Commit df816f6a authored by Heikki Linnakangas's avatar Heikki Linnakangas

Add IntegerSet, to hold large sets of 64-bit ints efficiently.

The set is implemented as a B-tree, with a compact representation at leaf
items, using Simple-8b algorithm, so that clusters of nearby values use
less memory.

The IntegerSet isn't used for anything yet, aside from the test code, but
we have two patches in the works that would benefit from this: A patch to
allow GiST vacuum to delete empty pages, and a patch to reduce heap
VACUUM's memory usage, by storing the list of dead TIDs more efficiently
and lifting the 1 GB limit on its size.

This includes a unit test module, in src/test/modules/test_integerset.
It can be used to verify correctness, as a regression test, but if you run
it manully, it can also print memory usage and execution time of some of
the tests.

Author: Heikki Linnakangas, Andrey Borodin
Reviewed-by: Julien Rouhaud
Discussion: https://www.postgresql.org/message-id/b5e82599-1966-5783-733c-1a947ddb729f@iki.fi
parent 5e1963fb
......@@ -13,6 +13,6 @@ top_builddir = ../../..
include $(top_builddir)/src/Makefile.global
OBJS = binaryheap.o bipartite_match.o bloomfilter.o dshash.o hyperloglog.o \
ilist.o knapsack.o pairingheap.o rbtree.o stringinfo.o
ilist.o integerset.o knapsack.o pairingheap.o rbtree.o stringinfo.o
include $(top_srcdir)/src/backend/common.mk
......@@ -13,6 +13,8 @@ hyperloglog.c - a streaming cardinality estimator
ilist.c - single and double-linked lists
integerset.c - a data structure for holding large set of integers
knapsack.c - knapsack problem solver
pairingheap.c - a pairing heap
......
/*-------------------------------------------------------------------------
*
* integerset.c
* Data structure to hold a large set of 64-bit integers efficiently
*
* IntegerSet provides an in-memory data structure to hold a set of
* arbitrary 64-bit integers. Internally, the values are stored in a
* B-tree, with a special packed representation at the leaf level using
* the Simple-8b algorithm, which can pack hold clusters of nearby values
* very tightly.
*
* Memory consumption depends on the number of values stored, but also
* on how far the values are from each other. In the best case, with
* long runs of consecutive integers, memory consumption can be as low as
* 0.1 bytes per integer. In the worst case, if integers are more than
* 2^32 apart, it uses about 8 bytes per integer. In typical use, the
* consumption per integer is somewhere between those extremes, depending
* on the range of integers stored, and how "clustered" they are.
*
*
* Interface
* ---------
*
* intset_create - Create a new empty set.
* intset_add_member - Add an integer to the set.
* intset_is_member - Test if an integer is in the set
* intset_begin_iterate - Begin iterating through all integers in set
* intset_iterate_next - Return next integer
*
* intset_create() creates the set in the current memory context. Note
* that there is no function to free an integer set. If you need to do that,
* create a dedicated memory context to hold it, and destroy the memory
* context instead.
*
*
* Limitations
* -----------
*
* - Values must be added in order. (Random insertions would require
* splitting nodes, which hasn't been implemented.)
*
* - Values cannot be added while iteration is in progress.
*
* - No support for removing values.
*
* None of these limitations are fundamental to the data structure, and
* could be lifted if needed, by writing some new code. But the current
* users of this facility don't need them.
*
*
* References
* ----------
*
* Simple-8b encoding is based on:
*
* Vo Ngoc Anh , Alistair Moffat, Index compression using 64-bit words,
* Software - Practice & Experience, v.40 n.2, p.131-147, February 2010
* (https://doi.org/10.1002/spe.948)
*
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/lib/integerset.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "lib/integerset.h"
#include "port/pg_bitutils.h"
#include "utils/memutils.h"
/*
* Maximum number of integers that can be encoded in a single Single-8b
* codeword. (Defined here before anything else, so that we can size arrays
* using this).
*/
#define SIMPLE8B_MAX_VALUES_PER_CODEWORD 240
/*
* Parameters for shape of the in-memory B-tree.
*
* These set the size of each internal and leaf node. They don't necessarily
* need to be the same, because the tree is just an in-memory structure.
* With the default 64, each node is about 1 kb.
*
* If you change these, you must recalculate MAX_TREE_LEVELS, too!
*/
#define MAX_INTERNAL_ITEMS 64
#define MAX_LEAF_ITEMS 64
/*
* Maximum height of the tree.
*
* MAX_TREE_ITEMS is calculated from the "fan-out" of the B-tree. The
* theoretical maximum number of items that we can store in a set is 2^64,
* so MAX_TREE_LEVELS should be set so that:
*
* MAX_LEAF_ITEMS * MAX_INTERNAL_ITEMS ^ (MAX_TREE_LEVELS - 1) >= 2^64.
*
* In practice, we'll need far fewer levels, because you will run out of
* memory long before reaching that number, but let's be conservative.
*/
#define MAX_TREE_LEVELS 11
/*
* Node structures, for the in-memory B-tree.
*
* An internal node holds a number of downlink pointers to leaf nodes, or
* to internal nodes on lower level. For each downlink, the key value
* corresponding the lower level node is stored in a sorted array. The
* stored key values are low keys. In other words, if the downlink has value
* X, then all items stored on that child are >= X.
*
* Each leaf node holds a number of "items", with a varying number of
* integers packed into each item. Each item consists of two 64-bit words:
* The first word holds first integer stored in the item, in plain format.
* The second word contains between 0 and 240 more integers, packed using
* Simple-8b encoding. By storing the first integer in plain, unpacked,
* format, we can use binary search to quickly find an item that holds (or
* would hold) a particular integer. And by storing the rest in packed form,
* we still get pretty good memory density, if there are clusters of integers
* with similar values.
*
* Each leaf node also has a pointer to the next leaf node, so that the leaf
* nodes can be easily walked from beginning to end, when iterating.
*/
typedef struct intset_node intset_node;
typedef struct intset_leaf_node intset_leaf_node;
typedef struct intset_internal_node intset_internal_node;
/* Common structure of both leaf and internal nodes. */
struct intset_node
{
uint16 level;
uint16 num_items;
};
/* Internal node */
struct intset_internal_node
{
/* common header, must match intset_node */
uint16 level; /* >= 1 on internal nodes */
uint16 num_items;
/*
* 'values' is an array of key values, and 'downlinks' are pointers to
* lower-level nodes, corresponding to the key values.
*/
uint64 values[MAX_INTERNAL_ITEMS];
intset_node *downlinks[MAX_INTERNAL_ITEMS];
};
/* Leaf node */
typedef struct
{
uint64 first; /* first integer in this item */
uint64 codeword; /* simple8b encoded differences from 'first' */
} leaf_item;
#define MAX_VALUES_PER_LEAF_ITEM (1 + SIMPLE8B_MAX_VALUES_PER_CODEWORD)
struct intset_leaf_node
{
/* common header, must match intset_node */
uint16 level; /* 0 on leafs */
uint16 num_items;
intset_leaf_node *next; /* right sibling, if any */
leaf_item items[MAX_LEAF_ITEMS];
};
/*
* We buffer insertions in a simple array, before packing and inserting them
* into the B-tree. MAX_BUFFERED_VALUES sets the size of the buffer. The
* encoder assumes that it is large enough, that we can always fill a leaf
* item with buffered new items. In other words, MAX_BUFFERED_VALUES must be
* larger than MAX_VALUES_PER_LEAF_ITEM. For efficiency, make it much larger.
*/
#define MAX_BUFFERED_VALUES (MAX_VALUES_PER_LEAF_ITEM * 2)
/*
* IntegerSet is the top-level object representing the set.
*
* The integers are stored in an in-memory B-tree structure, and an array
* for newly-added integers. IntegerSet also tracks information about memory
* usage, as well as the current position, when iterating the set with
* intset_begin_iterate / intset_iterate_next.
*/
struct IntegerSet
{
/*
* 'context' is the memory context holding this integer set and all its
* tree nodes.
*
* 'mem_used' tracks the amount of memory used. We don't do anything with
* it in integerset.c itself, but the callers can ask for it with
* intset_memory_usage().
*/
MemoryContext context;
uint64 mem_used;
uint64 num_entries; /* total # of values in the set */
uint64 highest_value; /* highest value stored in this set */
/*
* B-tree to hold the packed values.
*
* 'rightmost_nodes' hold pointers to the rightmost node on each level.
* rightmost_parent[0] is rightmost leaf, rightmost_parent[1] is its
* parent, and so forth, all the way up to the root. These are needed when
* adding new values. (Currently, we require that new values are added at
* the end.)
*/
int num_levels; /* height of the tree */
intset_node *root; /* root node */
intset_node *rightmost_nodes[MAX_TREE_LEVELS];
intset_leaf_node *leftmost_leaf; /* leftmost leaf node */
/*
* Holding area for new items that haven't been inserted to the tree yet.
*/
uint64 buffered_values[MAX_BUFFERED_VALUES];
int num_buffered_values;
/*
* Iterator support.
*
* 'iter_values' is an array of integers ready to be returned to the
* caller. 'item_node' and 'item_itemno' point to the leaf node, and item
* within the leaf node, to get the next batch of values from.
*
* Normally, 'iter_values' points 'iter_values_buf', which holds items
* decoded from a leaf item. But after we have scanned the whole B-tree,
* we iterate through all the unbuffered values, too, by pointing
* iter_values to 'buffered_values'.
*/
uint64 *iter_values;
int iter_num_values; /* number of elements in 'iter_values' */
int iter_valueno; /* index into 'iter_values' */
intset_leaf_node *iter_node; /* current leaf node */
int iter_itemno; /* next item 'iter_node' to decode */
uint64 iter_values_buf[MAX_VALUES_PER_LEAF_ITEM];
};
/*
* prototypes for internal functions.
*/
static void intset_update_upper(IntegerSet *intset, int level,
intset_node *new_node, uint64 new_node_item);
static void intset_flush_buffered_values(IntegerSet *intset);
static int intset_binsrch_uint64(uint64 value, uint64 *arr, int arr_elems,
bool nextkey);
static int intset_binsrch_leaf(uint64 value, leaf_item *arr, int arr_elems,
bool nextkey);
static uint64 simple8b_encode(uint64 *ints, int *num_encoded, uint64 base);
static int simple8b_decode(uint64 codeword, uint64 *decoded, uint64 base);
static bool simple8b_contains(uint64 codeword, uint64 key, uint64 base);
/*
* Create a new, initially empty, integer set.
*
* The integer set is created in the current memory context.
*/
IntegerSet *
intset_create(void)
{
IntegerSet *intset;
/*
* Allocate the IntegerSet object in the current memory context. Remember
* the context, so that we will do all subsequent allocations in the same
* context, too, regardless of which memory context is current when new
* integers are added to the set.
*/
intset = (IntegerSet *) palloc(sizeof(IntegerSet));
intset->context = CurrentMemoryContext;
intset->mem_used = GetMemoryChunkSpace(intset);
intset->num_entries = 0;
intset->highest_value = 0;
intset->num_levels = 0;
intset->root = NULL;
memset(intset->rightmost_nodes, 0, sizeof(intset->rightmost_nodes));
intset->leftmost_leaf = NULL;
intset->num_buffered_values = 0;
intset->iter_node = NULL;
intset->iter_itemno = 0;
intset->iter_valueno = 0;
intset->iter_num_values = 0;
return intset;
}
/*
* Allocate a new node.
*/
static intset_internal_node *
intset_new_internal_node(IntegerSet *intset)
{
intset_internal_node *n;
n = (intset_internal_node *) MemoryContextAlloc(intset->context,
sizeof(intset_internal_node));
intset->mem_used += GetMemoryChunkSpace(n);
n->level = 0; /* caller must set */
n->num_items = 0;
return n;
}
static intset_leaf_node *
intset_new_leaf_node(IntegerSet *intset)
{
intset_leaf_node *n;
n = (intset_leaf_node *) MemoryContextAlloc(intset->context,
sizeof(intset_leaf_node));
intset->mem_used += GetMemoryChunkSpace(n);
n->level = 0;
n->num_items = 0;
n->next = NULL;
return n;
}
/*
* Return the number of entries in the integer set.
*/
uint64
intset_num_entries(IntegerSet *intset)
{
return intset->num_entries;
}
/*
* Return the amount of memory used by the integer set.
*/
uint64
intset_memory_usage(IntegerSet *intset)
{
return intset->mem_used;
}
/*
* Add a value to the set.
*
* Values must be added in order.
*/
void
intset_add_member(IntegerSet *intset, uint64 x)
{
if (intset->iter_node)
elog(ERROR, "cannot add new values to integer set when iteration is in progress");
if (x <= intset->highest_value && intset->num_entries > 0)
elog(ERROR, "cannot add value to integer set out of order");
if (intset->num_buffered_values >= MAX_BUFFERED_VALUES)
{
/* Time to flush our buffer */
intset_flush_buffered_values(intset);
Assert(intset->num_buffered_values < MAX_BUFFERED_VALUES);
}
/* Add it to the buffer of newly-added values */
intset->buffered_values[intset->num_buffered_values] = x;
intset->num_buffered_values++;
intset->num_entries++;
intset->highest_value = x;
}
/*
* Take a batch of buffered values, and pack them into the B-tree.
*/
static void
intset_flush_buffered_values(IntegerSet *intset)
{
uint64 *values = intset->buffered_values;
uint64 num_values = intset->num_buffered_values;
int num_packed = 0;
intset_leaf_node *leaf;
leaf = (intset_leaf_node *) intset->rightmost_nodes[0];
/*
* If the tree is completely empty, create the first leaf page, which is
* also the root.
*/
if (leaf == NULL)
{
/*
* This is the very first item in the set.
*
* Allocate root node. It's also a leaf.
*/
leaf = intset_new_leaf_node(intset);
intset->root = (intset_node *) leaf;
intset->leftmost_leaf = leaf;
intset->rightmost_nodes[0] = (intset_node *) leaf;
intset->num_levels = 1;
}
/*
* If there are less than MAX_VALUES_PER_LEAF_ITEM values in the buffer,
* stop. In most cases, we cannot encode that many values in a single
* value, but this way, the encoder doesn't have to worry about running
* out of input.
*/
while (num_values - num_packed >= MAX_VALUES_PER_LEAF_ITEM)
{
leaf_item item;
int num_encoded;
/*
* Construct the next leaf item, packing as many buffered values as
* possible.
*/
item.first = values[num_packed];
item.codeword = simple8b_encode(&values[num_packed + 1],
&num_encoded,
item.first);
/*
* Add the item to the node, allocating a new node if the old one is
* full.
*/
if (leaf->num_items >= MAX_LEAF_ITEMS)
{
/* Allocate new leaf and link it to the tree */
intset_leaf_node *old_leaf = leaf;
leaf = intset_new_leaf_node(intset);
old_leaf->next = leaf;
intset->rightmost_nodes[0] = (intset_node *) leaf;
intset_update_upper(intset, 1, (intset_node *) leaf, item.first);
}
leaf->items[leaf->num_items++] = item;
num_packed += 1 + num_encoded;
}
/*
* Move any remaining buffered values to the beginning of the array.
*/
if (num_packed < intset->num_buffered_values)
{
memmove(&intset->buffered_values[0],
&intset->buffered_values[num_packed],
(intset->num_buffered_values - num_packed) * sizeof(uint64));
}
intset->num_buffered_values -= num_packed;
}
/*
* Insert a downlink into parent node, after creating a new node.
*
* Recurses if the parent node is full, too.
*/
static void
intset_update_upper(IntegerSet *intset, int level, intset_node *child,
uint64 child_key)
{
intset_internal_node *parent;
Assert(level > 0);
/*
* Create a new root node, if necessary.
*/
if (level >= intset->num_levels)
{
intset_node *oldroot = intset->root;
uint64 downlink_key;
/* MAX_TREE_LEVELS should be more than enough, this shouldn't happen */
if (intset->num_levels == MAX_TREE_LEVELS)
elog(ERROR, "could not expand integer set, maximum number of levels reached");
intset->num_levels++;
/*
* Get the first value on the old root page, to be used as the
* downlink.
*/
if (intset->root->level == 0)
downlink_key = ((intset_leaf_node *) oldroot)->items[0].first;
else
downlink_key = ((intset_internal_node *) oldroot)->values[0];
parent = intset_new_internal_node(intset);
parent->level = level;
parent->values[0] = downlink_key;
parent->downlinks[0] = oldroot;
parent->num_items = 1;
intset->root = (intset_node *) parent;
intset->rightmost_nodes[level] = (intset_node *) parent;
}
/*
* Place the downlink on the parent page.
*/
parent = (intset_internal_node *) intset->rightmost_nodes[level];
if (parent->num_items < MAX_INTERNAL_ITEMS)
{
parent->values[parent->num_items] = child_key;
parent->downlinks[parent->num_items] = child;
parent->num_items++;
}
else
{
/*
* Doesn't fit. Allocate new parent, with the downlink as the first
* item on it, and recursively insert the downlink to the new parent
* to the grandparent.
*/
parent = intset_new_internal_node(intset);
parent->level = level;
parent->values[0] = child_key;
parent->downlinks[0] = child;
parent->num_items = 1;
intset->rightmost_nodes[level] = (intset_node *) parent;
intset_update_upper(intset, level + 1, (intset_node *) parent, child_key);
}
}
/*
* Does the set contain the given value?
*/
bool
intset_is_member(IntegerSet *intset, uint64 x)
{
intset_node *node;
intset_leaf_node *leaf;
int level;
int itemno;
leaf_item *item;
/*
* The value might be in the buffer of newly-added values.
*/
if (intset->num_buffered_values > 0 && x >= intset->buffered_values[0])
{
int itemno;
itemno = intset_binsrch_uint64(x,
intset->buffered_values,
intset->num_buffered_values,
false);
if (itemno >= intset->num_buffered_values)
return false;
else
return intset->buffered_values[itemno] == x;
}
/*
* Start from the root, and walk down the B-tree to find the right leaf
* node.
