Commit a66ee69a authored by Alvaro Herrera's avatar Alvaro Herrera

Embedded list interface

Provide a common implementation of embedded singly-linked and
doubly-linked lists.  "Embedded" in the sense that the nodes'
next/previous pointers exist within some larger struct; this design
choice reduces memory allocation overhead.

Most of the implementation uses inlineable functions (where supported),
for performance.

Some existing uses of both types of lists have been converted to the new
code, for demonstration purposes.  Other uses can (and probably will) be
converted in the future.  Since dllist.c is unused after this conversion,
it has been removed.

Author: Andres Freund
Some tweaks by me
Reviewed by Tom Lane, Peter Geoghegan
parent f862a326
......@@ -12,6 +12,6 @@ subdir = src/backend/lib
top_builddir = ../../..
include $(top_builddir)/src/Makefile.global
OBJS = dllist.o stringinfo.o
OBJS = ilist.o stringinfo.o
include $(top_srcdir)/src/backend/common.mk
/*-------------------------------------------------------------------------
*
* dllist.c
* this is a simple doubly linked list implementation
* the elements of the lists are void*
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/lib/dllist.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "lib/dllist.h"
Dllist *
DLNewList(void)
{
Dllist *l;
l = (Dllist *) palloc(sizeof(Dllist));
l->dll_head = NULL;
l->dll_tail = NULL;
return l;
}
void
DLInitList(Dllist *list)
{
list->dll_head = NULL;
list->dll_tail = NULL;
}
/*
* free up a list and all the nodes in it --- but *not* whatever the nodes
* might point to!
*/
void
DLFreeList(Dllist *list)
{
Dlelem *curr;
while ((curr = DLRemHead(list)) != NULL)
pfree(curr);
pfree(list);
}
Dlelem *
DLNewElem(void *val)
{
Dlelem *e;
e = (Dlelem *) palloc(sizeof(Dlelem));
e->dle_next = NULL;
e->dle_prev = NULL;
e->dle_val = val;
e->dle_list = NULL;
return e;
}
void
DLInitElem(Dlelem *e, void *val)
{
e->dle_next = NULL;
e->dle_prev = NULL;
e->dle_val = val;
e->dle_list = NULL;
}
void
DLFreeElem(Dlelem *e)
{
pfree(e);
}
void
DLRemove(Dlelem *e)
{
Dllist *l = e->dle_list;
if (e->dle_prev)
e->dle_prev->dle_next = e->dle_next;
else
{
/* must be the head element */
Assert(e == l->dll_head);
l->dll_head = e->dle_next;
}
if (e->dle_next)
e->dle_next->dle_prev = e->dle_prev;
else
{
/* must be the tail element */
Assert(e == l->dll_tail);
l->dll_tail = e->dle_prev;
}
e->dle_next = NULL;
e->dle_prev = NULL;
e->dle_list = NULL;
}
void
DLAddHead(Dllist *l, Dlelem *e)
{
e->dle_list = l;
if (l->dll_head)
l->dll_head->dle_prev = e;
e->dle_next = l->dll_head;
e->dle_prev = NULL;
l->dll_head = e;
if (l->dll_tail == NULL) /* if this is first element added */
l->dll_tail = e;
}
void
DLAddTail(Dllist *l, Dlelem *e)
{
e->dle_list = l;
if (l->dll_tail)
l->dll_tail->dle_next = e;
e->dle_prev = l->dll_tail;
e->dle_next = NULL;
l->dll_tail = e;
if (l->dll_head == NULL) /* if this is first element added */
l->dll_head = e;
}
Dlelem *
DLRemHead(Dllist *l)
{
/* remove and return the head */
Dlelem *result = l->dll_head;
if (result == NULL)
return result;
if (result->dle_next)
result->dle_next->dle_prev = NULL;
l->dll_head = result->dle_next;
if (result == l->dll_tail) /* if the head is also the tail */
l->dll_tail = NULL;
result->dle_next = NULL;
result->dle_list = NULL;
return result;
}
Dlelem *
DLRemTail(Dllist *l)
{
/* remove and return the tail */
Dlelem *result = l->dll_tail;
if (result == NULL)
return result;
if (result->dle_prev)
result->dle_prev->dle_next = NULL;
l->dll_tail = result->dle_prev;
if (result == l->dll_head) /* if the tail is also the head */
l->dll_head = NULL;
result->dle_prev = NULL;
result->dle_list = NULL;
return result;
}
/* Same as DLRemove followed by DLAddHead, but faster */
void
DLMoveToFront(Dlelem *e)
{
Dllist *l = e->dle_list;
if (l->dll_head == e)
return; /* Fast path if already at front */
Assert(e->dle_prev != NULL); /* since it's not the head */
e->dle_prev->dle_next = e->dle_next;
if (e->dle_next)
e->dle_next->dle_prev = e->dle_prev;
else
{
/* must be the tail element */
Assert(e == l->dll_tail);
l->dll_tail = e->dle_prev;
}
l->dll_head->dle_prev = e;
e->dle_next = l->dll_head;
e->dle_prev = NULL;
l->dll_head = e;
/* We need not check dll_tail, since there must have been > 1 entry */
}
/*-------------------------------------------------------------------------
*
* ilist.c
* support for integrated/inline doubly- and singly- linked lists
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/lib/ilist.c
*
* NOTES
* This file only contains functions that are too big to be considered
* for inlining. See ilist.h for most of the goodies.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
/* See ilist.h */
#define ILIST_INCLUDE_DEFINITIONS
#include "lib/ilist.h"
/*
* removes a node from a list
*
* Attention: O(n)
*/
void
slist_delete(slist_head *head, slist_node *node)
{
slist_node *last = &head->head;
slist_node *cur;
bool found PG_USED_FOR_ASSERTS_ONLY = false;
while ((cur = last->next) != NULL)
{
if (cur == node)
{
last->next = cur->next;
#ifdef USE_ASSERT_CHECKING
found = true;
#endif
break;
}
last = cur;
}
slist_check(head);
Assert(found);
}
#ifdef ILIST_DEBUG
/*
* Verify integrity of a doubly linked list
*/
void
dlist_check(dlist_head *head)
{
dlist_node *cur;
if (head == NULL || !(&head->head))
elog(ERROR, "doubly linked list head is not properly initialized");
/* iterate in forward direction */
for (cur = head->head.next; cur != &head->head; cur = cur->next)
{
if (cur == NULL ||
cur->next == NULL ||
cur->prev == NULL ||
cur->prev->next != cur ||
cur->next->prev != cur)
elog(ERROR, "doubly linked list is corrupted");
}
/* iterate in backward direction */
for (cur = head->head.prev; cur != &head->head; cur = cur->prev)
{
if (cur == NULL ||
cur->next == NULL ||
cur->prev == NULL ||
cur->prev->next != cur ||
cur->next->prev != cur)
elog(ERROR, "doubly linked list is corrupted");
}
}
/*
* Verify integrity of a singly linked list
*/
void
slist_check(slist_head *head)
{
slist_node *cur;
if (head == NULL)
elog(ERROR, "singly linked is NULL");
/*
* there isn't much we can test in a singly linked list other that it
* actually ends sometime, i.e. hasn't introduced a cycle or similar
*/
for (cur = head->head.next; cur != NULL; cur = cur->next)
;
}
#endif /* ILIST_DEBUG */
......@@ -77,7 +77,7 @@
#include "catalog/pg_database.h"
#include "commands/dbcommands.h"
#include "commands/vacuum.h"
#include "lib/dllist.h"
#include "lib/ilist.h"
#include "libpq/pqsignal.h"
#include "miscadmin.h"
#include "pgstat.h"
......@@ -152,6 +152,7 @@ typedef struct avl_dbase
Oid adl_datid; /* hash key -- must be first */
TimestampTz adl_next_worker;
int adl_score;
dlist_node adl_node;
} avl_dbase;
/* struct to keep track of databases in worker */
......@@ -208,7 +209,7 @@ typedef struct autovac_table
*/
typedef struct WorkerInfoData
{
SHM_QUEUE wi_links;
dlist_node wi_links;
Oid wi_dboid;
Oid wi_tableoid;
PGPROC *wi_proc;
......@@ -251,15 +252,18 @@ typedef struct
{
sig_atomic_t av_signal[AutoVacNumSignals];
pid_t av_launcherpid;
WorkerInfo av_freeWorkers;
SHM_QUEUE av_runningWorkers;
dlist_head av_freeWorkers;
dlist_head av_runningWorkers;
WorkerInfo av_startingWorker;
} AutoVacuumShmemStruct;
static AutoVacuumShmemStruct *AutoVacuumShmem;
/* the database list in the launcher, and the context that contains it */
static Dllist *DatabaseList = NULL;
/*
* the database list (of avl_dbase elements) in the launcher, and the context
* that contains it
*/
static dlist_head DatabaseList = DLIST_STATIC_INIT(DatabaseList);
static MemoryContext DatabaseListCxt = NULL;
/* Pointer to my own WorkerInfo, valid on each worker */
......@@ -508,7 +512,7 @@ AutoVacLauncherMain(int argc, char *argv[])
/* don't leave dangling pointers to freed memory */
DatabaseListCxt = NULL;
DatabaseList = NULL;
dlist_init(&DatabaseList);
/*
* Make sure pgstat also considers our stat data as gone. Note: we
......@@ -576,7 +580,7 @@ AutoVacLauncherMain(int argc, char *argv[])
struct timeval nap;
TimestampTz current_time = 0;
bool can_launch;
Dlelem *elem;
avl_dbase *avdb;
int rc;
/*
......@@ -586,7 +590,7 @@ AutoVacLauncherMain(int argc, char *argv[])
* wakening conditions.
*/
launcher_determine_sleep((AutoVacuumShmem->av_freeWorkers != NULL),
launcher_determine_sleep(!dlist_is_empty(&AutoVacuumShmem->av_freeWorkers),
false, &nap);
/* Allow sinval catchup interrupts while sleeping */
......@@ -679,7 +683,7 @@ AutoVacLauncherMain(int argc, char *argv[])
current_time = GetCurrentTimestamp();
LWLockAcquire(AutovacuumLock, LW_SHARED);
can_launch = (AutoVacuumShmem->av_freeWorkers != NULL);
can_launch = !dlist_is_empty(&AutoVacuumShmem->av_freeWorkers);
if (AutoVacuumShmem->av_startingWorker != NULL)
{
......@@ -721,8 +725,7 @@ AutoVacLauncherMain(int argc, char *argv[])
worker->wi_tableoid = InvalidOid;
worker->wi_proc = NULL;
worker->wi_launchtime = 0;
worker->wi_links.next = (SHM_QUEUE *) AutoVacuumShmem->av_freeWorkers;
AutoVacuumShmem->av_freeWorkers = worker;
dlist_push_head(&AutoVacuumShmem->av_freeWorkers, &worker->wi_links);
AutoVacuumShmem->av_startingWorker = NULL;
elog(WARNING, "worker took too long to start; canceled");
}
......@@ -738,20 +741,7 @@ AutoVacLauncherMain(int argc, char *argv[])
/* We're OK to start a new worker */
elem = DLGetTail(DatabaseList);
if (elem != NULL)
{
avl_dbase *avdb = DLE_VAL(elem);
/*
* launch a worker if next_worker is right now or it is in the
* past
*/
if (TimestampDifferenceExceeds(avdb->adl_next_worker,
current_time, 0))
launch_worker(current_time);
}
else
if (dlist_is_empty(&DatabaseList))
{
/*
* Special case when the list is empty: start a worker right away.
......@@ -763,6 +753,23 @@ AutoVacLauncherMain(int argc, char *argv[])
*/
launch_worker(current_time);
}
else
{
/*
* because rebuild_database_list constructs a list with most
* distant adl_next_worker first, we obtain our database from the
* tail of the list.
*/
avdb = dlist_tail_element(avl_dbase, adl_node, &DatabaseList);
/*
* launch a worker if next_worker is right now or it is in the
* past
*/
if (TimestampDifferenceExceeds(avdb->adl_next_worker,
current_time, 0))
launch_worker(current_time);
}
}
/* Normal exit from the autovac launcher is here */
......@@ -783,7 +790,7 @@ AutoVacLauncherMain(int argc, char *argv[])
static void
launcher_determine_sleep(bool canlaunch, bool recursing, struct timeval * nap)
{
Dlelem *elem;
avl_dbase *avdb;
/*
* We sleep until the next scheduled vacuum. We trust that when the
......@@ -796,14 +803,15 @@ launcher_determine_sleep(bool canlaunch, bool recursing, struct timeval * nap)
nap->tv_sec = autovacuum_naptime;
nap->tv_usec = 0;
}
else if ((elem = DLGetTail(DatabaseList)) != NULL)
else if (!dlist_is_empty(&DatabaseList))
{
avl_dbase *avdb = DLE_VAL(elem);
TimestampTz current_time = GetCurrentTimestamp();
TimestampTz next_wakeup;
long secs;
int usecs;
avdb = dlist_tail_element(avl_dbase, adl_node, &DatabaseList);
next_wakeup = avdb->adl_next_worker;
TimestampDifference(current_time, next_wakeup, &secs, &usecs);
......@@ -867,6 +875,7 @@ rebuild_database_list(Oid newdb)
int score;
int nelems;
HTAB *dbhash;
dlist_iter iter;
/* use fresh stats */
autovac_refresh_stats();
......@@ -927,20 +936,13 @@ rebuild_database_list(Oid newdb)
}
/* Now insert the databases from the existing list */
if (DatabaseList != NULL)
dlist_foreach(iter, &DatabaseList)
{
Dlelem *elem;
elem = DLGetHead(DatabaseList);
while (elem != NULL)
{
avl_dbase *avdb = DLE_VAL(elem);
avl_dbase *avdb = dlist_container(avl_dbase, adl_node, iter.cur);
avl_dbase *db;
bool found;
PgStat_StatDBEntry *entry;
elem = DLGetSucc(elem);
/*
* skip databases with no stat entries -- in particular, this gets
* rid of dropped databases
......@@ -958,7 +960,6 @@ rebuild_database_list(Oid newdb)
/* next_worker is filled in later */
}
}
}
/* finally, insert all qualifying databases not previously inserted */
dblist = get_database_list();
......@@ -987,7 +988,7 @@ rebuild_database_list(Oid newdb)
/* from here on, the allocated memory belongs to the new list */
MemoryContextSwitchTo(newcxt);
DatabaseList = DLNewList();
dlist_init(&DatabaseList);
if (nelems > 0)
{
......@@ -1029,15 +1030,13 @@ rebuild_database_list(Oid newdb)
for (i = 0; i < nelems; i++)
{
avl_dbase *db = &(dbary[i]);
Dlelem *elem;
current_time = TimestampTzPlusMilliseconds(current_time,
millis_increment);
db->adl_next_worker = current_time;
elem = DLNewElem(db);
/* later elements should go closer to the head of the list */
DLAddHead(DatabaseList, elem);
dlist_push_head(&DatabaseList, &db->adl_node);
}
}
......@@ -1086,7 +1085,7 @@ do_start_worker(void)
/* return quickly when there are no free workers */
LWLockAcquire(AutovacuumLock, LW_SHARED);
if (AutoVacuumShmem->av_freeWorkers == NULL)
if (dlist_is_empty(&AutoVacuumShmem->av_freeWorkers))
{
LWLockRelease(AutovacuumLock);
return InvalidOid;
......@@ -1147,7 +1146,7 @@ do_start_worker(void)
foreach(cell, dblist)
{
avw_dbase *tmp = lfirst(cell);
Dlelem *elem;
dlist_iter iter;
/* Check to see if this one is at risk of wraparound */
if (TransactionIdPrecedes(tmp->adw_frozenxid, xidForceLimit))
......@@ -1179,11 +1178,10 @@ do_start_worker(void)
* autovacuum time yet.
*/
skipit = false;
elem = DatabaseList ? DLGetTail(DatabaseList) : NULL;
while (elem != NULL)
dlist_reverse_foreach(iter, &DatabaseList)
{
avl_dbase *dbp = DLE_VAL(elem);
avl_dbase *dbp = dlist_container(avl_dbase, adl_node, iter.cur);
if (dbp->adl_datid == tmp->adw_datid)
{
......@@ -1200,7 +1198,6 @@ do_start_worker(void)
break;
}
elem = DLGetPred(elem);
}
if (skipit)
continue;
......@@ -1218,20 +1215,17 @@ do_start_worker(void)
if (avdb != NULL)
{
WorkerInfo worker;
dlist_node *wptr;
LWLockAcquire(AutovacuumLock, LW_EXCLUSIVE);
/*
* Get a worker entry from the freelist. We checked above, so there
* really should be a free slot -- complain very loudly if there
* isn't.
* really should be a free slot.
*/
worker = AutoVacuumShmem->av_freeWorkers;
if (worker == NULL)
elog(FATAL, "no free worker found");
AutoVacuumShmem->av_freeWorkers = (WorkerInfo) worker->wi_links.next;
wptr = dlist_pop_head_node(&AutoVacuumShmem->av_freeWorkers);
worker = dlist_container(WorkerInfoData, wi_links, wptr);
worker->wi_dboid = avdb->adw_datid;
worker->wi_proc = NULL;
worker->wi_launchtime = GetCurrentTimestamp();
......@@ -1274,22 +1268,25 @@ static void
launch_worker(TimestampTz now)
{
Oid dbid;
Dlelem *elem;
dlist_iter iter;
dbid = do_start_worker();
if (OidIsValid(dbid))
{
bool found = false;
/*
* Walk the database list and update the corresponding entry. If the
* database is not on the list, we'll recreate the list.
