows Xanadu provides significant performance improvements,
limiting cascading cold starts to a single event while avoiding cost
overruns usually associated with resource pre-deployments.

Xanadu: Mitigating cascading cold starts in serverless
function chain deployments Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

REFERENCES
[1] [n.d.]. Amazon States Language. https://docs.aws.amazon.com/step-functions/

latest/dg/concepts-amazon-states-language.html. Accessed: 2020-04-12.
[2] [n.d.]. Apache CouchDB. https://couchdb.apache.org/. Accessed: 2020-04-22.
[3] [n.d.]. Apache JMeter. https://jmeter.apache.org/. Accessed: 2020-05-27.
[4] [n.d.]. Apache Kafka. https://kafka.apache.org/. Accessed: 2020-04-12.
[5] [n.d.]. Apache OpenWhisk. https://openwhisk.apache.org/. Accessed: 2020-04-12.
[6] [n.d.]. AWS Lambda. https://aws.amazon.com/lambda/. Accessed: 2020-04-11.
[7] [n.d.]. AWS Step Functions. https://aws.amazon.com/step-functions/. Accessed:

2020-04-11.
[8] [n.d.]. Azure Durable Functions. https://docs.microsoft.com/en-us/azure/azure-

functions/durable/durable-functions-overview. Accessed: 2020-04-11.
[9] [n.d.]. Azure Functions. https://azure.microsoft.com/en-in/services/functions/.

Accessed: 2020-04-11.
[10] [n.d.]. Cloudflare Workers. https://workers.cloudflare.com/. Accessed: 2020-04-

12.
[11] [n.d.]. Docker Container. https://www.docker.com/. Accessed: 2020-05-08.
[12] [n.d.]. Google Cloud Functions. https://cloud.google.com/functions. Accessed:

2020-04-11.
[13] [n.d.]. IBM Cloud Functions Composer. https://cloud.ibm.com/docs/openwhisk?

topic=cloud-functions-pkg_composer. Accessed: 2020-04-22.
[14] [n.d.]. JavaScript Image Manipulation Program. https://www.npmjs.com/

package/jimp. Accessed: 2020-05-27.
[15] [n.d.]. Javascript V8 Engine. https://v8.dev/. Accessed: 2020-04-12.
[16] [n.d.]. Knative. https://knative.dev/. Accessed: 2020-04-22.
[17] Cristina L Abad, Edwin F Boza, and Erwin Van Eyk. 2018. Package-aware sched-

uling of FaaS functions. In Companion of the 2018 ACM/SPEC International Con-
ference on Performance Engineering. 101–106.

[18] Gojko Adzic and Robert Chatley. 2017. Serverless computing: economic and
architectural impact. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. 884–889.

[19] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Light-
weight Virtualization for Serverless Applications. In 17th𝑈𝑆𝐸𝑁𝐼𝑋 Symposium
on Networked Systems Design and Implementation (𝑁𝑆𝐷𝐼 20). 419–434.

[20] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. 𝑆𝐴𝑁𝐷 : Towards High-
Performance Serverless Computing. In 2018𝑈𝑆𝐸𝑁𝐼𝑋 Annual Technical Confer-
ence (𝑈𝑆𝐸𝑁𝐼𝑋 𝐴𝑇𝐶 18). 923–935.

[21] Eyhab Al-Masri, Ibrahim Diabate, Richa Jain, Ming Hoi Lam Lam, and
Swetha Reddy Nathala. 2018. A Serverless IoT Architecture for Smart Waste
Management Systems. In 2018 IEEE International Conference on Industrial Internet
(ICII). IEEE, 179–180.

[22] Lixiang Ao, Liz Izhikevich, GeoffreyMVoelker, and George Porter. 2018. Sprocket:
A serverless video processing framework. In Proceedings of the ACM Symposium
on Cloud Computing. 263–274.

[23] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,
et al. 2017. Serverless computing: Current trends and open problems. In Research
Advances in Cloud Computing. Springer, 1–20.

[24] Daniel Barcelona-Pons, PedroGarcía-López, Álvaro Ruiz, AmandaGómez-Gómez,
Gerard París, and Marc Sánchez-Artigas. 2019. FaaS Orchestration of Parallel
Workloads. In Proceedings of the 5th International Workshop on Serverless Com-
puting. 25–30.

[25] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre Sutra, and
Pedro García-López. 2019. On the FaaS Track: Building Stateful Distributed
Applications with Serverless Architectures. In Proceedings of the 20th International
Middleware Conference. 41–54.

[26] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky. 2018. Putting
the" Micro" back in microservice. In 2018𝑈𝑆𝐸𝑁𝐼𝑋 Annual Technical Conference
(𝑈𝑆𝐸𝑁𝐼𝑋 𝐴𝑇𝐶 18). 645–650.

[27] Tyler Caraza-Harter and Michael M Swift. 2020. Blending containers and virtual
machines: a study of firecracker and gVisor. In Proceedings of the 16th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.
101–113.

[28] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.
2018. A case for serverless machine learning. InWorkshop on Systems for ML and
Open Source Software at NeurIPS, Vol. 2018.

[29] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. 2019. Cirrus: a Serverless Framework for End-to-end ML Workflows. In
Proceedings of the ACM Symposium on Cloud Computing. 13–24.

[30] Ryan Chard, Tyler J Skluzacek, Zhuozhao Li, Yadu Babuji, Anna Woodard, Ben
Blaiszik, Steven Tuecke, Ian Foster, and Kyle Chard. 2019. Serverless Super-
computing: High Performance Function as a Service for Science. arXiv preprint
arXiv:1908.04907 (2019).

[31] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond Startup for Serverless

Computing with Initialization-less Booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 467–481.

[32] Lang Feng, Prabhakar Kudva, Dilma Da Silva, and Jiang Hu. 2018. Exploring
serverless computing for neural network training. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). IEEE, 334–341.

[33] Xinzhou Geng, Oiuzhe Ma, Yunman Pei, Zhibo Xu, Wenjing Zeng, and Jing Zou.
2018. Research on early warning system of power network overloading under
serverless architecture. In 2018 2nd IEEE Conference on Energy Internet and Energy
System Integration (EI2). IEEE, 1–6.

[34] Rong Gu, Yun Tang, Chen Tian, Hucheng Zhou, Guanru Li, Xudong Zheng,
and Yihua Huang. 2017. Improving execution concurrency of large-scale matrix
multiplication on distributed data-parallel platforms. IEEE Transactions on Parallel
and Distributed Systems 28, 9 (2017), 2539–2552.

[35] Ling-Hong Hung, Dimitar Kumanov, Xingzhi Niu, Wes Lloyd, and Ka Yee Yeung.
2019. Rapid RNA sequencing data analysis using serverless computing. bioRxiv
(2019), 576199.

[36] Razin Farhan Hussain, Mohsen Amini Salehi, and Omid Semiari. 2019. Serverless
edge computing for green oil and gas industry. In 2019 IEEE Green Technologies
Conference (GreenTech). IEEE, 1–4.

[37] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2018. Serv-
ing deep learning models in a serverless platform. In 2018 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 257–262.

[38] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the
2017 Symposium on Cloud Computing. 445–451.

[39] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[40] Joanna Kijak, Piotr Martyna, Maciej Pawlik, Bartosz Balis, and Maciej Malawski.
2018. Challenges for scheduling scientific workflows on cloud functions. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE, 460–467.

[41] Youngbin Kim and Jimmy Lin. 2018. Serverless data analytics with flint. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE, 451–455.

[42] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,
and Animesh Trivedi. 2018. Understanding ephemeral storage for serverless
analytics. In 2018 USENIX Annual Technical Conference (USENIX ATC ’18). 789–
794.

[43] Ping-Min Lin and Alex Glikson. 2019. Mitigating Cold Starts in Serverless
Platforms: A Pool-Based Approach. arXiv preprint arXiv:1903.12221 (2019).

[44] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep Pallickara.
2018. Serverless computing: An investigation of factors influencing microservice
performance. In 2018 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, 159–169.

[45] Pedro García López, Marc Sánchez Artigas, G Parıs, Daniel Barcelona Pons, AR
Ollobarren, and David Arroyo Pinto. 2018. Comparison of production serverless
function orchestration systems. CoRR, vol. abs/1807.11248 (2018).

[46] Nima Mahmoudi, Changyuan Lin, Hamzeh Khazaei, and Marin Litoiu. 2019.
Optimizing serverless computing: introducing an adaptive function placement
algorithm. In Proceedings of the 29th Annual International Conference on Computer
Science and Software Engineering. 203–213.

[47] Maciej Malawski. 2016. Towards Serverless Execution of Scientific Workflows-
HyperFlow Case Study.. In Works@ Sc. 25–33.

[48] Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz. 2018. Cold
start influencing factors in function as a service. In 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
181–188.

