
Automated Essay Grader

Kartavya, Aditya, Shreyansh

Nov 27, 2019

BACK END:

1 Project environment setup 3

2 Deployment steps using Docker 5

3 Checkout some code now 7
3.1 MVC architecture connections . 7
3.2 Automated essay grader model . 8
3.3 Web views . 9
3.4 Android application . 9

4 Indices and tables 19

Python Module Index 21

Index 23

i

ii

Automated Essay Grader

Automated Essay Grader is essentially a usable wrapper for using machine learning models based on Essay grad-
ing. Our project runs on Starlette server hosted on Heroku cloud with a noSQL database hosted on
Firebase. Using MVC architecture we have created a web interface powered by Bootstrap 4.0. Our
project also has a fully featured Android interface.

To check a live web demo Check out

BACK END: 1

https://codigos.herokuapp.com/

Automated Essay Grader

2 BACK END:

CHAPTER

ONE

PROJECT ENVIRONMENT SETUP

To start the project you first need to install all dependencies:

>>> pip install requirements.txt

After we have all the requirements set up, we will now create an environment

>>> conda env create -f Softlab.yml

After the environment is set up you can initialize the environment somehow

>>> conda activate Softlab

Yes that was it!! Now simply start the system by typing

>>> python3 main.py

3

Automated Essay Grader

4 Chapter 1. Project environment setup

CHAPTER

TWO

DEPLOYMENT STEPS USING DOCKER

1) You can simply build the the image file by running following in the directory where Dockerfile is present

>>> docker build --tag essay-grader .

>>> docker run --name essay-grader -p 8000:8000 essay-grader

5

Automated Essay Grader

6 Chapter 2. Deployment steps using Docker

CHAPTER

THREE

CHECKOUT SOME CODE NOW

3.1 MVC architecture connections

This is a short description of the code belonging to the plumbing between frontend and backend

The code in this file is mainly plumbing between the frontend and ML backend. It consists of routes which map to the
browser url. We use the MVC architechture where we code the controller and modals. View manager in our code is
Jinga2vec

async main.contrbPage(request)
This function gives people the option to contribute the essay set and make the model better.

>>> Essay: Hi, this is the festival of diwali and I like to enjoy it with my
→˓friends and pet cow

>>> Score: 30/100

async main.evaluate(request)
The function evaluate: stores the user input essay and corresponding score We have two calls of function evaluate
with the distinction of the routes with totally different route.

1) @app.route('/evaluate',methods=["POST"]) This sends the essay to the server and re-
cieves the score after some calculation.

2) @app.route('/contribute',methods=["POST"]) This is to store the essay and score pair
provided by the user and appreciate the wholsomeness of it

async main.evaluateFile(request)
This funicton gives us a method to get the text out of file directly. Intead of writing text, it is better to upload
text.

We see the function on a route @app.route('/evaluateFile',methods=["POST"])

async main.firebase_login(request)
This function deals with authentication in the code

Param request

Return type

Templating engine for Python3 rendering

>>> cool@cool.com and coolcool

async main.firebase_register(request)
This function registers us on the firebase platform.

7

Automated Essay Grader

It accepts user input from UI, ie. The email and password

The route for the same would be @app.route('/registration',methods=["POST"])

async main.getEssay(request)
This function getEssay is here to give us access to the cloud hosted url whenever. We can now check about
donated essays till now. This controller operates on route @app.route('/{prompt}')

async main.login(request)
For the controller Login, we have two different routes

1) @app.route('/'), This is invoked when we have a redirect to and from the default start state or direct
home href links

2) @app.route('/register') We get here when it’s the login link vi This function gives us the ability
of logging in if our username and pass match

async main.show_index(request)
The function is a controller. It is invoked when we call /auth

3.2 Automated essay grader model

Here we have a very short description of the module prediction part of the parent project Automated essay grader
model.

This is an efcient wrapper around a automated essay grading system

prediction.getAvgFeatureVecs(essays, model, num_features)
Main function to generate the word vectors for word2vec model.

Parameters

• essays – Input is essays

• model – This input specifies the model to be used to generate Feature vec

• num_features – This is a metric of number of columns in the matrix cols

Return type Returns the essay feature vector

prediction.makeFeatureVec(words, model, num_features)
This function generates feature vectors for each dimension ie. plane

Parameters

• words – We pass the words that we needed

• model – Model to decide on what basis police have been arrested

Return type featureVec is the result of the function

prediction.predict(essay)
This is the function which calculates the score given an essay

Parameters essay – This input is the essay that we got from the fronend.

Return type We are returning the y_pred values

prediction.tokenizeEssay(essay)
This funciton tokenizes the text provided as input in the from of essay

We remove stopwords from the essay

8 Chapter 3. Checkout some code now

Automated Essay Grader

>>> This is america
>>> america

Parameters essay – Input in the form of text

Return type Tokenized words

3.3 Web views

This is the documentation for the web front end portal

Login.html

Register.html

Index.html

Score.html

Contribute.html

Thanks.html

3.4 Android application

This is the documentation for android application

Login

Register

Evaluate

3.3. Web views 9

Automated Essay Grader

10 Chapter 3. Checkout some code now

Automated Essay Grader

3.4. Android application 11

Automated Essay Grader

Score

Contribute

12 Chapter 3. Checkout some code now

Automated Essay Grader

3.4. Android application 13

Automated Essay Grader

14 Chapter 3. Checkout some code now

Automated Essay Grader

3.4. Android application 15

Automated Essay Grader

16 Chapter 3. Checkout some code now

Automated Essay Grader

3.4. Android application 17

Automated Essay Grader

18 Chapter 3. Checkout some code now

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

19

Automated Essay Grader

20 Chapter 4. Indices and tables

PYTHON MODULE INDEX

m
main, 7

p
prediction, 8

21

Automated Essay Grader

22 Python Module Index

INDEX

C
contrbPage() (in module main), 7

E
evaluate() (in module main), 7
evaluateFile() (in module main), 7

F
firebase_login() (in module main), 7
firebase_register() (in module main), 7

G
getAvgFeatureVecs() (in module prediction), 8
getEssay() (in module main), 8

L
login() (in module main), 8

M
main (module), 7
makeFeatureVec() (in module prediction), 8

P
predict() (in module prediction), 8
prediction (module), 8

S
show_index() (in module main), 8

T
tokenizeEssay() (in module prediction), 8

23

	Project environment setup
	Deployment steps using Docker
	Checkout some code now
	MVC architecture connections
	Automated essay grader model
	Web views
	Android application

	Indices and tables
	Python Module Index
	Index