*/
elem = (DatabaseList == NULL) ? NULL : DLGetHead(DatabaseList);
while (elem != NULL)
dlist_foreach(iter, &DatabaseList)
{
avl_dbase *avdb = DLE_VAL(elem);
avl_dbase *avdb = dlist_container(avl_dbase, adl_node, iter.cur);
if (avdb->adl_datid == dbid)
{
found = true;
/*
* add autovacuum_naptime seconds to the current time, and use
* that as the new "next_worker" field for this database.
......@@ -1297,10 +1294,9 @@ launch_worker(TimestampTz now)
avdb->adl_next_worker =
TimestampTzPlusMilliseconds(now, autovacuum_naptime * 1000);
DLMoveToFront(elem);
dlist_move_head(&DatabaseList, iter.cur);
break;
}
elem = DLGetSucc(elem);
}
/*
......@@ -1310,7 +1306,7 @@ launch_worker(TimestampTz now)
* pgstat entry, but this is not a problem because we don't want to
* schedule workers regularly into those in any case.
*/
if (elem == NULL)
if (!found)
rebuild_database_list(dbid);
}
}
......@@ -1590,7 +1586,7 @@ AutoVacWorkerMain(int argc, char *argv[])
MyWorkerInfo->wi_proc = MyProc;
/* insert into the running list */
SHMQueueInsertBefore(&AutoVacuumShmem->av_runningWorkers,
dlist_push_head(&AutoVacuumShmem->av_runningWorkers,
&MyWorkerInfo->wi_links);
/*
......@@ -1681,8 +1677,7 @@ FreeWorkerInfo(int code, Datum arg)
*/
AutovacuumLauncherPid = AutoVacuumShmem->av_launcherpid;
SHMQueueDelete(&MyWorkerInfo->wi_links);
MyWorkerInfo->wi_links.next = (SHM_QUEUE *) AutoVacuumShmem->av_freeWorkers;
dlist_delete(&AutoVacuumShmem->av_runningWorkers, &MyWorkerInfo->wi_links);
MyWorkerInfo->wi_dboid = InvalidOid;
MyWorkerInfo->wi_tableoid = InvalidOid;
MyWorkerInfo->wi_proc = NULL;
......@@ -1690,7 +1685,7 @@ FreeWorkerInfo(int code, Datum arg)
MyWorkerInfo->wi_cost_delay = 0;
MyWorkerInfo->wi_cost_limit = 0;
MyWorkerInfo->wi_cost_limit_base = 0;
AutoVacuumShmem->av_freeWorkers = MyWorkerInfo;
dlist_push_head(&AutoVacuumShmem->av_freeWorkers, &MyWorkerInfo->wi_links);
/* not mine anymore */
MyWorkerInfo = NULL;
......@@ -1740,7 +1735,7 @@ autovac_balance_cost(void)
autovacuum_vac_cost_delay : VacuumCostDelay);
double cost_total;
double cost_avail;
WorkerInfo worker;
dlist_iter iter;
/* not set? nothing to do */
if (vac_cost_limit <= 0 || vac_cost_delay <= 0)
......@@ -1748,19 +1743,14 @@ autovac_balance_cost(void)
/* caculate the total base cost limit of active workers */
cost_total = 0.0;
worker = (WorkerInfo) SHMQueueNext(&AutoVacuumShmem->av_runningWorkers,
&AutoVacuumShmem->av_runningWorkers,
offsetof(WorkerInfoData, wi_links));
while (worker)
dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers)
{
WorkerInfo worker = dlist_container(WorkerInfoData, wi_links, iter.cur);
if (worker->wi_proc != NULL &&
worker->wi_cost_limit_base > 0 && worker->wi_cost_delay > 0)
cost_total +=
(double) worker->wi_cost_limit_base / worker->wi_cost_delay;
worker = (WorkerInfo) SHMQueueNext(&AutoVacuumShmem->av_runningWorkers,
&worker->wi_links,
offsetof(WorkerInfoData, wi_links));
}
/* there are no cost limits -- nothing to do */
if (cost_total <= 0)
......@@ -1771,11 +1761,10 @@ autovac_balance_cost(void)
* limit to autovacuum_vacuum_cost_limit.
*/
cost_avail = (double) vac_cost_limit / vac_cost_delay;
worker = (WorkerInfo) SHMQueueNext(&AutoVacuumShmem->av_runningWorkers,
&AutoVacuumShmem->av_runningWorkers,
offsetof(WorkerInfoData, wi_links));
while (worker)
dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers)
{
WorkerInfo worker = dlist_container(WorkerInfoData, wi_links, iter.cur);
if (worker->wi_proc != NULL &&
worker->wi_cost_limit_base > 0 && worker->wi_cost_delay > 0)
{
......@@ -1797,10 +1786,6 @@ autovac_balance_cost(void)
worker->wi_cost_limit, worker->wi_cost_limit_base,
worker->wi_cost_delay);
}
worker = (WorkerInfo) SHMQueueNext(&AutoVacuumShmem->av_runningWorkers,
&worker->wi_links,
offsetof(WorkerInfoData, wi_links));
}
}
......@@ -2177,10 +2162,10 @@ do_autovacuum(void)
{
Oid relid = lfirst_oid(cell);
autovac_table *tab;
WorkerInfo worker;
bool skipit;
int stdVacuumCostDelay;
int stdVacuumCostLimit;
dlist_iter iter;
CHECK_FOR_INTERRUPTS();
......@@ -2197,29 +2182,23 @@ do_autovacuum(void)
* worker.
*/
skipit = false;
worker = (WorkerInfo) SHMQueueNext(&AutoVacuumShmem->av_runningWorkers,
&AutoVacuumShmem->av_runningWorkers,
offsetof(WorkerInfoData, wi_links));
while (worker)
dlist_foreach(iter, &AutoVacuumShmem->av_runningWorkers)
{
WorkerInfo worker = dlist_container(WorkerInfoData, wi_links, iter.cur);
/* ignore myself */
if (worker == MyWorkerInfo)
goto next_worker;
continue;
/* ignore workers in other databases */
if (worker->wi_dboid != MyDatabaseId)
goto next_worker;
continue;
if (worker->wi_tableoid == relid)
{
skipit = true;
break;
}
next_worker:
worker = (WorkerInfo) SHMQueueNext(&AutoVacuumShmem->av_runningWorkers,
&worker->wi_links,
offsetof(WorkerInfoData, wi_links));
}
LWLockRelease(AutovacuumLock);
if (skipit)
......@@ -2875,8 +2854,8 @@ AutoVacuumShmemInit(void)
Assert(!found);
AutoVacuumShmem->av_launcherpid = 0;
AutoVacuumShmem->av_freeWorkers = NULL;
SHMQueueInit(&AutoVacuumShmem->av_runningWorkers);
dlist_init(&AutoVacuumShmem->av_freeWorkers);
dlist_init(&AutoVacuumShmem->av_runningWorkers);
AutoVacuumShmem->av_startingWorker = NULL;
worker = (WorkerInfo) ((char *) AutoVacuumShmem +
......@@ -2884,10 +2863,7 @@ AutoVacuumShmemInit(void)
/* initialize the WorkerInfo free list */
for (i = 0; i < autovacuum_max_workers; i++)
{
worker[i].wi_links.next = (SHM_QUEUE *) AutoVacuumShmem->av_freeWorkers;
AutoVacuumShmem->av_freeWorkers = &worker[i];
}
dlist_push_head(&AutoVacuumShmem->av_freeWorkers, &worker[i].wi_links);
}
else
Assert(found);
......
......@@ -95,7 +95,7 @@
#include "access/xlog.h"
#include "bootstrap/bootstrap.h"
#include "catalog/pg_control.h"
#include "lib/dllist.h"
#include "lib/ilist.h"
#include "libpq/auth.h"
#include "libpq/ip.h"
#include "libpq/libpq.h"
......@@ -146,10 +146,10 @@ typedef struct bkend
int child_slot; /* PMChildSlot for this backend, if any */
bool is_autovacuum; /* is it an autovacuum process? */
bool dead_end; /* is it going to send an error and quit? */
Dlelem elem; /* list link in BackendList */
dlist_node elem; /* list link in BackendList */
} Backend;
static Dllist *BackendList;
static dlist_head BackendList = DLIST_STATIC_INIT(BackendList);
#ifdef EXEC_BACKEND
static Backend *ShmemBackendArray;
......@@ -1027,11 +1027,6 @@ PostmasterMain(int argc, char *argv[])
*/
set_stack_base();
/*
* Initialize the list of active backends.
*/
BackendList = DLNewList();
/*
* Initialize pipe (or process handle on Windows) that allows children to
* wake up from sleep on postmaster death.
......@@ -1872,7 +1867,7 @@ processCancelRequest(Port *port, void *pkt)
Backend *bp;
#ifndef EXEC_BACKEND
Dlelem *curr;
dlist_iter iter;
#else
int i;
#endif
......@@ -1886,9 +1881,9 @@ processCancelRequest(Port *port, void *pkt)
* duplicate array in shared memory.