[49] Garrett McGrath and Paul R Brenner. 2017. Serverless computing: Design, im-
plementation, and performance. In 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW). IEEE, 405–410.

[50] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,
and Vadim Sukhomlinov. 2019. Agile cold starts for scalable serverless. In 11th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 19).

[51] Edward Oakes, Leon Yang, Kevin Houck, Tyler Harter, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. 2017. Pipsqueak: Lean lambdas with large libraries.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
Workshops (ICDCSW). IEEE, 395–400.

[52] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. 𝑆𝑂𝐶𝐾 : Rapid Task Provision-
ing with Serverless-Optimized Containers. In 2018𝑈𝑆𝐸𝑁𝐼𝑋 Annual Technical
Conference (𝑈𝑆𝐸𝑁𝐼𝑋 𝐴𝑇𝐶’18). 57–70.

[53] Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan Yu, Thomas
Moscibroda, and Zheng Zhang. 2012. MadLINQ: large-scale distributed matrix
computation for the cloud. In Proceedings of the 7th ACM european conference on
Computer Systems. 197–210.

[54] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-López. 2018.
Serverless data analytics in the ibm cloud. In Proceedings of the 19th International

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://couchdb.apache.org/
https://jmeter.apache.org/
https://kafka.apache.org/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://azure.microsoft.com/en-in/services/functions/
https://workers.cloudflare.com/
https://www.docker.com/
https://cloud.google.com/functions
https://cloud.ibm.com/docs/openwhisk?topic=cloud-functions-pkg_composer
https://cloud.ibm.com/docs/openwhisk?topic=cloud-functions-pkg_composer
https://www.npmjs.com/package/jimp
https://www.npmjs.com/package/jimp
https://v8.dev/
https://knative.dev/

Middleware ’20, Dec 7–11, 2020, Delft, The Netherlands

Middleware Conference Industry. 1–8.
[55] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2020. Serverless Com-

puting: A Survey of Opportunities, Challenges and Applications. (2020).
[56] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman,

Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. 2018. Numpywren:
Serverless linear algebra. arXiv preprint arXiv:1810.09679 (2018).

[57] Josef Spillner, Cristian Mateos, and David A Monge. 2017. Faaster, better, cheaper:
The prospect of serverless scientific computing and hpc. In Latin American High
Performance Computing Conference. Springer, 154–168.

[58] Zhucheng Tu, Mengping Li, and Jimmy Lin. 2018. Pay-per-request deployment of
neural network models using serverless architectures. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Demonstrations. 6–10.

[59] Mario Villamizar, Oscar Garces, Lina Ochoa, Harold Castro, Lorena Salamanca,
Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zambrano,
et al. 2016. Infrastructure cost comparison of running web applications in the

cloud using AWS lambda and monolithic and microservice architectures. In 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid). IEEE, 179–182.

[60] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed machine learning with
a serverless architecture. In IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 1288–1296.

[61] LiangWang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, andMichael Swift.
2018. Peeking behind the curtains of serverless platforms. In 2018 𝑈𝑆𝐸𝑁𝐼𝑋
Annual Technical Conference (𝑈𝑆𝐸𝑁𝐼𝑋 𝐴𝑇𝐶 18). 133–146.

[62] Sebastian Werner, Jörn Kuhlenkamp, Markus Klems, Johannes Müller, and Stefan
Tai. 2018. Serverless Big Data Processing using Matrix Multiplication as Example.
In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 358–365.

[63] Miao Zhang, Yifei Zhu, Cong Zhang, and Jiangchuan Liu. 2019. Video processing
with serverless computing: a measurement study. In Proceedings of the 29th ACM
Workshop on Network and Operating Systems Support for Digital Audio and Video.
61–66.

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Function Chaining
	2.2 Cascading cold starts in Function Chains
	2.3 Empirical Analysis of FaaS Platforms
	2.4 Metrics of Goodness and Cost

	3 Xanadu: Key Ideas
	3.1 Inferring the Most Likely Path
	3.2 Minimizing Pre-provisioning Overheads
	3.3 Detecting Implicit Chains
	3.4 Putting It All Together

	4 Implementation
	5 Evaluation
	5.1 Speculative Provisioning
	5.2 JIT Deployment
	5.3 Inferring the MLP
	5.4 Chains with conditional branching
	5.5 Impact of Sandboxing Mechanisms
	5.6 Case Studies

	6 Related Work
	7 Conclusion
	References

