Task B: Create an HTML form with a text field, a password field, an email field and other optional
fields. Use the POST method to transfer the form data. The link for the form action will be released
later and will be intimated to you through Piazza. On submitting the form, the server will check the
correctness of the inputs and echo back all the values it received. You are not allowed to use JQuery
or any external libraries for this. The code needs to be in native JavaScript. You will need to conform
to the following specifications:

e The number of characters in the text field should be in the range 6-50, both inclusive. Use
"text" as the name of this field

e The password should not be visible and thus suitably masked. It should be 8-20 characters in
length with at least one special character from the set {$, !, @, _}. Use "pass" as the name of
the element

e Use "email" as the name of the email field. The email address should conform to the following
specifications:

— It should be of the form local-part@domain-part where

— local-part can contain only alphanumeric characters in addition to the special characters
{., _} with length of the string >2

— domain-part should contain only alphabetical characters other than a period("."). There
should be at least one period("."). Each substring the "." characters in
this part should have at least 2 alpha-characters between them. The substring of domain-
part before the first "." should have at least 3 alpha-characters

Having done this, you are expected to secure the form against the most basic type of XSS attack.

A simple XSS attack is when JS code is injected between the <script> and </script> tags. For
example, if the browser receives <script>alert ("Hacked")</script> as in input, then an alert box
will pop up showing the message Hacked.

The problem arises because the code between the script tags is identified by the browser as JS
and it executes that. A solution to this is to make the script tags lose their meaning, i.e., the
browser does not treat them as structures (or ‘structs’) carrying code within them but instead just
simple pieces of text. A simple way to do that is to encode special HTML characters. Figure out what
they are and how to encode them in a HTML safe manner. Do not use any predefined functions for
this. You have to write code for this.

Extra credits: Try implementing on the fly form validation as the user is filling out the form.
Refer to the form on this page for example. You can earn up to 10 points for attempting this task.
Try filling in fields of the form incorrectly to see the error messages.

On the go: Accordion

Since Pokémon Go is literally on the streets these days, let’s walk in that direction.

Task C: Create a self-stylized accordion with the following specifications:
e Create at least 4 collapsible tiles
e Header of each section should contain the name of a Pokémon

e On expanding the section, the type, final evolution state of the Pokémon (if any) and four most
common attacks of the Pokémon should be made visible

Just to reiterate, you are not allowed to use any existing themes or templates for this. Read the
references provided and figure out how to go about doing this. Here are some screen shots for your
reference. (Note: If you have no idea about Pokemons you can use your the 4 largest metros. Interpret
‘attack’ and ‘evolution state’ in your own way but be prepared to defend your interpretation.)