*/
#ifndef EXEC_BACKEND
for (curr = DLGetHead(BackendList); curr; curr = DLGetSucc(curr))
dlist_foreach(iter, &BackendList)
{
bp = (Backend *) DLE_VAL(curr);
bp = dlist_container(Backend, elem, iter.cur);
#else
for (i = MaxLivePostmasterChildren() - 1; i >= 0; i--)
{
......@@ -2648,7 +2643,7 @@ static void
CleanupBackend(int pid,
int exitstatus) /* child's exit status. */
{
Dlelem *curr;
dlist_mutable_iter iter;
LogChildExit(DEBUG2, _("server process"), pid, exitstatus);
......@@ -2680,9 +2675,9 @@ CleanupBackend(int pid,
return;
}
for (curr = DLGetHead(BackendList); curr; curr = DLGetSucc(curr))
dlist_foreach_modify(iter, &BackendList)
{
Backend *bp = (Backend *) DLE_VAL(curr);
Backend *bp = dlist_container(Backend, elem, iter.cur);
if (bp->pid == pid)
{
......@@ -2701,7 +2696,7 @@ CleanupBackend(int pid,
ShmemBackendArrayRemove(bp);
#endif
}
DLRemove(curr);
dlist_delete(&BackendList, iter.cur);
free(bp);
break;
}
......@@ -2718,8 +2713,7 @@ CleanupBackend(int pid,
static void
HandleChildCrash(int pid, int exitstatus, const char *procname)
{
Dlelem *curr,
*next;
dlist_mutable_iter iter;
Backend *bp;
/*
......@@ -2734,10 +2728,10 @@ HandleChildCrash(int pid, int exitstatus, const char *procname)
}
/* Process regular backends */
for (curr = DLGetHead(BackendList); curr; curr = next)
dlist_foreach_modify(iter, &BackendList)
{
next = DLGetSucc(curr);
bp = (Backend *) DLE_VAL(curr);
bp = dlist_container(Backend, elem, iter.cur);
if (bp->pid == pid)
{
/*
......@@ -2750,7 +2744,7 @@ HandleChildCrash(int pid, int exitstatus, const char *procname)
ShmemBackendArrayRemove(bp);
#endif
}
DLRemove(curr);
dlist_delete(&BackendList, iter.cur);
free(bp);
/* Keep looping so we can signal remaining backends */
}
......@@ -3113,7 +3107,7 @@ PostmasterStateMachine(void)
* normal state transition leading up to PM_WAIT_DEAD_END, or during
* FatalError processing.
*/
if (DLGetHead(BackendList) == NULL &&
if (dlist_is_empty(&BackendList) &&
PgArchPID == 0 && PgStatPID == 0)
{
/* These other guys should be dead already */
......@@ -3239,12 +3233,12 @@ signal_child(pid_t pid, int signal)
static bool
SignalSomeChildren(int signal, int target)
{
Dlelem *curr;
dlist_iter iter;
bool signaled = false;
for (curr = DLGetHead(BackendList); curr; curr = DLGetSucc(curr))
dlist_foreach(iter, &BackendList)
{
Backend *bp = (Backend *) DLE_VAL(curr);
Backend *bp = dlist_container(Backend, elem, iter.cur);
if (bp->dead_end)
continue;
......@@ -3382,8 +3376,8 @@ BackendStartup(Port *port)
*/
bn->pid = pid;
bn->is_autovacuum = false;
DLInitElem(&bn->elem, bn);
DLAddHead(BackendList, &bn->elem);
dlist_push_head(&BackendList, &bn->elem);
#ifdef EXEC_BACKEND
if (!bn->dead_end)
ShmemBackendArrayAdd(bn);
......@@ -4491,12 +4485,12 @@ PostmasterRandom(void)
static int
CountChildren(int target)
{
Dlelem *curr;
dlist_iter iter;
int cnt = 0;
for (curr = DLGetHead(BackendList); curr; curr = DLGetSucc(curr))
dlist_foreach(iter, &BackendList)
{
Backend *bp = (Backend *) DLE_VAL(curr);
Backend *bp = dlist_container(Backend, elem, iter.cur);
if (bp->dead_end)
continue;
......@@ -4675,8 +4669,7 @@ StartAutovacuumWorker(void)
if (bn->pid > 0)
{
bn->is_autovacuum = true;
DLInitElem(&bn->elem, bn);
DLAddHead(BackendList, &bn->elem);
dlist_push_head(&BackendList, &bn->elem);
#ifdef EXEC_BACKEND
ShmemBackendArrayAdd(bn);
#endif
......
......@@ -291,7 +291,7 @@ CatalogCacheComputeTupleHashValue(CatCache *cache, HeapTuple tuple)
static void
CatCachePrintStats(int code, Datum arg)
{
CatCache *cache;
slist_iter iter;
long cc_searches = 0;
long cc_hits = 0;
long cc_neg_hits = 0;
......@@ -300,8 +300,10 @@ CatCachePrintStats(int code, Datum arg)
long cc_lsearches = 0;
long cc_lhits = 0;
for (cache = CacheHdr->ch_caches; cache; cache = cache->cc_next)
slist_foreach(iter, &CacheHdr->ch_caches)
{
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
if (cache->cc_ntup == 0 && cache->cc_searches == 0)
continue; /* don't print unused caches */
elog(DEBUG2, "catcache %s/%u: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits",
......@@ -368,8 +370,7 @@ CatCacheRemoveCTup(CatCache *cache, CatCTup *ct)
return; /* nothing left to do */
}
/* delink from linked list */
DLRemove(&ct->cache_elem);
dlist_delete(ct->cache_bucket, &ct->cache_elem);
/* free associated tuple data */
if (ct->tuple.t_data != NULL)
......@@ -412,7 +413,7 @@ CatCacheRemoveCList(CatCache *cache, CatCList *cl)
}
/* delink from linked list */
DLRemove(&cl->cache_elem);
dlist_delete(&cache->cc_lists, &cl->cache_elem);
/* free associated tuple data */
if (cl->tuple.t_data != NULL)
......@@ -442,18 +443,18 @@ CatCacheRemoveCList(CatCache *cache, CatCList *cl)
void
CatalogCacheIdInvalidate(int cacheId, uint32 hashValue)
{
CatCache *ccp;
slist_iter cache_iter;
CACHE1_elog(DEBUG2, "CatalogCacheIdInvalidate: called");
/*
* inspect caches to find the proper cache
*/
for (ccp = CacheHdr->ch_caches; ccp; ccp = ccp->cc_next)
slist_foreach(cache_iter, &CacheHdr->ch_caches)
{
Index hashIndex;
Dlelem *elt,
*nextelt;
dlist_mutable_iter iter;
CatCache *ccp = slist_container(CatCache, cc_next, cache_iter.cur);
if (cacheId != ccp->id)
continue;
......@@ -468,11 +469,9 @@ CatalogCacheIdInvalidate(int cacheId, uint32 hashValue)
* Invalidate *all* CatCLists in this cache; it's too hard to tell
* which searches might still be correct, so just zap 'em all.
*/
for (elt = DLGetHead(&ccp->cc_lists); elt; elt = nextelt)
dlist_foreach_modify(iter, &ccp->cc_lists)
{
CatCList *cl = (CatCList *) DLE_VAL(elt);
nextelt = DLGetSucc(elt);
CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur);
if (cl->refcount > 0)
cl->dead = true;
......@@ -484,12 +483,9 @@ CatalogCacheIdInvalidate(int cacheId, uint32 hashValue)
* inspect the proper hash bucket for tuple matches
*/
hashIndex = HASH_INDEX(hashValue, ccp->cc_nbuckets);
for (elt = DLGetHead(&ccp->cc_bucket[hashIndex]); elt; elt = nextelt)
dlist_foreach_modify(iter, &ccp->cc_bucket[hashIndex])
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
nextelt = DLGetSucc(elt);
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
if (hashValue == ct->hash_value)
{
......@@ -557,17 +553,18 @@ AtEOXact_CatCache(bool isCommit)
#ifdef USE_ASSERT_CHECKING
if (assert_enabled)
{
CatCache *ccp;
slist_iter cache_iter;
for (ccp = CacheHdr->ch_caches; ccp; ccp = ccp->cc_next)
slist_foreach(cache_iter, &(CacheHdr->ch_caches))
{
Dlelem *elt;
CatCache *ccp = slist_container(CatCache, cc_next, cache_iter.cur);
dlist_iter iter;
int i;
/* Check CatCLists */
for (elt = DLGetHead(&ccp->cc_lists); elt; elt = DLGetSucc(elt))
dlist_foreach(iter, &ccp->cc_lists)
{
CatCList *cl = (CatCList *) DLE_VAL(elt);
CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur);
Assert(cl->cl_magic == CL_MAGIC);
Assert(cl->refcount == 0);
......@@ -577,11 +574,11 @@ AtEOXact_CatCache(bool isCommit)
/* Check individual tuples */
for (i = 0; i < ccp->cc_nbuckets; i++)
{
for (elt = DLGetHead(&ccp->cc_bucket[i]);
elt;
elt = DLGetSucc(elt))
dlist_head *bucket = &ccp->cc_bucket[i];
dlist_foreach(iter, bucket)
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
Assert(ct->ct_magic == CT_MAGIC);
Assert(ct->refcount == 0);
......@@ -604,16 +601,13 @@ AtEOXact_CatCache(bool isCommit)
static void
ResetCatalogCache(CatCache *cache)
{
Dlelem *elt,
*nextelt;
dlist_mutable_iter iter;
int i;
/* Remove each list in this cache, or at least mark it dead */
for (elt = DLGetHead(&cache->cc_lists); elt; elt = nextelt)
dlist_foreach_modify(iter, &cache->cc_lists)
{
CatCList *cl = (CatCList *) DLE_VAL(elt);
nextelt = DLGetSucc(elt);
CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur);
if (cl->refcount > 0)
cl->dead = true;
......@@ -624,11 +618,11 @@ ResetCatalogCache(CatCache *cache)
/* Remove each tuple in this cache, or at least mark it dead */
for (i = 0; i < cache->cc_nbuckets; i++)
{
for (elt = DLGetHead(&cache->cc_bucket[i]); elt; elt = nextelt)
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
dlist_head *bucket = &cache->cc_bucket[i];
nextelt = DLGetSucc(elt);
dlist_foreach_modify(iter, bucket)
{
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
if (ct->refcount > 0 ||
(ct->c_list && ct->c_list->refcount > 0))
......@@ -654,12 +648,16 @@ ResetCatalogCache(CatCache *cache)
void
ResetCatalogCaches(void)
{
CatCache *cache;
slist_iter iter;
CACHE1_elog(DEBUG2, "ResetCatalogCaches called");
for (cache = CacheHdr->ch_caches; cache; cache = cache->cc_next)
slist_foreach(iter, &CacheHdr->ch_caches)
{
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
ResetCatalogCache(cache);
}
CACHE1_elog(DEBUG2, "end of ResetCatalogCaches call");
}
......@@ -680,12 +678,14 @@ ResetCatalogCaches(void)
void
CatalogCacheFlushCatalog(Oid catId)
{
CatCache *cache;
slist_iter iter;
CACHE2_elog(DEBUG2, "CatalogCacheFlushCatalog called for %u", catId);
for (cache = CacheHdr->ch_caches; cache; cache = cache->cc_next)
slist_foreach(iter, &(CacheHdr->ch_caches))
{
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
/* Does this cache store tuples of the target catalog? */
if (cache->cc_reloid == catId)
{
......@@ -760,7 +760,7 @@ InitCatCache(int id,
if (CacheHdr == NULL)
{
CacheHdr = (CatCacheHeader *) palloc(sizeof(CatCacheHeader));
CacheHdr->ch_caches = NULL;
slist_init(&CacheHdr->ch_caches);
CacheHdr->ch_ntup = 0;
#ifdef CATCACHE_STATS
/* set up to dump stats at backend exit */
......@@ -770,10 +770,8 @@ InitCatCache(int id,
/*
* allocate a new cache structure
*
* Note: we assume zeroing initializes the Dllist headers correctly
*/
cp = (CatCache *) palloc0(sizeof(CatCache) + nbuckets * sizeof(Dllist));
cp = (CatCache *) palloc0(sizeof(CatCache) + nbuckets * sizeof(dlist_node));
/*
* initialize the cache's relation information for the relation
......@@ -792,6 +790,9 @@ InitCatCache(int id,
for (i = 0; i < nkeys; ++i)
cp->cc_key[i] = key[i];
dlist_init(&cp->cc_lists);
MemSet(&cp->cc_bucket, 0, nbuckets * sizeof(dlist_head));
/*
* new cache is initialized as far as we can go for now. print some
* debugging information, if appropriate.
......@@ -801,8 +802,7 @@ InitCatCache(int id,
/*
* add completed cache to top of group header's list
*/
cp->cc_next = CacheHdr->ch_caches;
CacheHdr->ch_caches = cp;
slist_push_head(&CacheHdr->ch_caches, &cp->cc_next);
/*
* back to the old context before we return...
......@@ -1060,7 +1060,8 @@ SearchCatCache(CatCache *cache,
ScanKeyData cur_skey[CATCACHE_MAXKEYS];
uint32 hashValue;
Index hashIndex;
Dlelem *elt;
dlist_mutable_iter iter;
dlist_head *bucket;
CatCTup *ct;
Relation relation;
SysScanDesc scandesc;
......@@ -1094,13 +1095,13 @@ SearchCatCache(CatCache *cache,
/*
* scan the hash bucket until we find a match or exhaust our tuples
*/
for (elt = DLGetHead(&cache->cc_bucket[hashIndex]);
elt;
elt = DLGetSucc(elt))
bucket = &cache->cc_bucket[hashIndex];
dlist_foreach_modify(iter, bucket)
{
bool res;
ct = (CatCTup *) DLE_VAL(elt);
ct = dlist_container(CatCTup, cache_elem, iter.cur);
if (ct->dead)
continue; /* ignore dead entries */
......@@ -1125,7 +1126,7 @@ SearchCatCache(CatCache *cache,
* most frequently accessed elements in any hashbucket will tend to be
* near the front of the hashbucket's list.)
*/
DLMoveToFront(&ct->cache_elem);
dlist_move_head(bucket, &ct->cache_elem);
/*
* If it's a positive entry, bump its refcount and return it. If it's
......@@ -1340,7 +1341,7 @@ SearchCatCacheList(CatCache *cache,
{
ScanKeyData cur_skey[CATCACHE_MAXKEYS];
uint32 lHashValue;
Dlelem *elt;
dlist_iter iter;
CatCList *cl;
CatCTup *ct;
List *volatile ctlist;
......@@ -1382,13 +1383,11 @@ SearchCatCacheList(CatCache *cache,
/*
* scan the items until we find a match or exhaust our list
*/
for (elt = DLGetHead(&cache->cc_lists);
elt;
elt = DLGetSucc(elt))
dlist_foreach(iter, &cache->cc_lists)
{
bool res;
cl = (CatCList *) DLE_VAL(elt);
cl = dlist_container(CatCList, cache_elem, iter.cur);
if (cl->dead)
continue; /* ignore dead entries */
......@@ -1416,7 +1415,7 @@ SearchCatCacheList(CatCache *cache,
* since there's no point in that unless they are searched for
* individually.)
*/
DLMoveToFront(&cl->cache_elem);
dlist_move_head(&cache->cc_lists, &cl->cache_elem);
/* Bump the list's refcount and return it */
ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner);
......@@ -1468,6 +1467,8 @@ SearchCatCacheList(CatCache *cache,
{
uint32 hashValue;
Index hashIndex;
bool found = false;
dlist_head *bucket;
/*
* See if there's an entry for this tuple already.
......@@ -1476,11 +1477,10 @@ SearchCatCacheList(CatCache *cache,
hashValue = CatalogCacheComputeTupleHashValue(cache, ntp);
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
for (elt = DLGetHead(&cache->cc_bucket[hashIndex]);
elt;
elt = DLGetSucc(elt))
bucket = &cache->cc_bucket[hashIndex];
dlist_foreach(iter, bucket)
{
ct = (CatCTup *) DLE_VAL(elt);
ct = dlist_container(CatCTup, cache_elem, iter.cur);
if (ct->dead || ct->negative)
continue; /* ignore dead and negative entries */
......@@ -1498,10 +1498,11 @@ SearchCatCacheList(CatCache *cache,
if (ct->c_list)
continue;
found = true;
break; /* A-OK */
}
if (elt == NULL)
if (!found)
{
/* We didn't find a usable entry, so make a new one */
ct = CatalogCacheCreateEntry(cache, ntp,
......@@ -1564,7 +1565,6 @@ SearchCatCacheList(CatCache *cache,
cl->cl_magic = CL_MAGIC;
cl->my_cache = cache;
DLInitElem(&cl->cache_elem, cl);
cl->refcount = 0; /* for the moment */
cl->dead = false;
cl->ordered = ordered;
......@@ -1587,7 +1587,7 @@ SearchCatCacheList(CatCache *cache,
}
Assert(i == nmembers);
DLAddHead(&cache->cc_lists, &cl->cache_elem);
dlist_push_head(&cache->cc_lists, &cl->cache_elem);
/* Finally, bump the list's refcount and return it */
cl->refcount++;
......@@ -1664,14 +1664,15 @@ CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp,
*/
ct->ct_magic = CT_MAGIC;
ct->my_cache = cache;
DLInitElem(&ct->cache_elem, (void *) ct);
ct->cache_bucket = &cache->cc_bucket[hashIndex];
ct->c_list = NULL;
ct->refcount = 0; /* for the moment */
ct->dead = false;
ct->negative = negative;
ct->hash_value = hashValue;
DLAddHead(&cache->cc_bucket[hashIndex], &ct->cache_elem);
dlist_push_head(ct->cache_bucket, &ct->cache_elem);
cache->cc_ntup++;
CacheHdr->ch_ntup++;
......@@ -1785,7 +1786,7 @@ PrepareToInvalidateCacheTuple(Relation relation,
HeapTuple newtuple,
void (*function) (int, uint32, Oid))
{
CatCache *ccp;
slist_iter iter;
Oid reloid;
CACHE1_elog(DEBUG2, "PrepareToInvalidateCacheTuple: called");
......@@ -1808,10 +1809,11 @@ PrepareToInvalidateCacheTuple(Relation relation,
* ----------------
*/
for (ccp = CacheHdr->ch_caches; ccp; ccp = ccp->cc_next)
slist_foreach(iter, &(CacheHdr->ch_caches))
{
uint32 hashvalue;
Oid dbid;
CatCache *ccp = slist_container(CatCache, cc_next, iter.cur);
if (ccp->cc_reloid != reloid)
continue;
......
/*-------------------------------------------------------------------------
*
* dllist.h
* simple doubly linked list primitives
* the elements of the list are void* so the lists can contain anything
* Dlelem can only be in one list at a time
*
*
* Here's a small example of how to use Dllists:
*
* Dllist *lst;
* Dlelem *elt;
* void *in_stuff; -- stuff to stick in the list
* void *out_stuff
*
* lst = DLNewList(); -- make a new dllist
* DLAddHead(lst, DLNewElem(in_stuff)); -- add a new element to the list
* with in_stuff as the value
* ...
* elt = DLGetHead(lst); -- retrieve the head element
* out_stuff = (void*)DLE_VAL(elt); -- get the stuff out
* DLRemove(elt); -- removes the element from its list
* DLFreeElem(elt); -- free the element since we don't
* use it anymore
*
*
* It is also possible to use Dllist objects that are embedded in larger
* structures instead of being separately malloc'd. To do this, use
* DLInitElem() to initialize a Dllist field within a larger object.
* Don't forget to DLRemove() each field from its list (if any) before
* freeing the larger object!
*
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/lib/dllist.h
*
*-------------------------------------------------------------------------
*/
#ifndef DLLIST_H
#define DLLIST_H
struct Dllist;
struct Dlelem;
typedef struct Dlelem
{
struct Dlelem *dle_next; /* next element */
struct Dlelem *dle_prev; /* previous element */
void *dle_val; /* value of the element */
struct Dllist *dle_list; /* what list this element is in */
} Dlelem;
typedef struct Dllist
{
Dlelem *dll_head;
Dlelem *dll_tail;
} Dllist;
extern Dllist *DLNewList(void); /* allocate and initialize a list header */
extern void DLInitList(Dllist *list); /* init a header alloced by caller */
extern void DLFreeList(Dllist *list); /* free up a list and all the nodes in
* it */
extern Dlelem *DLNewElem(void *val);
extern void DLInitElem(Dlelem *e, void *val);
extern void DLFreeElem(Dlelem *e);
extern void DLRemove(Dlelem *e); /* removes node from list */
extern void DLAddHead(Dllist *list, Dlelem *node);
extern void DLAddTail(Dllist *list, Dlelem *node);
extern Dlelem *DLRemHead(Dllist *list); /* remove and return the head */
extern Dlelem *DLRemTail(Dllist *list);
extern void DLMoveToFront(Dlelem *e); /* move node to front of its list */
/* These are macros for speed */
#define DLGetHead(list) ((list)->dll_head)
#define DLGetTail(list) ((list)->dll_tail)
#define DLGetSucc(elem) ((elem)->dle_next)
#define DLGetPred(elem) ((elem)->dle_prev)
#define DLGetListHdr(elem) ((elem)->dle_list)
#define DLE_VAL(elem) ((elem)->dle_val)
#endif /* DLLIST_H */
/*-------------------------------------------------------------------------
*
* ilist.h
* integrated/inline doubly- and singly-linked lists
*
* This implementation is as efficient as possible: the lists don't have
* any memory management overhead, because the list pointers are embedded
* within some larger structure.
*
* There are two kinds of empty doubly linked lists: those that have been
* initialized to NULL, and those that have been initialized to circularity.
* The second kind is useful for tight optimization, because there are some
* operations that can be done without branches (and thus faster) on lists that
* have been initialized to circularity. Most users don't care all that much,
* and so can skip the initialization step until really required.
*
* NOTES
* This is intended to be used in situations where memory for a struct and
* its contents already needs to be allocated and the overhead of
* allocating extra list cells for every list element is noticeable. Thus,
* none of the functions here allocate any memory; they just manipulate
* externally managed memory. The API for singly/doubly linked lists is
* identical as far as capabilities of both allow.
*
* EXAMPLES
*
* Here's a simple example demonstrating how this can be used. Let's assume we
* want to store information about the tables contained in a database.
*
* #include "lib/ilist.h"
*
* // Define struct for the databases including a list header that will be used
* // to access the nodes in the list later on.
* typedef struct my_database
* {
* char *datname;
* dlist_head tables;
* // ...
* } my_database;
*
* // Define struct for the tables. Note the list_node element which stores
* // information about prev/next list nodes.
* typedef struct my_table
* {
* char *tablename;
* dlist_node list_node;
* perm_t permissions;
* // ...
* } my_table;
*
* // create a database
* my_database *db = create_database();
*
* // and add a few tables to its table list
* dlist_push_head(&db->tables, &create_table(db, "a")->list_node);
* ...
* dlist_push_head(&db->tables, &create_table(db, "b")->list_node);
*
*
* To iterate over the table list, we allocate an iterator element and use
* a specialized looping construct. Inside a dlist_foreach, the iterator's
* 'cur' field can be used to access the current element. iter.cur points to a
* 'dlist_node', but most of the time what we want is the actual table
* information; dlist_container() gives us that, like so:
*
* dlist_iter iter;
* dlist_foreach(iter, &db->tables)
* {
* my_table *tbl = dlist_container(my_table, list_node, iter.cur);
* printf("we have a table: %s in database %s\n",
* tbl->tablename, db->datname);
* }
*
*
* While a simple iteration is useful, we sometimes also want to manipulate
* the list while iterating. There is a different iterator element and looping
* construct for that. Suppose we want to delete tables that meet a certain
* criterion:
*
* dlist_mutable_iter miter;
* dlist_foreach_modify(miter, &db->tables)
* {
* my_table *tbl = dlist_container(my_table, list_node, miter.cur);
*
* if (!tbl->to_be_deleted)
* continue; // don't touch this one
*
* // unlink the current table from the linked list
* dlist_delete(&db->tables, miter.cur);
* // as these lists never manage memory, we can freely access the table
* // after it's been deleted
* drop_table(db, tbl);
* }
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/include/lib/ilist.h
*-------------------------------------------------------------------------
*/
#ifndef ILIST_H
#define ILIST_H
/*
* Enable for extra debugging. This is rather expensive, so it's not enabled by
* default even when USE_ASSERT_CHECKING.
*/
/* #define ILIST_DEBUG */
/*
* Node of a doubly linked list.
*
* Embed this in structs that need to be part of a doubly linked list.
*/
typedef struct dlist_node dlist_node;
struct dlist_node
{
dlist_node *prev;
dlist_node *next;
};
/*
* Head of a doubly linked list.
*
* Non-empty lists are internally circularly linked. Circular lists have the
* advantage of not needing any branches in the most common list manipulations.
* An empty list can also be represented as a pair of NULL pointers, making
* initialization easier.
*/
typedef struct dlist_head
{
/*
* head->next either points to the first element of the list; to &head if
* it's a circular empty list; or to NULL if empty and not circular.
*
* head->prev either points to the last element of the list; to &head if
* it's a circular empty list; or to NULL if empty and not circular.
*/
dlist_node head;
} dlist_head;
/*
* Doubly linked list iterator.
*
* Used as state in dlist_foreach() and dlist_reverse_foreach(). To get the
* current element of the iteration use the 'cur' member.
*
* Iterations using this are *not* allowed to change the list while iterating!
*
* NB: We use an extra type for this to make it possible to avoid multiple
* evaluations of arguments in the dlist_foreach() macro.
*/
typedef struct dlist_iter
{
dlist_node *end; /* last node we iterate to */
dlist_node *cur; /* current element */
} dlist_iter;
/*
* Doubly linked list iterator allowing some modifications while iterating
*
* Used as state in dlist_foreach_modify(). To get the current element of the
* iteration use the 'cur' member.
*
* Iterations using this are only allowed to change the list at the current
* point of iteration. It is fine to delete the current node, but it is *not*
* fine to modify other nodes.
*
* NB: We need a separate type for mutable iterations to avoid having to pass
* in two iterators or some other state variable as we need to store the
* '->next' node of the current node so it can be deleted or modified by the
* user.
*/
typedef struct dlist_mutable_iter
{
dlist_node *end; /* last node we iterate to */
dlist_node *cur; /* current element */
dlist_node *next; /* next node we iterate to, so we can delete
* cur */
} dlist_mutable_iter;
/*
* Node of a singly linked list.
*
* Embed this in structs that need to be part of a singly linked list.
*/
typedef struct slist_node slist_node;
struct slist_node
{
slist_node *next;
};
/*
* Head of a singly linked list.
*
* Singly linked lists are not circularly linked, in contrast to doubly linked
* lists. As no pointer to the last list element and to the previous node needs
* to be maintained this doesn't incur any additional branches in the usual
* manipulations.
*/
typedef struct slist_head
{
slist_node head;
} slist_head;
/*
* Singly linked list iterator
*
* Used in slist_foreach(). To get the current element of the iteration use the
* 'cur' member.
*
* Do *not* manipulate the list while iterating!
*
* NB: this wouldn't really need to be an extra struct, we could use a
* slist_node * directly. We still use a separate type for consistency.
*/
typedef struct slist_iter
{
slist_node *cur;
} slist_iter;
/*
* Singly linked list iterator allowing some modifications while iterating
*
* Used in slist_foreach_modify.
*
* Iterations using this are allowed to remove the current node and to add more
* nodes to the beginning of the list.
*/
typedef struct slist_mutable_iter
{
slist_node *cur;
slist_node *next;
} slist_mutable_iter;
/* Prototypes for functions too big to be inline */
/* Attention: O(n) */
extern void slist_delete(slist_head *head, slist_node *node);
#ifdef ILIST_DEBUG
extern void dlist_check(dlist_head *head);
extern void slist_check(slist_head *head);
#else
/*
* These seemingly useless casts to void are here to keep the compiler quiet
* about the argument being unused in many functions in a non-debug compile,
* in which functions the only point of passing the list head pointer is to be
* able to run these checks.
*/
#define dlist_check(head) (void) (head)
#define slist_check(head) (void) (head)
#endif /* ILIST_DEBUG */
/* Static initializers */
#define DLIST_STATIC_INIT(name) {{&name.head, &name.head}}
#define SLIST_STATIC_INIT(name) {{NULL}}
/*
* We want the functions below to be inline; but if the compiler doesn't
* support that, fall back on providing them as regular functions. See
* STATIC_IF_INLINE in c.h.
*/
#ifndef PG_USE_INLINE
extern void dlist_init(dlist_head *head);
extern bool dlist_is_empty(dlist_head *head);
extern void dlist_push_head(dlist_head *head, dlist_node *node);
extern void dlist_push_tail(dlist_head *head, dlist_node *node);
extern void dlist_insert_after(dlist_head *head,
dlist_node *after, dlist_node *node);
extern void dlist_insert_before(dlist_head *head,
dlist_node *before, dlist_node *node);
extern void dlist_delete(dlist_head *head, dlist_node *node);
extern dlist_node *dlist_pop_head_node(dlist_head *head);
extern void dlist_move_head(dlist_head *head, dlist_node *node);
extern bool dlist_has_next(dlist_head *head, dlist_node *node);
extern bool dlist_has_prev(dlist_head *head, dlist_node *node);
extern dlist_node *dlist_next_node(dlist_head *head, dlist_node *node);
extern dlist_node *dlist_prev_node(dlist_head *head, dlist_node *node);
extern dlist_node *dlist_head_node(dlist_head *head);
extern dlist_node *dlist_tail_node(dlist_head *head);
/* dlist macro support functions */
extern void *dlist_tail_element_off(dlist_head *head, size_t off);
extern void *dlist_head_element_off(dlist_head *head, size_t off);
#endif /* !PG_USE_INLINE */
#if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS)
/*
* Initialize the head of a list. Previous state will be thrown away without
* any cleanup.
*/
STATIC_IF_INLINE void
dlist_init(dlist_head *head)
{
head->head.next = head->head.prev = &head->head;
dlist_check(head);
}
/*
* Insert a node at the beginning of the list.
*/
STATIC_IF_INLINE void
dlist_push_head(dlist_head *head, dlist_node *node)
{
if (head->head.next == NULL)
dlist_init(head);
node->next = head->head.next;
node->prev = &head->head;
node->next->prev = node;
head->head.next = node;
dlist_check(head);
}
/*
* Inserts a node at the end of the list.
*/
STATIC_IF_INLINE void
dlist_push_tail(dlist_head *head, dlist_node *node)
{
if (head->head.next == NULL)
dlist_init(head);
node->next = &head->head;
node->prev = head->head.prev;
node->prev->next = node;
head->head.prev = node;
dlist_check(head);
}
/*
* Insert a node after another *in the same list*
*/
STATIC_IF_INLINE void
dlist_insert_after(dlist_head *head, dlist_node *after, dlist_node *node)
{
dlist_check(head);
/* XXX: assert 'after' is in 'head'? */
node->prev = after;
node->next = after->next;
after->next = node;
node->next->prev = node;
dlist_check(head);
}
/*
* Insert a node before another *in the same list*
*/
STATIC_IF_INLINE void
dlist_insert_before(dlist_head *head, dlist_node *before, dlist_node *node)
{
dlist_check(head);
/* XXX: assert 'before' is in 'head'? */
node->prev = before->prev;
node->next = before;
before->prev = node;
node->prev->next = node;
dlist_check(head);
}
/*
* Delete 'node' from list.
*
* It is not allowed to delete a 'node' which is is not in the list 'head'
*/
STATIC_IF_INLINE void
dlist_delete(dlist_head *head, dlist_node *node)
{
dlist_check(head);
node->prev->next = node->next;
node->next->prev = node->prev;
dlist_check(head);
}
/*
* Delete and return the first node from a list.
*
* Undefined behaviour when the list is empty. Check with dlist_is_empty if
* necessary.
*/
STATIC_IF_INLINE dlist_node *
dlist_pop_head_node(dlist_head *head)
{
dlist_node *ret;
Assert(&head->head != head->head.next);
ret = head->head.next;
dlist_delete(head, head->head.next);
return ret;
}
/*
* Move element from its current position in the list to the head position in
* the same list.
*
* Undefined behaviour if 'node' is not already part of the list.
*/
STATIC_IF_INLINE void
dlist_move_head(dlist_head *head, dlist_node *node)
{
/* fast path if it's already at the head */
if (head->head.next == node)
return;
dlist_delete(head, node);
dlist_push_head(head, node);
dlist_check(head);
}
/*
* Check whether the passed node is the last element in the list.
*/
STATIC_IF_INLINE bool
dlist_has_next(dlist_head *head, dlist_node *node)
{
return node->next != &head->head;
}
/*
* Check whether the passed node is the first element in the list.
*/
STATIC_IF_INLINE bool
dlist_has_prev(dlist_head *head, dlist_node *node)
{
return node->prev != &head->head;
}
/*
* Return the next node in the list.
*
* Undefined behaviour when no next node exists. Use dlist_has_next to make
* sure.
*/
STATIC_IF_INLINE dlist_node *
dlist_next_node(dlist_head *head, dlist_node *node)
{
Assert(dlist_has_next(head, node));
return node->next;
}
/*
* Return previous node in the list.
*
* Undefined behaviour when no prev node exists. Use dlist_has_prev to make
* sure.
*/
STATIC_IF_INLINE dlist_node *
dlist_prev_node(dlist_head *head, dlist_node *node)
{
Assert(dlist_has_prev(head, node));
return node->prev;
}
/*
* Return whether the list is empty.
*
* An empty list has either its first 'next' pointer set to NULL, or to itself.
*/
STATIC_IF_INLINE bool
dlist_is_empty(dlist_head *head)
{
dlist_check(head);
return head->head.next == NULL || head->head.next == &(head->head);
}
/* internal support function */
STATIC_IF_INLINE void *
dlist_head_element_off(dlist_head *head, size_t off)
{
Assert(!dlist_is_empty(head));
return (char *) head->head.next - off;
}
/*
* Return the first node in the list.
*
* Use dlist_is_empty to make sure the list is not empty if not sure.
*/
STATIC_IF_INLINE dlist_node *
dlist_head_node(dlist_head *head)
{
return dlist_head_element_off(head, 0);
}
/* internal support function */
STATIC_IF_INLINE void *
dlist_tail_element_off(dlist_head *head, size_t off)
{
Assert(!dlist_is_empty(head));
return (char *) head->head.prev - off;
}
/*
* Return the last node in the list.
*
* Use dlist_is_empty to make sure the list is not empty if not sure.
*/
STATIC_IF_INLINE dlist_node *
dlist_tail_node(dlist_head *head)
{
return dlist_tail_element_off(head, 0);
}
#endif /* PG_USE_INLINE || ILIST_INCLUDE_DEFINITIONS */
/*
* Return the containing struct of 'type' where 'membername' is the dlist_node
* pointed at by 'ptr'.
*
* This is used to convert a dlist_node * back to its containing struct.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define dlist_container(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(ptr, dlist_node *), \
AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)((char *)(ptr) - offsetof(type, membername))))
/*
* Return the value of first element in the list.
*
* The list must not be empty.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define dlist_head_element(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)dlist_head_element_off(ptr, offsetof(type, membername))))
/*
* Return the value of first element in the list.
*
* The list must not be empty.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define dlist_tail_element(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)dlist_tail_element_off(ptr, offsetof(type, membername))))
/*
* Iterate through the list pointed at by 'ptr' storing the state in 'iter'.
*
* Access the current element with iter.cur.
*
* It is *not* allowed to manipulate the list during iteration.
*/
#define dlist_foreach(iter, ptr) \
AssertVariableIsOfType(iter, dlist_iter); \
AssertVariableIsOfType(ptr, dlist_head *); \
for (iter.end = &(ptr)->head, \
iter.cur = iter.end->next ? iter.end->next : iter.end; \
iter.cur != iter.end; \
iter.cur = iter.cur->next)
/*
* Iterate through the list pointed at by 'ptr' storing the state in 'iter'.
*
* Access the current element with iter.cur.
*
* It is allowed to delete the current element from the list. Every other
* manipulation can lead to corruption.
*/
#define dlist_foreach_modify(iter, ptr) \
AssertVariableIsOfType(iter, dlist_mutable_iter); \
AssertVariableIsOfType(ptr, dlist_head *); \
for (iter.end = &(ptr)->head, \
iter.cur = iter.end->next ? iter.end->next : iter.end, \
iter.next = iter.cur->next; \
iter.cur != iter.end; \
iter.cur = iter.next, iter.next = iter.cur->next)
/*
* Iterate through the list in reverse order.
*
* It is *not* allowed to manipulate the list during iteration.
*/
#define dlist_reverse_foreach(iter, ptr) \
AssertVariableIsOfType(iter, dlist_iter); \
AssertVariableIsOfType(ptr, dlist_head *); \
for (iter.end = &(ptr)->head, \
iter.cur = iter.end->prev ? iter.end->prev : iter.end; \
iter.cur != iter.end; \
iter.cur = iter.cur->prev)
/*
* We want the functions below to be inline; but if the compiler doesn't
* support that, fall back on providing them as regular functions. See
* STATIC_IF_INLINE in c.h.
*/
#ifndef PG_USE_INLINE
extern void slist_init(slist_head *head);
extern bool slist_is_empty(slist_head *head);
extern slist_node *slist_head_node(slist_head *head);
extern void slist_push_head(slist_head *head, slist_node *node);
extern slist_node *slist_pop_head_node(slist_head *head);
extern void slist_insert_after(slist_head *head,
slist_node *after, slist_node *node);
extern bool slist_has_next(slist_head *head, slist_node *node);
extern slist_node *slist_next_node(slist_head *head, slist_node *node);
/* slist macro support function */
extern void *slist_head_element_off(slist_head *head, size_t off);
#endif
#if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS)
/*
* Initialize a singly linked list.
*/
STATIC_IF_INLINE void
slist_init(slist_head *head)
{
head->head.next = NULL;
slist_check(head);
}
/*
* Is the list empty?
*/
STATIC_IF_INLINE bool
slist_is_empty(slist_head *head)
{
slist_check(head);
return head->head.next == NULL;
}
/* internal support function */
STATIC_IF_INLINE void *
slist_head_element_off(slist_head *head, size_t off)
{
Assert(!slist_is_empty(head));
return (char *) head->head.next - off;
}
/*
* Push 'node' as the new first node in the list, pushing the original head to
* the second position.
*/
STATIC_IF_INLINE void
slist_push_head(slist_head *head, slist_node *node)
{
node->next = head->head.next;
head->head.next = node;
slist_check(head);
}
/*
* Remove and return the first node in the list
*
* Undefined behaviour if the list is empty.
*/
STATIC_IF_INLINE slist_node *
slist_pop_head_node(slist_head *head)
{
slist_node *node;
Assert(!slist_is_empty(head));
node = head->head.next;
head->head.next = head->head.next->next;
slist_check(head);
return node;
}
/*
* Insert a new node after another one
*
* Undefined behaviour if 'after' is not part of the list already.
*/
STATIC_IF_INLINE void
slist_insert_after(slist_head *head, slist_node *after,
slist_node *node)
{
node->next = after->next;
after->next = node;
slist_check(head);
}
/*
* Return whether 'node' has a following node
*/
STATIC_IF_INLINE bool
slist_has_next(slist_head *head,
slist_node *node)
{
slist_check(head);
return node->next != NULL;
}
#endif /* PG_USE_INLINE || ILIST_INCLUDE_DEFINITIONS */
/*
* Return the containing struct of 'type' where 'membername' is the slist_node
* pointed at by 'ptr'.
*
* This is used to convert a slist_node * back to its containing struct.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define slist_container(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(ptr, slist_node *), \
AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \
((type *)((char *)(ptr) - offsetof(type, membername))))
/*
* Return the value of first element in the list.
*/
#define slist_head_element(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \
slist_head_element_off(ptr, offsetoff(type, membername)))
/*
* Iterate through the list 'ptr' using the iterator 'iter'.
*
* It is *not* allowed to manipulate the list during iteration.
*/
#define slist_foreach(iter, ptr) \
AssertVariableIsOfType(iter, slist_iter); \
AssertVariableIsOfType(ptr, slist_head *); \
for (iter.cur = (ptr)->head.next; \
iter.cur != NULL; \
iter.cur = iter.cur->next)
/*
* Iterate through the list 'ptr' using the iterator 'iter' allowing some
* modifications.
*
* It is allowed to delete the current element from the list and add new nodes
* before the current position. Other manipulations can lead to corruption.
*/
#define slist_foreach_modify(iter, ptr) \
AssertVariableIsOfType(iter, slist_mutable_iter); \
AssertVariableIsOfType(ptr, slist_head *); \
for (iter.cur = (ptr)->head.next, \
iter.next = iter.cur ? iter.cur->next : NULL; \
iter.cur != NULL; \
iter.cur = iter.next, \
iter.next = iter.next ? iter.next->next : NULL)
#endif /* ILIST_H */
......@@ -22,7 +22,7 @@
#include "access/htup.h"
#include "access/skey.h"
#include "lib/dllist.h"
#include "lib/ilist.h"
#include "utils/relcache.h"
/*
......@@ -37,7 +37,7 @@
typedef struct catcache
{
int id; /* cache identifier --- see syscache.h */
struct catcache *cc_next; /* link to next catcache */
slist_node cc_next; /* list link */
const char *cc_relname; /* name of relation the tuples come from */
Oid cc_reloid; /* OID of relation the tuples come from */
Oid cc_indexoid; /* OID of index matching cache keys */
......@@ -51,7 +51,7 @@ typedef struct catcache
ScanKeyData cc_skey[CATCACHE_MAXKEYS]; /* precomputed key info for
* heap scans */
bool cc_isname[CATCACHE_MAXKEYS]; /* flag "name" key columns */
Dllist cc_lists; /* list of CatCList structs */
dlist_head cc_lists; /* list of CatCList structs */
#ifdef CATCACHE_STATS
long cc_searches; /* total # searches against this cache */
long cc_hits; /* # of matches against existing entry */
......@@ -66,7 +66,7 @@ typedef struct catcache
long cc_lsearches; /* total # list-searches */
long cc_lhits; /* # of matches against existing lists */
#endif
Dllist cc_bucket[1]; /* hash buckets --- VARIABLE LENGTH ARRAY */
dlist_head cc_bucket[1]; /* hash buckets --- VARIABLE LENGTH ARRAY */
} CatCache; /* VARIABLE LENGTH STRUCT */
......@@ -77,11 +77,12 @@ typedef struct catctup
CatCache *my_cache; /* link to owning catcache */
/*
* Each tuple in a cache is a member of a Dllist that stores the elements
* of its hash bucket. We keep each Dllist in LRU order to speed repeated
* Each tuple in a cache is a member of a dlist that stores the elements
* of its hash bucket. We keep each dlist in LRU order to speed repeated
* lookups.
*/
Dlelem cache_elem; /* list member of per-bucket list */
dlist_node cache_elem; /* list member of per-bucket list */
dlist_head *cache_bucket; /* containing bucket dlist */
/*
* The tuple may also be a member of at most one CatCList. (If a single
......@@ -139,7 +140,7 @@ typedef struct catclist
* might not be true during bootstrap or recovery operations. (namespace.c
* is able to save some cycles when it is true.)
*/
Dlelem cache_elem; /* list member of per-catcache list */
dlist_node cache_elem; /* list member of per-catcache list */
int refcount; /* number of active references */
bool dead; /* dead but not yet removed? */
bool ordered; /* members listed in index order? */
......@@ -153,7 +154,7 @@ typedef struct catclist
typedef struct catcacheheader
{
CatCache *ch_caches; /* head of list of CatCache structs */
slist_head ch_caches; /* head of list of CatCache structs */
int ch_ntup; /* # of tuples in all caches */
} CatCacheHeader;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment