Commit c45643d6 authored by Peter Eisentraut's avatar Peter Eisentraut

Remove configure detection of crypt()

crypt() hasn't been needed since crypt detection was removed from
PostgreSQL, so these configure checks are not necessary.
Reviewed-by: default avatarTom Lane <tgl@sss.pgh.pa.us>
Discussion: https://www.postgresql.org/message-id/flat/21f88934-f00c-27f6-a9d8-7ea06d317781%402ndquadrant.com
parent 8f75e8e4
......@@ -11209,62 +11209,6 @@ if test "$ac_res" != no; then :
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing crypt" >&5
$as_echo_n "checking for library containing crypt... " >&6; }
if ${ac_cv_search_crypt+:} false; then :
$as_echo_n "(cached) " >&6
else
ac_func_search_save_LIBS=$LIBS
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
/* Override any GCC internal prototype to avoid an error.
Use char because int might match the return type of a GCC
builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char crypt ();
int
main ()
{
return crypt ();
;
return 0;
}
_ACEOF
for ac_lib in '' crypt; do
if test -z "$ac_lib"; then
ac_res="none required"
else
ac_res=-l$ac_lib
LIBS="-l$ac_lib $ac_func_search_save_LIBS"
fi
if ac_fn_c_try_link "$LINENO"; then :
ac_cv_search_crypt=$ac_res
fi
rm -f core conftest.err conftest.$ac_objext \
conftest$ac_exeext
if ${ac_cv_search_crypt+:} false; then :
break
fi
done
if ${ac_cv_search_crypt+:} false; then :
else
ac_cv_search_crypt=no
fi
rm conftest.$ac_ext
LIBS=$ac_func_search_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_crypt" >&5
$as_echo "$ac_cv_search_crypt" >&6; }
ac_res=$ac_cv_search_crypt
if test "$ac_res" != no; then :
test "$ac_res" = "none required" || LIBS="$ac_res $LIBS"
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing shm_open" >&5
$as_echo_n "checking for library containing shm_open... " >&6; }
if ${ac_cv_search_shm_open+:} false; then :
......@@ -12760,7 +12704,7 @@ $as_echo "#define HAVE_STDBOOL_H 1" >>confdefs.h
fi
for ac_header in atomic.h copyfile.h crypt.h fp_class.h getopt.h ieeefp.h ifaddrs.h langinfo.h mbarrier.h poll.h sys/epoll.h sys/ipc.h sys/prctl.h sys/procctl.h sys/pstat.h sys/resource.h sys/select.h sys/sem.h sys/shm.h sys/sockio.h sys/tas.h sys/un.h termios.h ucred.h utime.h wchar.h wctype.h
for ac_header in atomic.h copyfile.h fp_class.h getopt.h ieeefp.h ifaddrs.h langinfo.h mbarrier.h poll.h sys/epoll.h sys/ipc.h sys/prctl.h sys/procctl.h sys/pstat.h sys/resource.h sys/select.h sys/sem.h sys/shm.h sys/sockio.h sys/tas.h sys/un.h termios.h ucred.h utime.h wchar.h wctype.h
do :
as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh`
ac_fn_c_check_header_mongrel "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default"
......@@ -15782,19 +15726,6 @@ done
fi
ac_fn_c_check_func "$LINENO" "crypt" "ac_cv_func_crypt"
if test "x$ac_cv_func_crypt" = xyes; then :
$as_echo "#define HAVE_CRYPT 1" >>confdefs.h
else
case " $LIBOBJS " in
*" crypt.$ac_objext "* ) ;;
*) LIBOBJS="$LIBOBJS crypt.$ac_objext"
;;
esac
fi
ac_fn_c_check_func "$LINENO" "dlopen" "ac_cv_func_dlopen"
if test "x$ac_cv_func_dlopen" = xyes; then :
$as_echo "#define HAVE_DLOPEN 1" >>confdefs.h
......