*/
if (!intset->root)
return false;
node = intset->root;
for (level = intset->num_levels - 1; level > 0; level--)
{
intset_internal_node *n = (intset_internal_node *) node;
Assert(node->level == level);
itemno = intset_binsrch_uint64(x, n->values, n->num_items, true);
if (itemno == 0)
return false;
node = n->downlinks[itemno - 1];
}
Assert(node->level == 0);
leaf = (intset_leaf_node *) node;
/*
* Binary search the right item on the leaf page
*/
itemno = intset_binsrch_leaf(x, leaf->items, leaf->num_items, true);
if (itemno == 0)
return false;
item = &leaf->items[itemno - 1];
/* Is this a match to the first value on the item? */
if (item->first == x)
return true;
Assert(x > item->first);
/* Is it in the packed codeword? */
if (simple8b_contains(item->codeword, x, item->first))
return true;
return false;
}
/*
* Begin in-order scan through all the values.
*
* While the iteration is in-progress, you cannot add new values to the set.
*/
void
intset_begin_iterate(IntegerSet *intset)
{
intset->iter_node = intset->leftmost_leaf;
intset->iter_itemno = 0;
intset->iter_valueno = 0;
intset->iter_num_values = 0;
intset->iter_values = intset->iter_values_buf;
}
/*
* Returns the next integer, when iterating.
*
* intset_begin_iterate() must be called first. intset_iterate_next() returns
* the next value in the set. Returns true, if there was another value, and
* stores the value in *next. Otherwise, returns false.
*/
bool
intset_iterate_next(IntegerSet *intset, uint64 *next)
{
for (;;)
{
if (intset->iter_valueno < intset->iter_num_values)
{
*next = intset->iter_values[intset->iter_valueno++];
return true;
}
/* Our queue is empty, decode next leaf item */
if (intset->iter_node && intset->iter_itemno < intset->iter_node->num_items)
{
/* We have reached end of this packed item. Step to the next one. */
leaf_item *item;
int num_decoded;
item = &intset->iter_node->items[intset->iter_itemno++];
intset->iter_values[0] = item->first;
num_decoded = simple8b_decode(item->codeword, &intset->iter_values[1], item->first);
intset->iter_num_values = num_decoded + 1;
intset->iter_valueno = 0;
continue;
}
/* No more items on this leaf, step to next node */
if (intset->iter_node)
{
/* No more matches on this bucket. Step to the next node. */
intset->iter_node = intset->iter_node->next;
intset->iter_itemno = 0;
intset->iter_valueno = 0;
intset->iter_num_values = 0;
continue;
}
/*
* We have reached the end of the B-tree. But we might still have
* some integers in the buffer of newly-added values.
*/
if (intset->iter_values == intset->iter_values_buf)
{
intset->iter_values = intset->buffered_values;
intset->iter_num_values = intset->num_buffered_values;
continue;
}
break;
}
/* No more results. */
*next = 0;
return false;
}
/*
* intset_binsrch_uint64() -- search a sorted array of uint64s
*
* Returns the first position with key equal or less than the given key.
* The returned position would be the "insert" location for the given key,
* that is, the position where the new key should be inserted to.
*
* 'nextkey' affects the behavior on equal keys. If true, and there is an
* equal key in the array, this returns the position immediately after the
* equal key. If false, this returns the position of the equal key itself.
*/
static int
intset_binsrch_uint64(uint64 item, uint64 *arr, int arr_elems, bool nextkey)
{
int low,
high,
mid;
low = 0;
high = arr_elems;
while (high > low)
{
mid = low + (high - low) / 2;
if (nextkey)
{
if (item >= arr[mid])
low = mid + 1;
else
high = mid;
}
else
{
if (item > arr[mid])
low = mid + 1;
else
high = mid;
}
}
return low;
}
/* same, but for an array of leaf items */
static int
intset_binsrch_leaf(uint64 item, leaf_item *arr, int arr_elems, bool nextkey)
{
int low,
high,
mid;
low = 0;
high = arr_elems;
while (high > low)
{
mid = low + (high - low) / 2;
if (nextkey)
{
if (item >= arr[mid].first)
low = mid + 1;
else
high = mid;
}
else
{
if (item > arr[mid].first)
low = mid + 1;
else
high = mid;
}
}
return low;
}
/*
* Simple-8b encoding.
*
* Simple-8b algorithm packs between 1 and 240 integers into 64-bit words,
* called "codewords". The number of integers packed into a single codeword
* depends on the integers being packed: small integers are encoded using
* fewer bits than large integers. A single codeword can store a single
* 60-bit integer, or two 30-bit integers, for example.
*
* Since we're storing a unique, sorted, set of integers, we actually encode
* the *differences* between consecutive integers. That way, clusters of
* integers that are close to each other are packed efficiently, regardless
* of the absolute values.
*
* In Simple-8b, each codeword consists of a 4-bit selector, which indicates
* how many integers are encoded in the codeword, and the encoded integers
* packed into the remaining 60 bits. The selector allows for 16 different
* ways of using the remaining 60 bits, "modes". The number of integers
* packed into a single codeword is listed in the simple8b_modes table below.
* For example, consider the following codeword:
*
* 20-bit integer 20-bit integer 20-bit integer
* 1101 00000000000000010010 01111010000100100000 00000000000000010100
* ^
* selector
*
* The selector 1101 is 13 in decimal. From the modes table below, we see
* that it means that the codeword encodes three 12-bit integers. In decimal,
* those integers are 18, 500000 and 20. Because we encode deltas rather than
* absolute values, the actual values that they represent are 18, 500018 and
* 500038.
*
* Modes 0 and 1 are a bit special; they encode a run of 240 or 120 zeros
* (which means 240 or 120 consecutive integers, since we're encoding the
* the deltas between integers), without using the rest of the codeword bits
* for anything.
*
* Simple-8b cannot encode integers larger than 60 bits. Values larger than
* that are always stored in the 'first' field of a leaf item, never in the
* packed codeword. If there is a sequence of integers that are more than
* 2^60 apart, the codeword will go unused on those items. To represent that,
* we use a magic EMPTY_CODEWORD codeword.
*/
static const struct
{
uint8 bits_per_int;
uint8 num_ints;
} simple8b_modes[17] =
{
{0, 240}, /* mode 0: 240 zeros */
{0, 120}, /* mode 1: 120 zeros */
{1, 60}, /* mode 2: sixty 1-bit integers */
{2, 30}, /* mode 3: thirty 2-bit integers */
{3, 20}, /* mode 4: twenty 3-bit integers */
{4, 15}, /* mode 5: fifteen 4-bit integers */
{5, 12}, /* mode 6: twelve 5-bit integers */
{6, 10}, /* mode 7: ten 6-bit integers */
{7, 8}, /* mode 8: eight 7-bit integers (four bits
* are wasted) */
{8, 7}, /* mode 9: seven 8-bit integers (four bits
* are wasted) */
{10, 6}, /* mode 10: six 10-bit integers */
{12, 5}, /* mode 11: five 12-bit integers */
{15, 4}, /* mode 12: four 15-bit integers */
{20, 3}, /* mode 13: three 20-bit integers */
{30, 2}, /* mode 14: two 30-bit integers */
{60, 1}, /* mode 15: one 60-bit integer */
{0, 0} /* sentinel value */
};
/*
* EMPTY_CODEWORD is a special value, used to indicate "no values".
* It is used if the next value is too large to be encoded with Simple-8b.
*
* This value looks like a 0-mode codeword, but we check for it
* specifically. (In a real 0-mode codeword, all the unused bits are zero.)
*/
#define EMPTY_CODEWORD (0xFFFFFFFFFFFFFFF0)
/*
* Encode a number of integers into a Simple-8b codeword.
*
* Returns the number of integers that were encoded.
*/
static uint64
simple8b_encode(uint64 *ints, int *num_encoded, uint64 base)
{
int selector;
int nints;
int bits;
uint64 diff;
uint64 last_val;
uint64 codeword;
uint64 diffs[60];
int i;
Assert(ints[0] > base);
/*
* Select the "mode" to use for the next codeword.
*
* In each iteration, check if the next value can be represented in the
* current mode we're considering. If it's too large, then step up the
* mode to a wider one, and repeat. If it fits, move on to the next
* integer. Repeat until the codeword is full, given the current mode.
*
* Note that we don't have any way to represent unused slots in the
* codeword, so we require each codeword to be "full".
*/
selector = 0;
nints = simple8b_modes[0].num_ints;
bits = simple8b_modes[0].bits_per_int;
diff = ints[0] - base - 1;
last_val = ints[0];
i = 0;
for (;;)
{
if (diff >= (1L << bits))
{
/* too large, step up to next mode */
selector++;
nints = simple8b_modes[selector].num_ints;
bits = simple8b_modes[selector].bits_per_int;
if (i >= nints)
break;
}
else
{
if (i < 60)
diffs[i] = diff;
i++;
if (i >= nints)
break;
Assert(ints[i] > last_val);
diff = ints[i] - last_val - 1;
last_val = ints[i];
}
}
if (nints == 0)
{
/* The next value is too large and be encoded with Simple-8b */
Assert(i == 0);
*num_encoded = 0;
return EMPTY_CODEWORD;
}
/*
* Encode the integers using the selected mode. Note that we shift them
* into the codeword in reverse order, so that they will come out in the
* correct order in the decoder.
*/
codeword = 0;
if (bits > 0)
{
for (i = nints - 1; i >= 0; i--)
{
codeword <<= bits;
codeword |= diffs[i];
}
}
/* add selector to the codeword, and return */
codeword <<= 4;
codeword |= selector;
*num_encoded = nints;
return codeword;
}
/*
* Decode a codeword into an array of integers.
*/
static int
simple8b_decode(uint64 codeword, uint64 *decoded, uint64 base)
{
int selector = codeword & 0x0f;
int nints = simple8b_modes[selector].num_ints;
uint64 bits = simple8b_modes[selector].bits_per_int;
uint64 mask = (1L << bits) - 1;
uint64 prev_value;
if (codeword == EMPTY_CODEWORD)
return 0;
codeword >>= 4; /* shift out the selector */
prev_value = base;
for (int i = 0; i < nints; i++)
{
uint64 diff = codeword & mask;
decoded[i] = prev_value + 1L + diff;
prev_value = decoded[i];
codeword >>= bits;
}
return nints;
}
/*
* This is very similar to simple8b_decode(), but instead of decoding all
* the values to an array, it just checks if the given integer is part of
* the codeword.
*/
static bool
simple8b_contains(uint64 codeword, uint64 key, uint64 base)
{
int selector = codeword & 0x0f;
int nints = simple8b_modes[selector].num_ints;
int bits = simple8b_modes[selector].bits_per_int;
if (codeword == EMPTY_CODEWORD)
return false;
codeword >>= 4; /* shift out the selector */
if (bits == 0)
{
/* Special handling for 0-bit cases. */
return key - base <= nints;
}
else
{
int mask = (1L << bits) - 1;
uint64 prev_value;
prev_value = base;
for (int i = 0; i < nints; i++)
{
uint64 diff = codeword & mask;
uint64 curr_value;
curr_value = prev_value + 1L + diff;
if (curr_value >= key)
{
if (curr_value == key)
return true;
else
return false;
}
codeword >>= bits;
prev_value = curr_value;
}
}
return false;
}
/*
* integerset.h
* In-memory data structure to hold a large set of integers efficiently
*
* Portions Copyright (c) 2012-2019, PostgreSQL Global Development Group
*
* src/include/lib/integerset.h
*/
#ifndef INTEGERSET_H
#define INTEGERSET_H
typedef struct IntegerSet IntegerSet;
extern IntegerSet *intset_create(void);
extern void intset_add_member(IntegerSet *intset, uint64 x);
extern bool intset_is_member(IntegerSet *intset, uint64 x);
extern uint64 intset_num_entries(IntegerSet *intset);
extern uint64 intset_memory_usage(IntegerSet *intset);
extern void intset_begin_iterate(IntegerSet *intset);
extern bool intset_iterate_next(IntegerSet *intset, uint64 *next);
#endif /* INTEGERSET_H */
......@@ -12,6 +12,7 @@ SUBDIRS = \
test_bloomfilter \
test_ddl_deparse \
test_extensions \
test_integerset \
test_parser \
test_pg_dump \
test_predtest \
......
# Generated subdirectories
/log/
/results/
/tmp_check/
# src/test/modules/test_integerset/Makefile
MODULE_big = test_integerset
OBJS = test_integerset.o $(WIN32RES)
PGFILEDESC = "test_integerset - test code for src/backend/lib/integerset.c"
EXTENSION = test_integerset
DATA = test_integerset--1.0.sql
REGRESS = test_integerset
ifdef USE_PGXS
PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)
else
subdir = src/test/modules/test_integerset
top_builddir = ../../../..
include $(top_builddir)/src/Makefile.global
include $(top_srcdir)/contrib/contrib-global.mk
endif
test_integerset contains unit tests for testing the integer set implementation,
in src/backend/lib/integerset.c
The tests verify the correctness of the implemention, but they can also be
as a micro-benchmark: If you set the 'intset_tests_stats' flag in
test_integerset.c, the tests will print extra information about execution time
and memory usage.
CREATE EXTENSION test_integerset;
--
-- These tests don't produce any interesting output. We're checking that
-- the operations complete without crashing or hanging and that none of their
-- internal sanity tests fail. They print progress information as INFOs,
-- which are not interesting for automated tests, so suppress those.
--
SET client_min_messages = 'warning';
SELECT test_integerset();
test_integerset
-----------------
(1 row)
CREATE EXTENSION test_integerset;
--
-- These tests don't produce any interesting output. We're checking that
-- the operations complete without crashing or hanging and that none of their
-- internal sanity tests fail. They print progress information as INFOs,
-- which are not interesting for automated tests, so suppress those.
--
SET client_min_messages = 'warning';
SELECT test_integerset();
/* src/test/modules/test_integerset/test_integerset--1.0.sql */
-- complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION test_integerset" to load this file. \quit
CREATE FUNCTION test_integerset()
RETURNS pg_catalog.void STRICT
AS 'MODULE_PATHNAME' LANGUAGE C;
/*--------------------------------------------------------------------------
*
* test_integerset.c
* Test integer set data structure.
*
* Copyright (c) 2019, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/test/modules/test_integerset/test_integerset.c
*
* -------------------------------------------------------------------------
*/
#include "postgres.h"
#include "fmgr.h"
#include "lib/integerset.h"
#include "nodes/bitmapset.h"
#include "utils/memutils.h"
#include "utils/timestamp.h"
#include "storage/block.h"
#include "storage/itemptr.h"
#include "miscadmin.h"
/*
* If you enable this, the "pattern" tests will print information about
* how long populating, probing, and iterating the test set takes, and
* how much memory the test set consumed. That can be used as
* micro-benchmark of various operations and input patterns (you might
* want to increase the number of values used in each of the test, if
* you do that, to reduce noise)
*
* The information is printed to the server's stderr, mostly because
* that's where MemoryContextStats() output goes.
*/
static const bool intset_test_stats = false;
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(test_integerset);
/*
* A struct to define a pattern of integers, for use with test_pattern()
* function.
*/
typedef struct
{
char *test_name; /* short name of the test, for humans */
char *pattern_str; /* a bit pattern */
uint64 spacing; /* pattern repeats at this interval */
uint64 num_values; /* number of integers to set in total */
} test_spec;
static const test_spec test_specs[] = {
{
"all ones", "1111111111",
10, 10000000
},
{
"alternating bits", "0101010101",
10, 10000000
},
{
"clusters of ten", "1111111111",
10000, 10000000
},
{
"clusters of hundred",
"1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111",
10000, 100000000
},
{
"one-every-64k", "1",
65536, 10000000
},
{
"sparse", "100000000000000000000000000000001",
10000000, 10000000
},
{
"single values, distance > 2^32", "1",
10000000000L, 1000000
},
{
"clusters, distance > 2^32", "10101010",
10000000000L, 10000000
},
{
"clusters, distance > 2^60", "10101010",
2000000000000000000L,
23 /* can't be much higher than this, or we
* overflow uint64 */
}
};
static void test_pattern(const test_spec *spec);
static void test_empty(void);
static void test_single_value(uint64 value);
static void check_with_filler(IntegerSet *intset, uint64 x, uint64 value, uint64 filler_min, uint64 filler_max);
static void test_single_value_and_filler(uint64 value, uint64 filler_min, uint64 filler_max);
static void test_huge_distances(void);
/*
* SQL-callable entry point to perform all tests.
*/
Datum
test_integerset(PG_FUNCTION_ARGS)
{
MemoryContext test_ctx;
test_ctx = AllocSetContextCreate(CurrentMemoryContext,
"test_integerset context",
ALLOCSET_DEFAULT_SIZES);
/* Tests for various corner cases */
test_empty();
test_huge_distances();
test_single_value(0);
test_single_value(1);
test_single_value(PG_UINT64_MAX - 1);
test_single_value(PG_UINT64_MAX);
test_single_value_and_filler(0, 1000, 2000);
test_single_value_and_filler(1, 1000, 2000);
test_single_value_and_filler(1, 1000, 2000000);
test_single_value_and_filler(PG_UINT64_MAX - 1, 1000, 2000);
test_single_value_and_filler(PG_UINT64_MAX, 1000, 2000);
/* Test different test patterns, with lots of entries */
for (int i = 0; i < lengthof(test_specs); i++)
{
MemoryContextReset(test_ctx);
test_pattern(&test_specs[i]);
}
MemoryContextDelete(test_ctx);
PG_RETURN_VOID();
}
/*
* Test with a repeating pattern, defined by the 'spec'.
*/
static void
test_pattern(const test_spec *spec)
{
IntegerSet *intset;
MemoryContext intset_ctx;
MemoryContext old_ctx;
TimestampTz starttime;
TimestampTz endtime;
uint64 n;
uint64 last_int;
int patternlen;
uint64 *pattern_values;
uint64 pattern_num_values;
elog(NOTICE, "testing intset with pattern \"%s\"", spec->test_name);
if (intset_test_stats)
fprintf(stderr, "-----\ntesting intset with pattern \"%s\"\n", spec->test_name);
/* Pre-process the pattern, creating an array of integers from it. */
patternlen = strlen(spec->pattern_str);
pattern_values = palloc(patternlen * sizeof(uint64));
pattern_num_values = 0;
for (int i = 0; i < patternlen; i++)
{
if (spec->pattern_str[i] == '1')
pattern_values[pattern_num_values++] = i;
}
/*
* Allocate the integer set.
*
* Allocate it in a separate memory context, so that we can print its
* memory usage easily. (intset_create() creates a memory context of its
* own, too, but we don't have direct access to it, so we cannot call
* MemoryContextStats() on it directly).
*/
intset_ctx = AllocSetContextCreate(CurrentMemoryContext,
"intset test",
ALLOCSET_SMALL_SIZES);
MemoryContextSetIdentifier(intset_ctx, spec->test_name);
old_ctx = MemoryContextSwitchTo(intset_ctx);
intset = intset_create();
MemoryContextSwitchTo(old_ctx);
/*
* Add values to the set.
*/
starttime = GetCurrentTimestamp();
n = 0;
last_int = 0;
while (n < spec->num_values)
{
uint64 x = 0;
for (int i = 0; i < pattern_num_values && n < spec->num_values; i++)
{
x = last_int + pattern_values[i];
intset_add_member(intset, x);
n++;
}
last_int += spec->spacing;
}
endtime = GetCurrentTimestamp();
if (intset_test_stats)
fprintf(stderr, "added %lu values in %lu ms\n",
spec->num_values, (endtime - starttime) / 1000);
/*
* Print stats on the amount of memory used.
*
* We print the usage reported by intset_memory_usage(), as well as the
* stats from the memory context. They should be in the same ballpark,
* but it's hard to automate testing that, so if you're making changes to
* the implementation, just observe that manually.
*/
if (intset_test_stats)
{
uint64 mem_usage;
/*
* Also print memory usage as reported by intset_memory_usage(). It
* should be in the same ballpark as the usage reported by
* MemoryContextStats().
*/
mem_usage = intset_memory_usage(intset);
fprintf(stderr, "intset_memory_usage() reported %lu (%0.2f bytes / integer)\n",
mem_usage, (double) mem_usage / spec->num_values);
MemoryContextStats(intset_ctx);
}
/* Check that intset_get_num_entries works */
n = intset_num_entries(intset);
if (n != spec->num_values)
elog(ERROR, "intset_num_entries returned %lu, expected %lu", n, spec->num_values);
/*
* Test random-access probes with intset_is_member()
*/
starttime = GetCurrentTimestamp();
for (n = 0; n < 100000; n++)
{
bool b;
bool expected;
uint64 x;
/*
* Pick next value to probe at random. We limit the probes to the
* last integer that we added to the set, plus an arbitrary constant
* (1000). There's no point in probing the whole 0 - 2^64 range, if
* only a small part of the integer space is used. We would very
* rarely hit hit values that are actually in the set.
*/
x = (pg_lrand48() << 31) | pg_lrand48();
x = x % (last_int + 1000);
/* Do we expect this value to be present in the set? */
if (x >= last_int)
expected = false;
else
{
uint64 idx = x % spec->spacing;
if (idx >= patternlen)
expected = false;
else if (spec->pattern_str[idx] == '1')
expected = true;
else
expected = false;
}
/* Is it present according to intset_is_member() ? */
b = intset_is_member(intset, x);
if (b != expected)
elog(ERROR, "mismatch at %lu: %d vs %d", x, b, expected);
}
endtime = GetCurrentTimestamp();
if (intset_test_stats)
fprintf(stderr, "probed %lu values in %lu ms\n", n, (endtime - starttime) / 1000);
/*
* Test iterator
*/
starttime = GetCurrentTimestamp();
intset_begin_iterate(intset);
n = 0;
last_int = 0;
while (n < spec->num_values)
{
for (int i = 0; i < pattern_num_values && n < spec->num_values; i++)
{
uint64 expected = last_int + pattern_values[i];
uint64 x;
if (!intset_iterate_next(intset, &x))
break;
if (x != expected)
elog(ERROR, "iterate returned wrong value; got %lu, expected %lu", x, expected);
n++;
}
last_int += spec->spacing;
}
endtime = GetCurrentTimestamp();
if (intset_test_stats)
fprintf(stderr, "iterated %lu values in %lu ms\n", n, (endtime - starttime) / 1000);
if (n < spec->num_values)
elog(ERROR, "iterator stopped short after %lu entries, expected %lu", n, spec->num_values);
if (n > spec->num_values)
elog(ERROR, "iterator returned %lu entries, %lu was expected", n, spec->num_values);
MemoryContextDelete(intset_ctx);
}
/*
* Test with a set containing a single integer.
*/
static void
test_single_value(uint64 value)
{
IntegerSet *intset;
uint64 x;
uint64 num_entries;
bool found;
elog(NOTICE, "testing intset with single value %lu", value);
/* Create the set. */
intset = intset_create();
intset_add_member(intset, value);
/* Test intset_get_num_entries() */
num_entries = intset_num_entries(intset);
if (num_entries != 1)
elog(ERROR, "intset_num_entries returned %lu, expected %lu", num_entries, 1L);
/*
* Test intset_is_member() at various special values, like 0 and and
* maximum possible 64-bit integer, as well as the value itself.
*/
if (intset_is_member(intset, 0) != (value == 0))
elog(ERROR, "intset_is_member failed for 0");
if (intset_is_member(intset, 1) != (value == 1))
elog(ERROR, "intset_is_member failed for 1");
if (intset_is_member(intset, PG_UINT64_MAX) != (value == PG_UINT64_MAX))
elog(ERROR, "intset_is_member failed for PG_UINT64_MAX");
if (intset_is_member(intset, value) != true)
elog(ERROR, "intset_is_member failed for the tested value");
/*
* Test iterator
*/
intset_begin_iterate(intset);
found = intset_iterate_next(intset, &x);
if (!found || x != value)
elog(ERROR, "intset_iterate_next failed for %lu", x);
found = intset_iterate_next(intset, &x);
if (found)
elog(ERROR, "intset_iterate_next failed %lu", x);
}
/*
* Test with an integer set that contains:
*
* - a given single 'value', and
* - all integers between 'filler_min' and 'filler_max'.
*
* This exercises different codepaths than testing just with a single value,
* because the implementation buffers newly-added values. If we add just
* single value to the set, we won't test the internal B-tree code at all,
* just the code that deals with the buffer.
*/
static void
test_single_value_and_filler(uint64 value, uint64 filler_min, uint64 filler_max)
{
IntegerSet *intset;
uint64 x;
bool found;
uint64 *iter_expected;
uint64 n = 0;
uint64 num_entries = 0;
uint64 mem_usage;
elog(NOTICE, "testing intset with value %lu, and all between %lu and %lu",
value, filler_min, filler_max);
intset = intset_create();
iter_expected = palloc(sizeof(uint64) * (filler_max - filler_min + 1));
if (value < filler_min)
{
intset_add_member(intset, value);
iter_expected[n++] = value;
}
for (x = filler_min; x < filler_max; x++)
{
intset_add_member(intset, x);
iter_expected[n++] = x;
}
if (value >= filler_max)
{
intset_add_member(intset, value);
iter_expected[n++] = value;
}
/* Test intset_get_num_entries() */
num_entries = intset_num_entries(intset);
if (num_entries != n)
elog(ERROR, "intset_num_entries returned %lu, expected %lu", num_entries, n);
/*
* Test intset_is_member() at various spots, at and around the values that
* we expect to be set, as well as 0 and the maximum possible value.
*/
check_with_filler(intset, 0,
value, filler_min, filler_max);
check_with_filler(intset, 1,
value, filler_min, filler_max);
check_with_filler(intset, filler_min - 1,
value, filler_min, filler_max);
check_with_filler(intset, filler_min,
value, filler_min, filler_max);
check_with_filler(intset, filler_min + 1,
value, filler_min, filler_max);
check_with_filler(intset, value - 1,
value, filler_min, filler_max);
check_with_filler(intset, value,
value, filler_min, filler_max);
check_with_filler(intset, value + 1,
value, filler_min, filler_max);
check_with_filler(intset, filler_max - 1,
value, filler_min, filler_max);
check_with_filler(intset, filler_max,
value, filler_min, filler_max);
check_with_filler(intset, filler_max + 1,
value, filler_min, filler_max);
check_with_filler(intset, PG_UINT64_MAX - 1,
value, filler_min, filler_max);
check_with_filler(intset, PG_UINT64_MAX,
value, filler_min, filler_max);
intset_begin_iterate(intset);
for (uint64 i = 0; i < n; i++)
{
found = intset_iterate_next(intset, &x);
if (!found || x != iter_expected[i])
elog(ERROR, "intset_iterate_next failed for %lu", x);
}
found = intset_iterate_next(intset, &x);
if (found)
elog(ERROR, "intset_iterate_next failed %lu", x);
mem_usage = intset_memory_usage(intset);
if (mem_usage < 5000 || mem_usage > 500000000)
elog(ERROR, "intset_memory_usage() reported suspicous value: %lu", mem_usage);
}
/*
* Helper function for test_single_value_and_filler.
*
* Calls intset_is_member() for value 'x', and checks that the result is what
* we expect.
*/
static void
check_with_filler(IntegerSet *intset, uint64 x,
uint64 value, uint64 filler_min, uint64 filler_max)
{
bool expected;
bool actual;
expected = (x == value || (filler_min <= x && x < filler_max));
actual = intset_is_member(intset, x);
if (actual != expected)
elog(ERROR, "intset_is_member failed for %lu", x);
}
/*
* Test empty set
*/
static void
test_empty(void)
{
IntegerSet *intset;
uint64 x;
elog(NOTICE, "testing intset with empty set");
intset = intset_create();
/* Test intset_is_member() */
if (intset_is_member(intset, 0) != false)
elog(ERROR, "intset_is_member on empty set returned true");
if (intset_is_member(intset, 1) != false)
elog(ERROR, "intset_is_member on empty set returned true");
if (intset_is_member(intset, PG_UINT64_MAX) != false)
elog(ERROR, "intset_is_member on empty set returned true");
/* Test iterator */
intset_begin_iterate(intset);
if (intset_iterate_next(intset, &x))
elog(ERROR, "intset_iterate_next on empty set returned a value (%lu)", x);
}
/*
* Test with integers that are more than 2^60 apart.
*
* The Simple-8b encoding used by the set implementation can only encode
* values up to 2^60. That makes large differences like this interesting
* to test.
*/
static void
test_huge_distances(void)
{
IntegerSet *intset;
uint64 values[1000];
int num_values = 0;
uint64 val = 0;
bool found;
uint64 x;
elog(NOTICE, "testing intset with distances > 2^60 between values");
val = 0;
values[num_values++] = val;
val += 1152921504606846976L - 1; /* 2^60 - 1 */
values[num_values++] = val;
val += 1152921504606846976L - 1; /* 2^60 - 1 */
values[num_values++] = val;
val += 1152921504606846976L; /* 2^60 */
values[num_values++] = val;
val += 1152921504606846976L; /* 2^60 */
values[num_values++] = val;
val += 1152921504606846976L; /* 2^60 */
values[num_values++] = val;
val += 1152921504606846976L + 1; /* 2^60 + 1 */
values[num_values++] = val;
val += 1152921504606846976L + 1; /* 2^60 + 1 */
values[num_values++] = val;
val += 1152921504606846976L + 1; /* 2^60 + 1 */
values[num_values++] = val;
val += 1152921504606846976L; /* 2^60 */
values[num_values++] = val;
/* we're now very close to 2^64, so can't add large values anymore */
intset = intset_create();
/*
* Add many more values to the end, to make sure that all the above values
* get flushed and packed into the tree structure.
*/
while (num_values < 1000)
{
val += pg_lrand48();
values[num_values++] = val;
}
/* Add these numbers to the set */
for (int i = 0; i < num_values; i++)
intset_add_member(intset, values[i]);
/*
* Test iterset_is_member() around each of these values
*/
for (int i = 0; i < num_values; i++)
{
uint64 x = values[i];
bool result;
if (x > 0)
{
result = intset_is_member(intset, x - 1);
if (result != false)
elog(ERROR, "intset_is_member failed for %lu", x - 1);
}
result = intset_is_member(intset, x);
if (result != true)
elog(ERROR, "intset_is_member failed for %lu", x);
result = intset_is_member(intset, x + 1);
if (result != false)
elog(ERROR, "intset_is_member failed for %lu", x + 1);
}
/*
* Test iterator
*/
intset_begin_iterate(intset);
for (int i = 0; i < num_values; i++)
{
found = intset_iterate_next(intset, &x);
if (!found || x != values[i])
elog(ERROR, "intset_iterate_next failed for %lu", x);
}
found = intset_iterate_next(intset, &x);
if (found)
elog(ERROR, "intset_iterate_next failed %lu", x);
}
comment = 'Test code for integerset'
default_version = '1.0'
module_pathname = '$libdir/test_integerset'
relocatable = true
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment