Commit 081ff745 authored by Anurag Kumar's avatar Anurag Kumar

Upload New File

parent db251d56
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Linear Regression"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"from sklearn import preprocessing\n",
"from sklearn.preprocessing import StandardScaler"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(3964, 60)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.read_csv(\"dataset/dev.csv\")\n",
"df.shape"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index([' timedelta', ' n_tokens_title', ' n_tokens_content',\n",
" ' n_unique_tokens', ' n_non_stop_words', ' n_non_stop_unique_tokens',\n",
" ' num_hrefs', ' num_self_hrefs', ' num_imgs', ' num_videos',\n",
" ' average_token_length', ' num_keywords', ' data_channel_is_lifestyle',\n",
" ' data_channel_is_entertainment', ' data_channel_is_bus',\n",
" ' data_channel_is_socmed', ' data_channel_is_tech',\n",
" ' data_channel_is_world', ' kw_min_min', ' kw_max_min', ' kw_avg_min',\n",
" ' kw_min_max', ' kw_max_max', ' kw_avg_max', ' kw_min_avg',\n",
" ' kw_max_avg', ' kw_avg_avg', ' self_reference_min_shares',\n",
" ' self_reference_max_shares', ' self_reference_avg_sharess',\n",
" ' weekday_is_monday', ' weekday_is_tuesday', ' weekday_is_wednesday',\n",
" ' weekday_is_thursday', ' weekday_is_friday', ' weekday_is_saturday',\n",
" ' weekday_is_sunday', ' is_weekend', ' LDA_00', ' LDA_01', ' LDA_02',\n",
" ' LDA_03', ' LDA_04', ' global_subjectivity',\n",
" ' global_sentiment_polarity', ' global_rate_positive_words',\n",
" ' global_rate_negative_words', ' rate_positive_words',\n",
" ' rate_negative_words', ' avg_positive_polarity',\n",
" ' min_positive_polarity', ' max_positive_polarity',\n",
" ' avg_negative_polarity', ' min_negative_polarity',\n",
" ' max_negative_polarity', ' title_subjectivity',\n",
" ' title_sentiment_polarity', ' abs_title_subjectivity',\n",
" ' abs_title_sentiment_polarity', ' shares'],\n",
" dtype='object')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
"input_data = df.iloc[:, :-1]"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(3964, 1)"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"target_col = np.array(df[' shares']).reshape(-1, 1)\n",
"target_col.shape"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
"x_train, x_test, y_train, y_test = train_test_split(input_data, target_col, test_size = 0.3)"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"# scaler = StandardScaler()\n",
"\n",
"# scaler.fit(x_train)\n",
"\n",
"# x_train = scaler.transform(x_train)\n",
"# x_test = scaler.transform(x_test)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
"lr = LinearRegression()\n",
"lr.fit(x_train, y_train)\n",
"y_pred = lr.predict(x_test)"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import mean_squared_error\n",
"mse_loss = mean_squared_error(y_pred, y_test)"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.08413953535946381"
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mse_loss"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment