
This is the third problem from the recently held Kharagpur regional ICPC. You can find the orginal
description at http://acm.iitkgp.ac.in (problem MAFIASYN).

More formally, the input consists of a rooted tree with nodes numbered 1 to n, in which node 1 is the
root. Two positive integers, value vi(0) and capacity ci are specified for each node i > 1. v1(0) and c1
may be assumed to be 0. The values change in each unit time step as defined below.

for (i = 1; i <= n; i++)

if ((i == 1) || (v_i(t) > c_i))

v_i(t+1) = v_i(t);

else

v_i(t+1) = 0;

for (i = 2; i <= n; i++)

if (v_i(t) <= c_i) v_j(t+1) += v_i(t);

\\ where j is the parent of i

Informally, if the current value of a node other than 1 is less than or equal to its capacity, at the next
step, this value is passed to the parent, that is, subtracted from the value of the node and added to the
value of the parent. If it is greater than the capacity, or if it is the root, nothing is done for this node,
but the values of some of its children nay be added to its value.

After some number of time steps, the values vi will not change. The problem is to compute the final
value of v1 which will remain constant.

Input Format
The first line of input specifies the number n.
The next n− 1 lines contain the numbers vi(0) and ci, for i = 2 to n.
The next n− 1 lines specify the tree by giving the parent of node i, for 2 ≤ i ≤ n.

Output Format
Output the final value on one line without any spaces.

Constraints
1 ≤ n ≤ 107.
1 ≤ vi(0), ci ≤ 109.

Sample Input
5
3 6
4 2
4 5
5 6
5
1
5
1

Sample Output
5

Optional (Don’t include in submitted file).
Find all nodes i with a non-zero final value of vi, and the value vi for these nodes.

1

