/*
 * cash.c
 * Written by D'Arcy J.M. Cain
 * darcy@druid.net
 * http://www.druid.net/darcy/
 *
 * Functions to allow input and output of money normally but store
 * and handle it as 64 bit ints
 *
 * A slightly modified version of this file and a discussion of the
 * workings can be found in the book "Software Solutions in C" by
 * Dale Schumacher, Academic Press, ISBN: 0-12-632360-7 except that
 * this version handles 64 bit numbers and so can hold values up to
 * $92,233,720,368,547,758.07.
 *
 * $PostgreSQL: pgsql/src/backend/utils/adt/cash.c,v 1.75 2007/11/23 19:54:39 momjian Exp $
 */

#include "postgres.h"

#include <limits.h>
#include <ctype.h>
#include <math.h>
#include <locale.h>

#include "libpq/pqformat.h"
#include "utils/cash.h"
#include "utils/pg_locale.h"

#define CASH_BUFSZ		36

#define TERMINATOR		(CASH_BUFSZ - 1)
#define LAST_PAREN		(TERMINATOR - 1)
#define LAST_DIGIT		(LAST_PAREN - 1)

/*
 * Cash is a pass-by-ref SQL type, so we must pass and return pointers.
 * These macros and support routine hide the pass-by-refness.
 */
#define PG_GETARG_CASH(n)  (* ((Cash *) PG_GETARG_POINTER(n)))
#define PG_RETURN_CASH(x)  return CashGetDatum(x)



/*************************************************************************
 * Private routines
 ************************************************************************/

static const char *
num_word(Cash value)
{
	static char buf[128];
	static const char *small[] = {
		"zero", "one", "two", "three", "four", "five", "six", "seven",
		"eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen",
		"fifteen", "sixteen", "seventeen", "eighteen", "nineteen", "twenty",
		"thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"
	};
	const char **big = small + 18;
	int			tu = value % 100;

	/* deal with the simple cases first */
	if (value <= 20)
		return small[value];

	/* is it an even multiple of 100? */
	if (!tu)
	{
		sprintf(buf, "%s hundred", small[value / 100]);
		return buf;
	}

	/* more than 99? */
	if (value > 99)
	{
		/* is it an even multiple of 10 other than 10? */
		if (value % 10 == 0 && tu > 10)
			sprintf(buf, "%s hundred %s",
					small[value / 100], big[tu / 10]);
		else if (tu < 20)
			sprintf(buf, "%s hundred and %s",
					small[value / 100], small[tu]);
		else
			sprintf(buf, "%s hundred %s %s",
					small[value / 100], big[tu / 10], small[tu % 10]);
	}
	else
	{
		/* is it an even multiple of 10 other than 10? */
		if (value % 10 == 0 && tu > 10)
			sprintf(buf, "%s", big[tu / 10]);
		else if (tu < 20)
			sprintf(buf, "%s", small[tu]);
		else
			sprintf(buf, "%s %s", big[tu / 10], small[tu % 10]);
	}

	return buf;
}	/* num_word() */

static Datum
CashGetDatum(Cash value)
{
	Cash	   *result = (Cash *) palloc(sizeof(Cash));

	*result = value;
	return PointerGetDatum(result);
}


/* cash_in()
 * Convert a string to a cash data type.
 * Format is [$]###[,]###[.##]
 * Examples: 123.45 $123.45 $123,456.78
 *
 */
Datum
cash_in(PG_FUNCTION_ARGS)
{
	char	   *str = PG_GETARG_CSTRING(0);
	Cash		result;
	Cash		value = 0;
	Cash		dec = 0;
	Cash		sgn = 1;
	int			seen_dot = 0;
	const char *s = str;
	int			fpoint;
	char		dsymbol,
				ssymbol,
				psymbol;
	const char *nsymbol,
			   *csymbol;

	struct lconv *lconvert = PGLC_localeconv();

	/*
	 * frac_digits will be CHAR_MAX in some locales, notably C.  However, just
	 * testing for == CHAR_MAX is risky, because of compilers like gcc that
	 * "helpfully" let you alter the platform-standard definition of whether
	 * char is signed or not.  If we are so unfortunate as to get compiled
	 * with a nonstandard -fsigned-char or -funsigned-char switch, then our
	 * idea of CHAR_MAX will not agree with libc's. The safest course is not
	 * to test for CHAR_MAX at all, but to impose a range check for plausible
	 * frac_digits values.
	 */
	fpoint = lconvert->frac_digits;
	if (fpoint < 0 || fpoint > 10)
		fpoint = 2;				/* best guess in this case, I think */

	dsymbol = ((*lconvert->mon_decimal_point != '\0') ? *lconvert->mon_decimal_point : '.');
	ssymbol = ((*lconvert->mon_thousands_sep != '\0') ? *lconvert->mon_thousands_sep : ',');
	csymbol = ((*lconvert->currency_symbol != '\0') ? lconvert->currency_symbol : "$");
	psymbol = ((*lconvert->positive_sign != '\0') ? *lconvert->positive_sign : '+');
	nsymbol = ((*lconvert->negative_sign != '\0') ? lconvert->negative_sign : "-");

#ifdef CASHDEBUG
	printf("cashin- precision '%d'; decimal '%c'; thousands '%c'; currency '%s'; positive '%c'; negative '%s'\n",
		   fpoint, dsymbol, ssymbol, csymbol, psymbol, nsymbol);
#endif

	/* we need to add all sorts of checking here.  For now just */
	/* strip all leading whitespace and any leading currency symbol */
	while (isspace((unsigned char) *s))
		s++;
	if (strncmp(s, csymbol, strlen(csymbol)) == 0)
		s += strlen(csymbol);

#ifdef CASHDEBUG
	printf("cashin- string is '%s'\n", s);
#endif

	/* a leading minus or paren signifies a negative number */
	/* again, better heuristics needed */
	/* XXX - doesn't properly check for balanced parens - djmc */
	if (strncmp(s, nsymbol, strlen(nsymbol)) == 0)
	{
		sgn = -1;
		s += strlen(nsymbol);
#ifdef CASHDEBUG
		printf("cashin- negative symbol; string is '%s'\n", s);
#endif
	}
	else if (*s == '(')
	{
		sgn = -1;
		s++;
	}
	else if (*s == psymbol)
		s++;

#ifdef CASHDEBUG
	printf("cashin- string is '%s'\n", s);
#endif

	while (isspace((unsigned char) *s))
		s++;
	if (strncmp(s, csymbol, strlen(csymbol)) == 0)
		s += strlen(csymbol);

#ifdef CASHDEBUG
	printf("cashin- string is '%s'\n", s);
#endif

	for (;; s++)
	{
		/* we look for digits as int8 as we have less */
		/* than the required number of decimal places */
		if (isdigit((unsigned char) *s) && dec < fpoint)
		{
			value = (value * 10) + *s - '0';

			if (seen_dot)
				dec++;

		}
		/* decimal point? then start counting fractions... */
		else if (*s == dsymbol && !seen_dot)
		{
			seen_dot = 1;

		}
		/* not "thousands" separator? */
		else if (*s != ssymbol)
		{
			/* round off */
			if (isdigit((unsigned char) *s) && *s >= '5')
				value++;

			/* adjust for less than required decimal places */
			for (; dec < fpoint; dec++)
				value *= 10;

			break;
		}
	}

	/* should only be trailing digits followed by whitespace or right paren */
	while (isdigit((unsigned char) *s))
		s++;
	while (isspace((unsigned char) *s) || *s == ')')
		s++;

	if (*s != '\0')
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
				 errmsg("invalid input syntax for type money: \"%s\"", str)));

	result = value * sgn;

#ifdef CASHDEBUG
	printf("cashin- result is %d\n", result);
#endif

	PG_RETURN_CASH(result);
}


/* cash_out()
 * Function to convert cash to a dollars and cents representation.
 * XXX HACK This code appears to assume US conventions for
 *	positive-valued amounts. - tgl 97/04/14
 */
Datum
cash_out(PG_FUNCTION_ARGS)
{
	Cash		value = PG_GETARG_CASH(0);
	char	   *result;
	char		buf[CASH_BUFSZ];
	int			minus = 0;
	int			count = LAST_DIGIT;
	int			point_pos;
	int			ssymbol_position = 0;
	int			points,
				mon_group;
	char		ssymbol;
	const char *csymbol,
			   *nsymbol;
	char		dsymbol;
	char		convention;

	struct lconv *lconvert = PGLC_localeconv();

	/* see comments about frac_digits in cash_in() */
	points = lconvert->frac_digits;
	if (points < 0 || points > 10)
		points = 2;				/* best guess in this case, I think */

	/*
	 * As with frac_digits, must apply a range check to mon_grouping to avoid
	 * being fooled by variant CHAR_MAX values.
	 */
	mon_group = *lconvert->mon_grouping;
	if (mon_group <= 0 || mon_group > 6)
		mon_group = 3;

	ssymbol = ((*lconvert->mon_thousands_sep != '\0') ? *lconvert->mon_thousands_sep : ',');
	convention = lconvert->n_sign_posn;
	dsymbol = ((*lconvert->mon_decimal_point != '\0') ? *lconvert->mon_decimal_point : '.');
	csymbol = ((*lconvert->currency_symbol != '\0') ? lconvert->currency_symbol : "$");
	nsymbol = ((*lconvert->negative_sign != '\0') ? lconvert->negative_sign : "-");

	point_pos = LAST_DIGIT - points;

	/* allow more than three decimal points and separate them */
	if (ssymbol)
	{
		point_pos -= (points - 1) / mon_group;
		ssymbol_position = point_pos % (mon_group + 1);
	}

	/* we work with positive amounts and add the minus sign at the end */
	if (value < 0)
	{
		minus = 1;
		value = -value;
	}

	/* allow for trailing negative strings */
	MemSet(buf, ' ', CASH_BUFSZ);
	buf[TERMINATOR] = buf[LAST_PAREN] = '\0';

	while (value || count > (point_pos - 2))
	{
		if (points && count == point_pos)
			buf[count--] = dsymbol;
		else if (ssymbol && count % (mon_group + 1) == ssymbol_position)
			buf[count--] = ssymbol;

		buf[count--] = ((uint64) value % 10) + '0';
		value = ((uint64) value) / 10;
	}

	strncpy((buf + count - strlen(csymbol) + 1), csymbol, strlen(csymbol));
	count -= strlen(csymbol) - 1;

	if (buf[LAST_DIGIT] == ',')
		buf[LAST_DIGIT] = buf[LAST_PAREN];

	/* see if we need to signify negative amount */
	if (minus)
	{
		result = palloc(CASH_BUFSZ + 2 - count + strlen(nsymbol));

		/* Position code of 0 means use parens */
		if (convention == 0)
			sprintf(result, "(%s)", buf + count);
		else if (convention == 2)
			sprintf(result, "%s%s", buf + count, nsymbol);
		else
			sprintf(result, "%s%s", nsymbol, buf + count);
	}
	else
	{
		result = palloc(CASH_BUFSZ + 2 - count);
		strcpy(result, buf + count);
	}

	PG_RETURN_CSTRING(result);
}

/*
 *		cash_recv			- converts external binary format to cash
 */
Datum
cash_recv(PG_FUNCTION_ARGS)
{
	StringInfo	buf = (StringInfo) PG_GETARG_POINTER(0);

	PG_RETURN_CASH((Cash) pq_getmsgint64(buf));
}

/*
 *		cash_send			- converts cash to binary format
 */
Datum
cash_send(PG_FUNCTION_ARGS)
{
	Cash		arg1 = PG_GETARG_CASH(0);
	StringInfoData buf;

	pq_begintypsend(&buf);
	pq_sendint64(&buf, arg1);
	PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}

/*
 * Comparison functions
 */

Datum
cash_eq(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);

	PG_RETURN_BOOL(c1 == c2);
}

Datum
cash_ne(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);

	PG_RETURN_BOOL(c1 != c2);
}

Datum
cash_lt(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);

	PG_RETURN_BOOL(c1 < c2);
}

Datum
cash_le(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);

	PG_RETURN_BOOL(c1 <= c2);
}

Datum
cash_gt(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);

	PG_RETURN_BOOL(c1 > c2);
}

Datum
cash_ge(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);

	PG_RETURN_BOOL(c1 >= c2);
}

Datum
cash_cmp(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);

	if (c1 > c2)
		PG_RETURN_INT32(1);
	else if (c1 == c2)
		PG_RETURN_INT32(0);
	else
		PG_RETURN_INT32(-1);
}


/* cash_pl()
 * Add two cash values.
 */
Datum
cash_pl(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);
	Cash		result;

	result = c1 + c2;

	PG_RETURN_CASH(result);
}


/* cash_mi()
 * Subtract two cash values.
 */
Datum
cash_mi(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);
	Cash		result;

	result = c1 - c2;

	PG_RETURN_CASH(result);
}


/* cash_mul_flt8()
 * Multiply cash by float8.
 */
Datum
cash_mul_flt8(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	float8		f = PG_GETARG_FLOAT8(1);
	Cash		result;

	result = c * f;
	PG_RETURN_CASH(result);
}


/* flt8_mul_cash()
 * Multiply float8 by cash.
 */
Datum
flt8_mul_cash(PG_FUNCTION_ARGS)
{
	float8		f = PG_GETARG_FLOAT8(0);
	Cash		c = PG_GETARG_CASH(1);
	Cash		result;

	result = f * c;
	PG_RETURN_CASH(result);
}


/* cash_div_flt8()
 * Divide cash by float8.
 */
Datum
cash_div_flt8(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	float8		f = PG_GETARG_FLOAT8(1);
	Cash		result;

	if (f == 0.0)
		ereport(ERROR,
				(errcode(ERRCODE_DIVISION_BY_ZERO),
				 errmsg("division by zero")));

	result = rint(c / f);
	PG_RETURN_CASH(result);
}


/* cash_mul_flt4()
 * Multiply cash by float4.
 */
Datum
cash_mul_flt4(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	float4		f = PG_GETARG_FLOAT4(1);
	Cash		result;

	result = c * f;
	PG_RETURN_CASH(result);
}


/* flt4_mul_cash()
 * Multiply float4 by cash.
 */
Datum
flt4_mul_cash(PG_FUNCTION_ARGS)
{
	float4		f = PG_GETARG_FLOAT4(0);
	Cash		c = PG_GETARG_CASH(1);
	Cash		result;

	result = f * c;
	PG_RETURN_CASH(result);
}


/* cash_div_flt4()
 * Divide cash by float4.
 *
 */
Datum
cash_div_flt4(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	float4		f = PG_GETARG_FLOAT4(1);
	Cash		result;

	if (f == 0.0)
		ereport(ERROR,
				(errcode(ERRCODE_DIVISION_BY_ZERO),
				 errmsg("division by zero")));

	result = rint(c / f);
	PG_RETURN_CASH(result);
}


/* cash_mul_int8()
 * Multiply cash by int8.
 */
Datum
cash_mul_int8(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	int64		i = PG_GETARG_INT64(1);
	Cash		result;

	result = c * i;
	PG_RETURN_CASH(result);
}


/* int8_mul_cash()
 * Multiply int8 by cash.
 */
Datum
int8_mul_cash(PG_FUNCTION_ARGS)
{
	int64		i = PG_GETARG_INT64(0);
	Cash		c = PG_GETARG_CASH(1);
	Cash		result;

	result = i * c;
	PG_RETURN_CASH(result);
}

/* cash_div_int8()
 * Divide cash by 8-byte integer.
 */
Datum
cash_div_int8(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	int64		i = PG_GETARG_INT64(1);
	Cash		result;

	if (i == 0)
		ereport(ERROR,
				(errcode(ERRCODE_DIVISION_BY_ZERO),
				 errmsg("division by zero")));

	result = rint(c / i);

	PG_RETURN_CASH(result);
}


/* cash_mul_int4()
 * Multiply cash by int4.
 */
Datum
cash_mul_int4(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	int32		i = PG_GETARG_INT32(1);
	Cash		result;

	result = c * i;
	PG_RETURN_CASH(result);
}


/* int4_mul_cash()
 * Multiply int4 by cash.
 */
Datum
int4_mul_cash(PG_FUNCTION_ARGS)
{
	int32		i = PG_GETARG_INT32(0);
	Cash		c = PG_GETARG_CASH(1);
	Cash		result;

	result = i * c;
	PG_RETURN_CASH(result);
}


/* cash_div_int4()
 * Divide cash by 4-byte integer.
 *
 */
Datum
cash_div_int4(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	int32		i = PG_GETARG_INT32(1);
	Cash		result;

	if (i == 0)
		ereport(ERROR,
				(errcode(ERRCODE_DIVISION_BY_ZERO),
				 errmsg("division by zero")));

	result = rint(c / i);

	PG_RETURN_CASH(result);
}


/* cash_mul_int2()
 * Multiply cash by int2.
 */
Datum
cash_mul_int2(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	int16		s = PG_GETARG_INT16(1);
	Cash		result;

	result = c * s;
	PG_RETURN_CASH(result);
}

/* int2_mul_cash()
 * Multiply int2 by cash.
 */
Datum
int2_mul_cash(PG_FUNCTION_ARGS)
{
	int16		s = PG_GETARG_INT16(0);
	Cash		c = PG_GETARG_CASH(1);
	Cash		result;

	result = s * c;
	PG_RETURN_CASH(result);
}

/* cash_div_int2()
 * Divide cash by int2.
 *
 */
Datum
cash_div_int2(PG_FUNCTION_ARGS)
{
	Cash		c = PG_GETARG_CASH(0);
	int16		s = PG_GETARG_INT16(1);
	Cash		result;

	if (s == 0)
		ereport(ERROR,
				(errcode(ERRCODE_DIVISION_BY_ZERO),
				 errmsg("division by zero")));

	result = rint(c / s);
	PG_RETURN_CASH(result);
}

/* cashlarger()
 * Return larger of two cash values.
 */
Datum
cashlarger(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);
	Cash		result;

	result = (c1 > c2) ? c1 : c2;

	PG_RETURN_CASH(result);
}

/* cashsmaller()
 * Return smaller of two cash values.
 */
Datum
cashsmaller(PG_FUNCTION_ARGS)
{
	Cash		c1 = PG_GETARG_CASH(0);
	Cash		c2 = PG_GETARG_CASH(1);
	Cash		result;

	result = (c1 < c2) ? c1 : c2;

	PG_RETURN_CASH(result);
}

/* cash_words()
 * This converts a int4 as well but to a representation using words
 * Obviously way North American centric - sorry
 */
Datum
cash_words(PG_FUNCTION_ARGS)
{
	Cash		value = PG_GETARG_CASH(0);
	uint64		val;
	char		buf[256];
	char	   *p = buf;
	Cash		m0;
	Cash		m1;
	Cash		m2;
	Cash		m3;
	Cash		m4;
	Cash		m5;
	Cash		m6;
	text	   *result;

	/* work with positive numbers */
	if (value < 0)
	{
		value = -value;
		strcpy(buf, "minus ");
		p += 6;
	}
	else
		buf[0] = '\0';

	/* Now treat as unsigned, to avoid trouble at INT_MIN */
	val = (uint64) value;

	m0 = val % 100ll;			/* cents */
	m1 = (val / 100ll) % 1000;	/* hundreds */
	m2 = (val / 100000ll) % 1000;		/* thousands */
	m3 = val / 100000000ll % 1000;		/* millions */
	m4 = val / 100000000000ll % 1000;	/* billions */
	m5 = val / 100000000000000ll % 1000;		/* trillions */
	m6 = val / 100000000000000000ll % 1000;		/* quadrillions */

	if (m6)
	{
		strcat(buf, num_word(m6));
		strcat(buf, " quadrillion ");
	}

	if (m5)
	{
		strcat(buf, num_word(m5));
		strcat(buf, " trillion ");
	}

	if (m4)
	{
		strcat(buf, num_word(m4));
		strcat(buf, " billion ");
	}

	if (m3)
	{
		strcat(buf, num_word(m3));
		strcat(buf, " million ");
	}

	if (m2)
	{
		strcat(buf, num_word(m2));
		strcat(buf, " thousand ");
	}

	if (m1)
		strcat(buf, num_word(m1));

	if (!*p)
		strcat(buf, "zero");

	strcat(buf, (val / 100) == 1 ? " dollar and " : " dollars and ");
	strcat(buf, num_word(m0));
	strcat(buf, m0 == 1 ? " cent" : " cents");

	/* capitalize output */
	buf[0] = pg_toupper((unsigned char) buf[0]);

	/* make a text type for output */
	result = (text *) palloc(strlen(buf) + VARHDRSZ);
	SET_VARSIZE(result, strlen(buf) + VARHDRSZ);
	memcpy(VARDATA(result), buf, strlen(buf));

	PG_RETURN_TEXT_P(result);
}