......@@ -1118,7 +1118,6 @@ AC_SEARCH_LIBS(dlopen, dl)
AC_SEARCH_LIBS(socket, [socket ws2_32])
AC_SEARCH_LIBS(shl_load, dld)
AC_SEARCH_LIBS(getopt_long, [getopt gnugetopt])
AC_SEARCH_LIBS(crypt, crypt)
AC_SEARCH_LIBS(shm_open, rt)
AC_SEARCH_LIBS(shm_unlink, rt)
AC_SEARCH_LIBS(clock_gettime, [rt posix4])
......@@ -1273,7 +1272,6 @@ AC_HEADER_STDBOOL
AC_CHECK_HEADERS(m4_normalize([
atomic.h
copyfile.h
crypt.h
fp_class.h
getopt.h
ieeefp.h
......@@ -1692,7 +1690,6 @@ else
fi
AC_REPLACE_FUNCS(m4_normalize([
crypt
dlopen
fls
getopt
......
......@@ -14,9 +14,6 @@
#include "postgres.h"
#include <unistd.h>
#ifdef HAVE_CRYPT_H
#include <crypt.h>
#endif
#include "catalog/pg_authid.h"
#include "common/md5.h"
......
......@@ -123,15 +123,9 @@
/* Define to 1 if you have the <crtdefs.h> header file. */
#undef HAVE_CRTDEFS_H
/* Define to 1 if you have the `crypt' function. */
#undef HAVE_CRYPT
/* Define to 1 if you have the `CRYPTO_lock' function. */
#undef HAVE_CRYPTO_LOCK
/* Define to 1 if you have the <crypt.h> header file. */
#undef HAVE_CRYPT_H
/* Define to 1 if you have the declaration of `fdatasync', and to 0 if you
don't. */
#undef HAVE_DECL_FDATASYNC
......
......@@ -93,12 +93,6 @@
/* Define to 1 if your compiler handles computed gotos. */
/* #undef HAVE_COMPUTED_GOTO */
/* Define to 1 if you have the `crypt' function. */
/* #undef HAVE_CRYPT */
/* Define to 1 if you have the <crypt.h> header file. */
/* #undef HAVE_CRYPT_H */
/* Define to 1 if you have the declaration of `fdatasync', and to 0 if you
don't. */
#define HAVE_DECL_FDATASYNC 0
......
......@@ -330,9 +330,6 @@ extern int gettimeofday(struct timeval *tp, struct timezone *tzp);
* Default "extern" declarations or macro substitutes for library routines.
* When necessary, these routines are provided by files in src/port/.
*/
#ifndef HAVE_CRYPT
extern char *crypt(const char *key, const char *setting);
#endif
/* WIN32 handled in port/win32_port.h */
#ifndef WIN32
......
/* src/port/crypt.c */
/* $NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $ */
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Tom Truscott.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if defined(LIBC_SCCS) && !defined(lint)
#if 0
static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
#else
__RCSID("$NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $");
#endif
#endif /* not lint */
#include "c.h"
#include <limits.h>
#ifndef WIN32
#include <unistd.h>
#endif
static int des_setkey(const char *key);
static int des_cipher(const char *in, char *out, long salt, int num_iter);
/*
* UNIX password, and DES, encryption.
* By Tom Truscott, trt@rti.rti.org,
* from algorithms by Robert W. Baldwin and James Gillogly.
*
* References:
* "Mathematical Cryptology for Computer Scientists and Mathematicians,"
* by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
*
* "Password Security: A Case History," R. Morris and Ken Thompson,
* Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
*
* "DES will be Totally Insecure within Ten Years," M.E. Hellman,
* IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
*/
/* ===== Configuration ==================== */
/*
* define "MUST_ALIGN" if your compiler cannot load/store
* long integers at arbitrary (e.g. odd) memory locations.
* (Either that or never pass unaligned addresses to des_cipher!)
*/
/* #define MUST_ALIGN */
#ifdef CHAR_BITS
#if CHAR_BITS != 8
#error C_block structure assumes 8 bit characters
#endif
#endif
/*
* define "B64" to be the declaration for a 64 bit integer.
* XXX this feature is currently unused, see "endian" comment below.
*/
/* #define B64 int64 */
/*
* define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
* of lookup tables. This speeds up des_setkey() and des_cipher(), but has
* little effect on crypt().
*/
/* #define LARGEDATA */
/* compile with "-DSTATIC=void" when profiling */
#ifndef STATIC
#define STATIC static void
#endif
/*
* Define the "int32_t" type for integral type with a width of at least
* 32 bits.
*/
typedef int int32_t;
/* ==================================== */
#define _PASSWORD_EFMT1 '_' /* extended encryption format */
/*
* Cipher-block representation (Bob Baldwin):
*
* DES operates on groups of 64 bits, numbered 1..64 (sigh). One
* representation is to store one bit per byte in an array of bytes. Bit N of
* the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
* Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
* first byte, 9..16 in the second, and so on. The DES spec apparently has
* bit 1 in the MSB of the first byte, but that is particularly noxious so we
* bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
* the MSB of the first byte. Specifically, the 64-bit input data and key are
* converted to LSB format, and the output 64-bit block is converted back into
* MSB format.
*
* DES operates internally on groups of 32 bits which are expanded to 48 bits
* by permutation E and shrunk back to 32 bits by the S boxes. To speed up
* the computation, the expansion is applied only once, the expanded
* representation is maintained during the encryption, and a compression
* permutation is applied only at the end. To speed up the S-box lookups,
* the 48 bits are maintained as eight 6 bit groups, one per byte, which
* directly feed the eight S-boxes. Within each byte, the 6 bits are the
* most significant ones. The low two bits of each byte are zero. (Thus,
* bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
* first byte in the eight byte representation, bit 2 of the 48 bit value is
* the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
* used, in which the output is the 64 bit result of an S-box lookup which
* has been permuted by P and expanded by E, and is ready for use in the next
* iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
* lookup. Since each byte in the 48 bit path is a multiple of four, indexed
* lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
* "salt" are also converted to this 8*(6+2) format. The SPE table size is
* 8*64*8 = 4K bytes.
*
* To speed up bit-parallel operations (such as XOR), the 8 byte
* representation is "union"ed with 32 bit values "i0" and "i1", and, on
* machines which support it, a 64 bit value "b64". This data structure,
* "C_block", has two problems. First, alignment restrictions must be
* honored. Second, the byte-order (e.g. little-endian or big-endian) of
* the architecture becomes visible.
*
* The byte-order problem is unfortunate, since on the one hand it is good
* to have a machine-independent C_block representation (bits 1..8 in the
* first byte, etc.), and on the other hand it is good for the LSB of the
* first byte to be the LSB of i0. We cannot have both these things, so we
* currently use the "little-endian" representation and avoid any multi-byte
* operations that depend on byte order. This largely precludes use of the
* 64-bit datatype since the relative order of i0 and i1 are unknown. It
* also inhibits grouping the SPE table to look up 12 bits at a time. (The
* 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
* high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
* other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
* requires a 128 kilobyte table, so perhaps this is not a big loss.
*
* Permutation representation (Jim Gillogly):
*
* A transformation is defined by its effect on each of the 8 bytes of the
* 64-bit input. For each byte we give a 64-bit output that has the bits in
* the input distributed appropriately. The transformation is then the OR
* of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
* each transformation. Unless LARGEDATA is defined, however, a more compact
* table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
* The smaller table uses 16*16*8 = 2K bytes for each transformation. This
* is slower but tolerable, particularly for password encryption in which
* the SPE transformation is iterated many times. The small tables total 9K
* bytes, the large tables total 72K bytes.
*
* The transformations used are:
* IE3264: MSB->LSB conversion, initial permutation, and expansion.
* This is done by collecting the 32 even-numbered bits and applying
* a 32->64 bit transformation, and then collecting the 32 odd-numbered
* bits and applying the same transformation. Since there are only
* 32 input bits, the IE3264 transformation table is half the size of
* the usual table.
* CF6464: Compression, final permutation, and LSB->MSB conversion.
* This is done by two trivial 48->32 bit compressions to obtain
* a 64-bit block (the bit numbering is given in the "CIFP" table)
* followed by a 64->64 bit "cleanup" transformation. (It would
* be possible to group the bits in the 64-bit block so that 2
* identical 32->32 bit transformations could be used instead,
* saving a factor of 4 in space and possibly 2 in time, but
* byte-ordering and other complications rear their ugly head.
* Similar opportunities/problems arise in the key schedule
* transforms.)
* PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
* This admittedly baroque 64->64 bit transformation is used to
* produce the first code (in 8*(6+2) format) of the key schedule.
* PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
* It would be possible to define 15 more transformations, each
* with a different rotation, to generate the entire key schedule.
* To save space, however, we instead permute each code into the
* next by using a transformation that "undoes" the PC2 permutation,
* rotates the code, and then applies PC2. Unfortunately, PC2
* transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
* invertible. We get around that problem by using a modified PC2
* which retains the 8 otherwise-lost bits in the unused low-order
* bits of each byte. The low-order bits are cleared when the
* codes are stored into the key schedule.
* PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
* This is faster than applying PC2ROT[0] twice,
*
* The Bell Labs "salt" (Bob Baldwin):
*
* The salting is a simple permutation applied to the 48-bit result of E.
* Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
* i+24 of the result are swapped. The salt is thus a 24 bit number, with
* 16777216 possible values. (The original salt was 12 bits and could not
* swap bits 13..24 with 36..48.)
*
* It is possible, but ugly, to warp the SPE table to account for the salt
* permutation. Fortunately, the conditional bit swapping requires only
* about four machine instructions and can be done on-the-fly with about an
* 8% performance penalty.
*/
typedef union
{
unsigned char b[8];
struct
{
int32_t i0;
int32_t i1;
} b32;
#if defined(B64)
B64 b64;
#endif
} C_block;
/*
* Convert twenty-four-bit long in host-order
* to six bits (and 2 low-order zeroes) per char little-endian format.
*/
#define TO_SIX_BIT(rslt, src) { \
C_block cvt; \
cvt.b[0] = src; src >>= 6; \
cvt.b[1] = src; src >>= 6; \
cvt.b[2] = src; src >>= 6; \
cvt.b[3] = src; \
rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
}
/*
* These macros may someday permit efficient use of 64-bit integers.
*/
#define ZERO(d,d0,d1) d0 = 0, d1 = 0
#define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
#define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
#define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
#define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
#define DCL_BLOCK(d,d0,d1) int32_t d0, d1
#if defined(LARGEDATA)
/* Waste memory like crazy. Also, do permutations in line */
#define LGCHUNKBITS 3
#define CHUNKBITS (1<<LGCHUNKBITS)
#define PERM6464(d,d0,d1,cpp,p) \
LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
#define PERM3264(d,d0,d1,cpp,p) \
LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
#else
/* "small data" */
#define LGCHUNKBITS 2
#define CHUNKBITS (1<<LGCHUNKBITS)
#define PERM6464(d,d0,d1,cpp,p) \
{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
#define PERM3264(d,d0,d1,cpp,p) \
{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
#endif /* LARGEDATA */
STATIC init_des(void);
STATIC init_perm(C_block[64 / CHUNKBITS][1 << CHUNKBITS], unsigned char[64], int, int);
#ifndef LARGEDATA
STATIC permute(unsigned char *, C_block *, C_block *, int);
#endif
#ifdef DEBUG
STATIC prtab(char *, unsigned char *, int);
#endif
#ifndef LARGEDATA
STATIC
permute(unsigned char *cp, C_block *out, C_block *p, int chars_in)
{
DCL_BLOCK(D, D0, D1);
C_block *tp;
int t;
ZERO(D, D0, D1);
do
{
t = *cp++;
tp = &p[t & 0xf];
OR(D, D0, D1, *tp);
p += (1 << CHUNKBITS);
tp = &p[t >> 4];
OR(D, D0, D1, *tp);
p += (1 << CHUNKBITS);
} while (--chars_in > 0);
STORE(D, D0, D1, *out);
}
#endif /* LARGEDATA */
/* ===== (mostly) Standard DES Tables ==================== */
static const unsigned char IP[] = { /* initial permutation */
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7,
};
/* The final permutation is the inverse of IP - no table is necessary */
static const unsigned char ExpandTr[] = { /* expansion operation */
32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1,
};
static const unsigned char PC1[] = { /* permuted choice table 1 */
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4,
};
static const unsigned char Rotates[] = { /* PC1 rotation schedule */
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
};
/* note: each "row" of PC2 is left-padded with bits that make it invertible */
static const unsigned char PC2[] = { /* permuted choice table 2 */
9, 18, 14, 17, 11, 24, 1, 5,
22, 25, 3, 28, 15, 6, 21, 10,
35, 38, 23, 19, 12, 4, 26, 8,
43, 54, 16, 7, 27, 20, 13, 2,
0, 0, 41, 52, 31, 37, 47, 55,
0, 0, 30, 40, 51, 45, 33, 48,
0, 0, 44, 49, 39, 56, 34, 53,
0, 0, 46, 42, 50, 36, 29, 32,
};
static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
/* S[1] */
{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13},
/* S[2] */
{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9},
/* S[3] */
{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12},
/* S[4] */
{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},
/* S[5] */
{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},
/* S[6] */
{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},
/* S[7] */
{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},
/* S[8] */
{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}
};
static const unsigned char P32Tr[] = { /* 32-bit permutation function */
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25,
};
static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
1, 2, 3, 4, 17, 18, 19, 20,
5, 6, 7, 8, 21, 22, 23, 24,
9, 10, 11, 12, 25, 26, 27, 28,
13, 14, 15, 16, 29, 30, 31, 32,
33, 34, 35, 36, 49, 50, 51, 52,
37, 38, 39, 40, 53, 54, 55, 56,
41, 42, 43, 44, 57, 58, 59, 60,
45, 46, 47, 48, 61, 62, 63, 64,
};
static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
/* ===== Tables that are initialized at run time ==================== */
static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
/* Initial key schedule permutation */
static C_block PC1ROT[64 / CHUNKBITS][1 << CHUNKBITS];
/* Subsequent key schedule rotation permutations */
static C_block PC2ROT[2][64 / CHUNKBITS][1 << CHUNKBITS];
/* Initial permutation/expansion table */
static C_block IE3264[32 / CHUNKBITS][1 << CHUNKBITS];
/* Table that combines the S, P, and E operations. */
static int32_t SPE[2][8][64];
/* compressed/interleaved => final permutation table */
static C_block CF6464[64 / CHUNKBITS][1 << CHUNKBITS];
/* ==================================== */
static C_block constdatablock; /* encryption constant */
static char cryptresult[1 + 4 + 4 + 11 + 1]; /* encrypted result */
extern char *__md5crypt(const char *, const char *); /* XXX */
extern char *__bcrypt(const char *, const char *); /* XXX */
/*
* Return a pointer to static data consisting of the "setting"
* followed by an encryption produced by the "key" and "setting".
*/
char *
crypt(const char *key, const char *setting)
{
char *encp;
int32_t i;
int t;
int32_t salt;
int num_iter,
salt_size;
C_block keyblock,
rsltblock;
#if 0
/* Non-DES encryption schemes hook in here. */
if (setting[0] == _PASSWORD_NONDES)
{
switch (setting[1])
{
case '2':
return (__bcrypt(key, setting));
case '1':
default:
return (__md5crypt(key, setting));
}
}
#endif
for (i = 0; i < 8; i++)
{
if ((t = 2 * (unsigned char) (*key)) != 0)
key++;
keyblock.b[i] = t;
}
if (des_setkey((char *) keyblock.b)) /* also initializes "a64toi" */
return (NULL);
encp = &cryptresult[0];
switch (*setting)
{
case _PASSWORD_EFMT1:
/*
* Involve the rest of the password 8 characters at a time.
*/
while (*key)
{
if (des_cipher((char *) (void *) &keyblock,
(char *) (void *) &keyblock, 0L, 1))
return (NULL);
for (i = 0; i < 8; i++)
{
if ((t = 2 * (unsigned char) (*key)) != 0)
key++;
keyblock.b[i] ^= t;
}
if (des_setkey((char *) keyblock.b))
return (NULL);
}
*encp++ = *setting++;
/* get iteration count */
num_iter = 0;
for (i = 4; --i >= 0;)
{
if ((t = (unsigned char) setting[i]) == '\0')
t = '.';
encp[i] = t;
num_iter = (num_iter << 6) | a64toi[t];
}
setting += 4;
encp += 4;
salt_size = 4;
break;
default:
num_iter = 25;
salt_size = 2;
}
salt = 0;
for (i = salt_size; --i >= 0;)
{
if ((t = (unsigned char) setting[i]) == '\0')
t = '.';
encp[i] = t;
salt = (salt << 6) | a64toi[t];
}
encp += salt_size;
if (des_cipher((char *) (void *) &constdatablock,
(char *) (void *) &rsltblock, salt, num_iter))
return (NULL);
/*
* Encode the 64 cipher bits as 11 ascii characters.
*/
i = ((int32_t) ((rsltblock.b[0] << 8) | rsltblock.b[1]) << 8) |
rsltblock.b[2];
encp[3] = itoa64[i & 0x3f];
i >>= 6;
encp[2] = itoa64[i & 0x3f];
i >>= 6;
encp[1] = itoa64[i & 0x3f];
i >>= 6;
encp[0] = itoa64[i];
encp += 4;
i = ((int32_t) ((rsltblock.b[3] << 8) | rsltblock.b[4]) << 8) |
rsltblock.b[5];
encp[3] = itoa64[i & 0x3f];
i >>= 6;
encp[2] = itoa64[i & 0x3f];
i >>= 6;
encp[1] = itoa64[i & 0x3f];
i >>= 6;
encp[0] = itoa64[i];
encp += 4;
i = ((int32_t) ((rsltblock.b[6]) << 8) | rsltblock.b[7]) << 2;
encp[2] = itoa64[i & 0x3f];
i >>= 6;
encp[1] = itoa64[i & 0x3f];
i >>= 6;
encp[0] = itoa64[i];
encp[3] = 0;
return (cryptresult);
}
/*
* The Key Schedule, filled in by des_setkey() or setkey().
*/
#define KS_SIZE 16
static C_block KS[KS_SIZE];
static volatile int des_ready = 0;
/*
* Set up the key schedule from the key.
*/
static int
des_setkey(const char *key)
{
DCL_BLOCK(K, K0, K1);
C_block *ptabp;
int i;
if (!des_ready)
init_des();
PERM6464(K, K0, K1, (unsigned char *) key, (C_block *) PC1ROT);
key = (char *) &KS[0];
STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key);
for (i = 1; i < 16; i++)
{
key += sizeof(C_block);
STORE(K, K0, K1, *(C_block *) key);
ptabp = (C_block *) PC2ROT[Rotates[i] - 1];
PERM6464(K, K0, K1, (unsigned char *) key, ptabp);
STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key);
}
return (0);
}
/*
* Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
* iterations of DES, using the given 24-bit salt and the pre-computed key
* schedule, and store the resulting 8 chars at "out" (in == out is permitted).
*
* NOTE: the performance of this routine is critically dependent on your
* compiler and machine architecture.
*/
static int
des_cipher(const char *in, char *out, long salt, int num_iter)
{
/* variables that we want in registers, most important first */
#if defined(pdp11)
int j;
#endif
int32_t L0,
L1,
R0,
R1,
k;
C_block *kp;
int ks_inc,
loop_count;
C_block B;
L0 = salt;
TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
#if defined(__vax__) || defined(pdp11)
salt = ~salt; /* "x &~ y" is faster than "x & y". */
#define SALT (~salt)
#else
#define SALT salt
#endif
#if defined(MUST_ALIGN)
B.b[0] = in[0];
B.b[1] = in[1];
B.b[2] = in[2];
B.b[3] = in[3];
B.b[4] = in[4];
B.b[5] = in[5];
B.b[6] = in[6];
B.b[7] = in[7];
LOAD(L, L0, L1, B);
#else
LOAD(L, L0, L1, *(C_block *) in);
#endif
LOADREG(R, R0, R1, L, L0, L1);
L0 &= 0x55555555L;
L1 &= 0x55555555L;
L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
R0 &= 0xaaaaaaaaL;
R1 = (R1 >> 1) & 0x55555555L;
L1 = R0 | R1; /* L1 is the odd-numbered input bits */
STORE(L, L0, L1, B);
PERM3264(L, L0, L1, B.b, (C_block *) IE3264); /* even bits */
PERM3264(R, R0, R1, B.b + 4, (C_block *) IE3264); /* odd bits */
if (num_iter >= 0)
{ /* encryption */
kp = &KS[0];
ks_inc = sizeof(*kp);
}
else
{ /* decryption */
num_iter = -num_iter;
kp = &KS[KS_SIZE - 1];
ks_inc = -(long) sizeof(*kp);
}
while (--num_iter >= 0)
{
loop_count = 8;
do
{
#define SPTAB(t, i) \
(*(int32_t *)((unsigned char *)(t) + (i)*(sizeof(int32_t)/4)))
#if defined(gould)
/* use this if B.b[i] is evaluated just once ... */
#define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
#else
#if defined(pdp11)
/* use this if your "long" int indexing is slow */
#define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
#else
/* use this if "k" is allocated to a register ... */
#define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
#endif
#endif
#define CRUNCH(p0, p1, q0, q1) \
k = ((q0) ^ (q1)) & SALT; \
B.b32.i0 = k ^ (q0) ^ kp->b32.i0; \
B.b32.i1 = k ^ (q1) ^ kp->b32.i1; \
kp = (C_block *)((char *)kp+ks_inc); \
\
DOXOR(p0, p1, 0); \
DOXOR(p0, p1, 1); \
DOXOR(p0, p1, 2); \
DOXOR(p0, p1, 3); \
DOXOR(p0, p1, 4); \
DOXOR(p0, p1, 5); \
DOXOR(p0, p1, 6); \
DOXOR(p0, p1, 7);
CRUNCH(L0, L1, R0, R1);
CRUNCH(R0, R1, L0, L1);
} while (--loop_count != 0);
kp = (C_block *) ((char *) kp - (ks_inc * KS_SIZE));
/* swap L and R */
L0 ^= R0;
L1 ^= R1;
R0 ^= L0;
R1 ^= L1;
L0 ^= R0;
L1 ^= R1;
}
/* store the encrypted (or decrypted) result */
L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
STORE(L, L0, L1, B);
PERM6464(L, L0, L1, B.b, (C_block *) CF6464);
#if defined(MUST_ALIGN)
STORE(L, L0, L1, B);
out[0] = B.b[0];
out[1] = B.b[1];
out[2] = B.b[2];
out[3] = B.b[3];
out[4] = B.b[4];
out[5] = B.b[5];
out[6] = B.b[6];
out[7] = B.b[7];
#else
STORE(L, L0, L1, *(C_block *) out);
#endif
return (0);
}
/*
* Initialize various tables. This need only be done once. It could even be
* done at compile time, if the compiler were capable of that sort of thing.
*/
STATIC
init_des(void)
{
int i,
j;
int32_t k;
int tableno;
static unsigned char perm[64],
tmp32[32]; /* "static" for speed */
/* static volatile long init_start = 0; not used */
/*
* table that converts chars "./0-9A-Za-z"to integers 0-63.
*/
for (i = 0; i < 64; i++)
a64toi[itoa64[i]] = i;
/*
* PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
*/
for (i = 0; i < 64; i++)
perm[i] = 0;
for (i = 0; i < 64; i++)
{
if ((k = PC2[i]) == 0)
continue;
k += Rotates[0] - 1;
if ((k % 28) < Rotates[0])
k -= 28;
k = PC1[k];
if (k > 0)
{
k--;
k = (k | 07) - (k & 07);
k++;
}
perm[i] = k;
}
#ifdef DEBUG
prtab("pc1tab", perm, 8);
#endif
init_perm(PC1ROT, perm, 8, 8);
/*
* PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
*/
for (j = 0; j < 2; j++)
{
unsigned char pc2inv[64];
for (i = 0; i < 64; i++)
perm[i] = pc2inv[i] = 0;
for (i = 0; i < 64; i++)
{
if ((k = PC2[i]) == 0)
continue;
pc2inv[k - 1] = i + 1;
}
for (i = 0; i < 64; i++)
{
if ((k = PC2[i]) == 0)
continue;
k += j;
if ((k % 28) <= j)
k -= 28;
perm[i] = pc2inv[k];
}
#ifdef DEBUG
prtab("pc2tab", perm, 8);
#endif
init_perm(PC2ROT[j], perm, 8, 8);
}
/*
* Bit reverse, then initial permutation, then expansion.
*/
for (i = 0; i < 8; i++)
{
for (j = 0; j < 8; j++)
{
k = (j < 2) ? 0 : IP[ExpandTr[i * 6 + j - 2] - 1];
if (k > 32)
k -= 32;
else if (k > 0)
k--;
if (k > 0)
{
k--;
k = (k | 07) - (k & 07);
k++;
}
perm[i * 8 + j] = k;
}
}
#ifdef DEBUG
prtab("ietab", perm, 8);
#endif
init_perm(IE3264, perm, 4, 8);
/*
* Compression, then final permutation, then bit reverse.
*/
for (i = 0; i < 64; i++)
{
k = IP[CIFP[i] - 1];
if (k > 0)
{
k--;
k = (k | 07) - (k & 07);
k++;
}
perm[k - 1] = i + 1;
}
#ifdef DEBUG
prtab("cftab", perm, 8);
#endif
init_perm(CF6464, perm, 8, 8);
/*
* SPE table
*/
for (i = 0; i < 48; i++)
perm[i] = P32Tr[ExpandTr[i] - 1];
for (tableno = 0; tableno < 8; tableno++)
{
for (j = 0; j < 64; j++)
{
k = (((j >> 0) & 01) << 5) |
(((j >> 1) & 01) << 3) |
(((j >> 2) & 01) << 2) |
(((j >> 3) & 01) << 1) |
(((j >> 4) & 01) << 0) |
(((j >> 5) & 01) << 4);
k = S[tableno][k];
k = (((k >> 3) & 01) << 0) |
(((k >> 2) & 01) << 1) |
(((k >> 1) & 01) << 2) |
(((k >> 0) & 01) << 3);
for (i = 0; i < 32; i++)
tmp32[i] = 0;
for (i = 0; i < 4; i++)
tmp32[4 * tableno + i] = (k >> i) & 01;
k = 0;
for (i = 24; --i >= 0;)
k = (k << 1) | tmp32[perm[i] - 1];
TO_SIX_BIT(SPE[0][tableno][j], k);
k = 0;
for (i = 24; --i >= 0;)
k = (k << 1) | tmp32[perm[i + 24] - 1];
TO_SIX_BIT(SPE[1][tableno][j], k);
}
}
des_ready = 1;
}
/*
* Initialize "perm" to represent transformation "p", which rearranges
* (perhaps with expansion and/or contraction) one packed array of bits
* (of size "chars_in" characters) into another array (of size "chars_out"
* characters).
*
* "perm" must be all-zeroes on entry to this routine.
*/
STATIC
init_perm(C_block perm[64 / CHUNKBITS][1 << CHUNKBITS],
unsigned char p[64],
int chars_in,
int chars_out)
{
int i,
j,
k,
l;
for (k = 0; k < chars_out * 8; k++)
{ /* each output bit position */
l = p[k] - 1; /* where this bit comes from */
if (l < 0)
continue; /* output bit is always 0 */
i = l >> LGCHUNKBITS; /* which chunk this bit comes from */
l = 1 << (l & (CHUNKBITS - 1)); /* mask for this bit */
for (j = 0; j < (1 << CHUNKBITS); j++)
{ /* each chunk value */
if ((j & l) != 0)
perm[i][j].b[k >> 3] |= 1 << (k & 07);
}
}
}
/*
* "setkey" routine (for backwards compatibility)
*/
#ifdef NOT_USED
int
setkey(const char *key)
{
int i,
j,
k;
C_block keyblock;
for (i = 0; i < 8; i++)
{
k = 0;
for (j = 0; j < 8; j++)
{
k <<= 1;
k |= (unsigned char) *key++;
}
keyblock.b[i] = k;
}
return (des_setkey((char *) keyblock.b));
}
/*
* "encrypt" routine (for backwards compatibility)
*/
static int
encrypt(char *block, int flag)
{
int i,
j,
k;
C_block cblock;
for (i = 0; i < 8; i++)
{
k = 0;
for (j = 0; j < 8; j++)
{
k <<= 1;
k |= (unsigned char) *block++;
}
cblock.b[i] = k;
}
if (des_cipher((char *) &cblock, (char *) &cblock, 0L, (flag ? -1 : 1)))
return (1);
for (i = 7; i >= 0; i--)
{
k = cblock.b[i];
for (j = 7; j >= 0; j--)
{
*--block = k & 01;
k >>= 1;
}
}
return (0);
}
#endif
#ifdef DEBUG
STATIC
prtab(char *s, unsigned char *t, int num_rows)
{
int i,
j;
(void) printf("%s:\n", s);
for (i = 0; i < num_rows; i++)
{
for (j = 0; j < 8; j++)
(void) printf("%3d", t[i * 8 + j]);
(void) printf("\n");
}
(void) printf("\n");
}
#endif
......@@ -93,7 +93,7 @@ sub mkvcbuild
$solution = CreateSolution($vsVersion, $config);
our @pgportfiles = qw(
chklocale.c crypt.c fls.c fseeko.c getrusage.c inet_aton.c random.c
chklocale.c fls.c fseeko.c getrusage.c inet_aton.c random.c
srandom.c getaddrinfo.c gettimeofday.c inet_net_ntop.c kill.c open.c
erand48.c snprintf.c strlcat.c strlcpy.c dirmod.c noblock.c path.c
dirent.c dlopen.c getopt.c getopt_long.c
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment