Commit 9cbc4b80 authored by Tom Lane's avatar Tom Lane

Redo postgres_fdw's planner code so it can handle parameterized paths.

I wasn't going to ship this without having at least some example of how
to do that.  This version isn't terribly bright; in particular it won't
consider any combinations of multiple join clauses.  Given the cost of
executing a remote EXPLAIN, I'm not sure we want to be very aggressive
about doing that, anyway.

In support of this, refactor generate_implied_equalities_for_indexcol
so that it can be used to extract equivalence clauses that aren't
necessarily tied to an index.
parent 08af1a0a
......@@ -58,11 +58,8 @@
*/
typedef struct foreign_glob_cxt
{
/* Input values */
PlannerInfo *root;
RelOptInfo *foreignrel;
/* Result values */
List *param_numbers; /* Param IDs of PARAM_EXTERN Params */
PlannerInfo *root; /* global planner state */
RelOptInfo *foreignrel; /* the foreign relation we are planning for */
} foreign_glob_cxt;
/*
......@@ -82,12 +79,21 @@ typedef struct foreign_loc_cxt
FDWCollateState state; /* state of current collation choice */
} foreign_loc_cxt;
/*
* Context for deparseExpr
*/
typedef struct deparse_expr_cxt
{
PlannerInfo *root; /* global planner state */
RelOptInfo *foreignrel; /* the foreign relation we are planning for */
StringInfo buf; /* output buffer to append to */
List **params_list; /* exprs that will become remote Params */
} deparse_expr_cxt;
/*
* Functions to determine whether an expression can be evaluated safely on
* remote server.
*/
static bool is_foreign_expr(PlannerInfo *root, RelOptInfo *baserel,
Expr *expr, List **param_numbers);
static bool foreign_expr_walker(Node *node,
foreign_glob_cxt *glob_cxt,
foreign_loc_cxt *outer_cxt);
......@@ -108,76 +114,46 @@ static void deparseColumnRef(StringInfo buf, int varno, int varattno,
PlannerInfo *root);
static void deparseRelation(StringInfo buf, Relation rel);
static void deparseStringLiteral(StringInfo buf, const char *val);
static void deparseExpr(StringInfo buf, Expr *expr, PlannerInfo *root);
static void deparseVar(StringInfo buf, Var *node, PlannerInfo *root);
static void deparseConst(StringInfo buf, Const *node, PlannerInfo *root);
static void deparseParam(StringInfo buf, Param *node, PlannerInfo *root);
static void deparseArrayRef(StringInfo buf, ArrayRef *node, PlannerInfo *root);
static void deparseFuncExpr(StringInfo buf, FuncExpr *node, PlannerInfo *root);
static void deparseOpExpr(StringInfo buf, OpExpr *node, PlannerInfo *root);
static void deparseExpr(Expr *expr, deparse_expr_cxt *context);
static void deparseVar(Var *node, deparse_expr_cxt *context);
static void deparseConst(Const *node, deparse_expr_cxt *context);
static void deparseParam(Param *node, deparse_expr_cxt *context);
static void deparseArrayRef(ArrayRef *node, deparse_expr_cxt *context);
static void deparseFuncExpr(FuncExpr *node, deparse_expr_cxt *context);
static void deparseOpExpr(OpExpr *node, deparse_expr_cxt *context);
static void deparseOperatorName(StringInfo buf, Form_pg_operator opform);
static void deparseDistinctExpr(StringInfo buf, DistinctExpr *node,
PlannerInfo *root);
static void deparseScalarArrayOpExpr(StringInfo buf, ScalarArrayOpExpr *node,
PlannerInfo *root);
static void deparseRelabelType(StringInfo buf, RelabelType *node,
PlannerInfo *root);
static void deparseBoolExpr(StringInfo buf, BoolExpr *node, PlannerInfo *root);
static void deparseNullTest(StringInfo buf, NullTest *node, PlannerInfo *root);
static void deparseArrayExpr(StringInfo buf, ArrayExpr *node,
PlannerInfo *root);
static void deparseDistinctExpr(DistinctExpr *node, deparse_expr_cxt *context);
static void deparseScalarArrayOpExpr(ScalarArrayOpExpr *node,
deparse_expr_cxt *context);
static void deparseRelabelType(RelabelType *node, deparse_expr_cxt *context);
static void deparseBoolExpr(BoolExpr *node, deparse_expr_cxt *context);
static void deparseNullTest(NullTest *node, deparse_expr_cxt *context);
static void deparseArrayExpr(ArrayExpr *node, deparse_expr_cxt *context);
/*
* Examine each restriction clause in baserel's baserestrictinfo list,
* and classify them into three groups, which are returned as three lists:
* - remote_conds contains expressions that can be evaluated remotely,
* and contain no PARAM_EXTERN Params
* - param_conds contains expressions that can be evaluated remotely,
* but contain one or more PARAM_EXTERN Params
* - local_conds contains all expressions that can't be evaluated remotely
*
* In addition, the fourth output parameter param_numbers receives an integer
* list of the param IDs of the PARAM_EXTERN Params used in param_conds.
*
* The reason for segregating param_conds is mainly that it's difficult to
* use such conditions in remote EXPLAIN. We could do it, but unless the
* planner has been given representative values for all the Params, we'd
* have to guess at representative values to use in EXPLAIN EXECUTE.
* So for now we don't include them when doing remote EXPLAIN.
* and classify them into two groups, which are returned as two lists:
* - remote_conds contains expressions that can be evaluated remotely
* - local_conds contains expressions that can't be evaluated remotely
*/
void
classifyConditions(PlannerInfo *root,
RelOptInfo *baserel,
List **remote_conds,
List **param_conds,
List **local_conds,
List **param_numbers)
List **local_conds)
{
ListCell *lc;
*remote_conds = NIL;
*param_conds = NIL;
*local_conds = NIL;
*param_numbers = NIL;
foreach(lc, baserel->baserestrictinfo)
{
RestrictInfo *ri = (RestrictInfo *) lfirst(lc);
List *cur_param_numbers;
if (is_foreign_expr(root, baserel, ri->clause, &cur_param_numbers))
{
if (cur_param_numbers == NIL)
if (is_foreign_expr(root, baserel, ri->clause))
*remote_conds = lappend(*remote_conds, ri);
else
{
*param_conds = lappend(*param_conds, ri);
/* Use list_concat_unique_int to get rid of duplicates */
*param_numbers = list_concat_unique_int(*param_numbers,
cur_param_numbers);
}
}
else
*local_conds = lappend(*local_conds, ri);
}
......@@ -185,28 +161,21 @@ classifyConditions(PlannerInfo *root,
/*
* Returns true if given expr is safe to evaluate on the foreign server.
*
* If result is true, we also return a list of param IDs of PARAM_EXTERN
* Params appearing in the expr into *param_numbers.
*/
static bool
bool
is_foreign_expr(PlannerInfo *root,
RelOptInfo *baserel,
Expr *expr,
List **param_numbers)
Expr *expr)
{
foreign_glob_cxt glob_cxt;
foreign_loc_cxt loc_cxt;
*param_numbers = NIL; /* default result */
/*
* Check that the expression consists of nodes that are safe to execute
* remotely.
*/
glob_cxt.root = root;
glob_cxt.foreignrel = baserel;
glob_cxt.param_numbers = NIL;
loc_cxt.collation = InvalidOid;
loc_cxt.state = FDW_COLLATE_NONE;
if (!foreign_expr_walker((Node *) expr, &glob_cxt, &loc_cxt))
......@@ -226,18 +195,14 @@ is_foreign_expr(PlannerInfo *root,
if (contain_mutable_functions((Node *) expr))
return false;
/*
* OK, so return list of param IDs too.
*/
*param_numbers = glob_cxt.param_numbers;
/* OK to evaluate on the remote server */
return true;
}
/*
* Check if expression is safe to execute remotely, and return true if so.
*
* In addition, glob_cxt->param_numbers and *outer_cxt are updated.
* In addition, *outer_cxt is updated with collation information.
*
* We must check that the expression contains only node types we can deparse,
* that all types/functions/operators are safe to send (which we approximate
......@@ -271,20 +236,31 @@ foreign_expr_walker(Node *node,
Var *var = (Var *) node;
/*
* Var can be used if it is in the foreign table (we shouldn't
* really see anything else in baserestrict clauses, but let's
* check anyway).
*/
if (var->varno != glob_cxt->foreignrel->relid ||
var->varlevelsup != 0)
return false;
/*
* If Var has a collation, consider that safe to use.
*/
* If the Var is from the foreign table, we consider its
* collation (if any) safe to use. If it is from another
* table, we treat its collation the same way as we would a
* Param's collation, ie it's not safe for it to have a
* non-default collation.
*/
if (var->varno == glob_cxt->foreignrel->relid &&
var->varlevelsup == 0)
{
/* Var belongs to foreign table */
collation = var->varcollid;
state = OidIsValid(collation) ? FDW_COLLATE_SAFE : FDW_COLLATE_NONE;
}
else
{
/* Var belongs to some other table */
if (var->varcollid != InvalidOid &&
var->varcollid != DEFAULT_COLLATION_OID)
return false;
/* We can consider that it doesn't set collation */
collation = InvalidOid;
state = FDW_COLLATE_NONE;
}
}
break;
case T_Const:
{
......@@ -308,30 +284,15 @@ foreign_expr_walker(Node *node,
{
Param *p = (Param *) node;
/*
* Only external parameters can be sent to remote. (XXX This
* needs to be improved, but at the point where this code
* runs, we should only see PARAM_EXTERN Params anyway.)
*/
if (p->paramkind != PARAM_EXTERN)
return false;
/*
* Collation handling is same as for Consts.
*/
if (p->paramcollid != InvalidOid &&
p->paramcollid != DEFAULT_COLLATION_OID)
return false;
collation = InvalidOid;
state = FDW_COLLATE_NONE;
/*
* Report IDs of PARAM_EXTERN Params. We don't bother to
* eliminate duplicate list elements here; classifyConditions
* will do that.
*/
glob_cxt->param_numbers = lappend_int(glob_cxt->param_numbers,
p->paramid);
}
break;
case T_ArrayRef:
......@@ -791,17 +752,38 @@ deparseTargetList(StringInfo buf,
/*
* Deparse WHERE clauses in given list of RestrictInfos and append them to buf.
*
* baserel is the foreign table we're planning for.
*
* If no WHERE clause already exists in the buffer, is_first should be true.
*
* If params is not NULL, it receives a list of Params and other-relation Vars
* used in the clauses; these values must be transmitted to the remote server
* as parameter values.
*
* If params is NULL, we're generating the query for EXPLAIN purposes,
* so Params and other-relation Vars should be replaced by dummy values.
*/
void
appendWhereClause(StringInfo buf,
PlannerInfo *root,
RelOptInfo *baserel,
List *exprs,
bool is_first)
bool is_first,
List **params)
{
deparse_expr_cxt context;
int nestlevel;
ListCell *lc;
if (params)
*params = NIL; /* initialize result list to empty */
/* Set up context struct for recursion */
context.root = root;
context.foreignrel = baserel;
context.buf = buf;
context.params_list = params;
/* Make sure any constants in the exprs are printed portably */
nestlevel = set_transmission_modes();
......@@ -816,7 +798,7 @@ appendWhereClause(StringInfo buf,
appendStringInfoString(buf, " AND ");
appendStringInfoChar(buf, '(');
deparseExpr(buf, ri->clause, root);
deparseExpr(ri->clause, &context);
appendStringInfoChar(buf, ')');
is_first = false;
......@@ -1145,7 +1127,7 @@ deparseStringLiteral(StringInfo buf, const char *val)
}
/*
* Deparse given expression into buf.
* Deparse given expression into context->buf.
*
* This function must support all the same node types that foreign_expr_walker
* accepts.
......@@ -1155,7 +1137,7 @@ deparseStringLiteral(StringInfo buf, const char *val)
* should be self-parenthesized.
*/
static void
deparseExpr(StringInfo buf, Expr *node, PlannerInfo *root)
deparseExpr(Expr *node, deparse_expr_cxt *context)
{
if (node == NULL)
return;
......@@ -1163,40 +1145,40 @@ deparseExpr(StringInfo buf, Expr *node, PlannerInfo *root)
switch (nodeTag(node))
{
case T_Var:
deparseVar(buf, (Var *) node, root);
deparseVar((Var *) node, context);
break;
case T_Const:
deparseConst(buf, (Const *) node, root);
deparseConst((Const *) node, context);
break;
case T_Param:
deparseParam(buf, (Param *) node, root);
deparseParam((Param *) node, context);
break;
case T_ArrayRef:
deparseArrayRef(buf, (ArrayRef *) node, root);
deparseArrayRef((ArrayRef *) node, context);
break;
case T_FuncExpr:
deparseFuncExpr(buf, (FuncExpr *) node, root);
deparseFuncExpr((FuncExpr *) node, context);
break;
case T_OpExpr:
deparseOpExpr(buf, (OpExpr *) node, root);
deparseOpExpr((OpExpr *) node, context);
break;
case T_DistinctExpr:
deparseDistinctExpr(buf, (DistinctExpr *) node, root);
deparseDistinctExpr((DistinctExpr *) node, context);
break;
case T_ScalarArrayOpExpr:
deparseScalarArrayOpExpr(buf, (ScalarArrayOpExpr *) node, root);
deparseScalarArrayOpExpr((ScalarArrayOpExpr *) node, context);
break;
case T_RelabelType:
deparseRelabelType(buf, (RelabelType *) node, root);
deparseRelabelType((RelabelType *) node, context);
break;
case T_BoolExpr:
deparseBoolExpr(buf, (BoolExpr *) node, root);
deparseBoolExpr((BoolExpr *) node, context);
break;
case T_NullTest:
deparseNullTest(buf, (NullTest *) node, root);
deparseNullTest((NullTest *) node, context);
break;
case T_ArrayExpr:
deparseArrayExpr(buf, (ArrayExpr *) node, root);
deparseArrayExpr((ArrayExpr *) node, context);
break;
default:
elog(ERROR, "unsupported expression type for deparse: %d",
......@@ -1206,23 +1188,69 @@ deparseExpr(StringInfo buf, Expr *node, PlannerInfo *root)
}
/*
* Deparse given Var node into buf.
* Deparse given Var node into context->buf.
*
* If the Var belongs to the foreign relation, just print its remote name.
* Otherwise, it's effectively a Param (and will in fact be a Param at
* run time). Handle it the same way we handle plain Params --- see
* deparseParam for comments.
*/
static void
deparseVar(StringInfo buf, Var *node, PlannerInfo *root)
deparseVar(Var *node, deparse_expr_cxt *context)
{
Assert(node->varlevelsup == 0);
deparseColumnRef(buf, node->varno, node->varattno, root);
StringInfo buf = context->buf;
if (node->varno == context->foreignrel->relid &&
node->varlevelsup == 0)
{
/* Var belongs to foreign table */
deparseColumnRef(buf, node->varno, node->varattno, context->root);
}
else
{
/* Treat like a Param */
if (context->params_list)
{
int pindex = 0;
ListCell *lc;
/* find its index in params_list */
foreach(lc, *context->params_list)
{
pindex++;
if (equal(node, (Node *) lfirst(lc)))
break;
}
if (lc == NULL)
{
/* not in list, so add it */
pindex++;
*context->params_list = lappend(*context->params_list, node);
}
appendStringInfo(buf, "$%d", pindex);
appendStringInfo(buf, "::%s",
format_type_with_typemod(node->vartype,
node->vartypmod));
}
else
{
appendStringInfo(buf, "(SELECT null::%s)",
format_type_with_typemod(node->vartype,
node->vartypmod));
}
}
}
/*
* Deparse given constant value into buf.
* Deparse given constant value into context->buf.
*
* This function has to be kept in sync with ruleutils.c's get_const_expr.
*/
static void
deparseConst(StringInfo buf, Const *node, PlannerInfo *root)
deparseConst(Const *node, deparse_expr_cxt *context)
{
StringInfo buf = context->buf;
Oid typoutput;
bool typIsVarlena;
char *extval;
......@@ -1312,11 +1340,19 @@ deparseConst(StringInfo buf, Const *node, PlannerInfo *root)
}
/*
* Deparse given Param node into buf.
* Deparse given Param node.
*
* If we're generating the query "for real", add the Param to
* context->params_list if it's not already present, and then use its index
* in that list as the remote parameter number.
*
* We don't need to renumber the parameter ID, because the executor functions
* in postgres_fdw.c preserve the numbering of PARAM_EXTERN Params.
* (This might change soon.)
* If we're just generating the query for EXPLAIN, replace the Param with
* a dummy expression "(SELECT null::<type>)". In all extant versions of
* Postgres, the planner will see that as an unknown constant value, which is
* what we want. (If we sent a Param, recent versions might try to use the
* value supplied for the Param as an estimated or even constant value, which
* we don't want.) This might need adjustment if we ever make the planner
* flatten scalar subqueries.
*
* Note: we label the Param's type explicitly rather than relying on
* transmitting a numeric type OID in PQexecParams(). This allows us to
......@@ -1324,21 +1360,49 @@ deparseConst(StringInfo buf, Const *node, PlannerInfo *root)
* do locally --- they need only have the same names.
*/
static void
deparseParam(StringInfo buf, Param *node, PlannerInfo *root)
deparseParam(Param *node, deparse_expr_cxt *context)
{
Assert(node->paramkind == PARAM_EXTERN);
appendStringInfo(buf, "$%d", node->paramid);
StringInfo buf = context->buf;
if (context->params_list)
{
int pindex = 0;
ListCell *lc;
/* find its index in params_list */
foreach(lc, *context->params_list)
{
pindex++;
if (equal(node, (Node *) lfirst(lc)))
break;
}
if (lc == NULL)
{
/* not in list, so add it */
pindex++;
*context->params_list = lappend(*context->params_list, node);
}
appendStringInfo(buf, "$%d", pindex);
appendStringInfo(buf, "::%s",
format_type_with_typemod(node->paramtype,
node->paramtypmod));
}
else
{
appendStringInfo(buf, "(SELECT null::%s)",
format_type_with_typemod(node->paramtype,
node->paramtypmod));
}
}
/*
* Deparse an array subscript expression.
*/
static void
deparseArrayRef(StringInfo buf, ArrayRef *node, PlannerInfo *root)
deparseArrayRef(ArrayRef *node, deparse_expr_cxt *context)
{
StringInfo buf = context->buf;
ListCell *lowlist_item;
ListCell *uplist_item;
......@@ -1352,11 +1416,11 @@ deparseArrayRef(StringInfo buf, ArrayRef *node, PlannerInfo *root)
* case of subscripting a Var, but otherwise do it.
*/
if (IsA(node->refexpr, Var))
deparseExpr(buf, node->refexpr, root);
deparseExpr(node->refexpr, context);
else
{
appendStringInfoChar(buf, '(');
deparseExpr(buf, node->refexpr, root);
deparseExpr(node->refexpr, context);
appendStringInfoChar(buf, ')');
}
......@@ -1367,11 +1431,11 @@ deparseArrayRef(StringInfo buf, ArrayRef *node, PlannerInfo *root)
appendStringInfoChar(buf, '[');
if (lowlist_item)
{
deparseExpr(buf, lfirst(lowlist_item), root);
deparseExpr(lfirst(lowlist_item), context);
appendStringInfoChar(buf, ':');
lowlist_item = lnext(lowlist_item);
}
deparseExpr(buf, lfirst(uplist_item), root);
deparseExpr(lfirst(uplist_item), context);
appendStringInfoChar(buf, ']');
}
......@@ -1379,11 +1443,12 @@ deparseArrayRef(StringInfo buf, ArrayRef *node, PlannerInfo *root)
}
/*
* Deparse given node which represents a function call into buf.
* Deparse a function call.
*/
static void
deparseFuncExpr(StringInfo buf, FuncExpr *node, PlannerInfo *root)
deparseFuncExpr(FuncExpr *node, deparse_expr_cxt *context)
{
StringInfo buf = context->buf;
HeapTuple proctup;
Form_pg_proc procform;
const char *proname;
......@@ -1397,7 +1462,7 @@ deparseFuncExpr(StringInfo buf, FuncExpr *node, PlannerInfo *root)
*/
if (node->funcformat == COERCE_IMPLICIT_CAST)
{
deparseExpr(buf, (Expr *) linitial(node->args), root);
deparseExpr((Expr *) linitial(node->args), context);
return;
}
......@@ -1413,7 +1478,7 @@ deparseFuncExpr(StringInfo buf, FuncExpr *node, PlannerInfo *root)
/* Get the typmod if this is a length-coercion function */
(void) exprIsLengthCoercion((Node *) node, &coercedTypmod);
deparseExpr(buf, (Expr *) linitial(node->args), root);
deparseExpr((Expr *) linitial(node->args), context);
appendStringInfo(buf, "::%s",
format_type_with_typemod(rettype, coercedTypmod));
return;
......@@ -1458,7 +1523,7 @@ deparseFuncExpr(StringInfo buf, FuncExpr *node, PlannerInfo *root)
appendStringInfoString(buf, ", ");
if (use_variadic && lnext(arg) == NULL)
appendStringInfoString(buf, "VARIADIC ");
deparseExpr(buf, (Expr *) lfirst(arg), root);
deparseExpr((Expr *) lfirst(arg), context);
first = false;
}
appendStringInfoChar(buf, ')');
......@@ -1467,12 +1532,13 @@ deparseFuncExpr(StringInfo buf, FuncExpr *node, PlannerInfo *root)
}
/*
* Deparse given operator expression into buf. To avoid problems around
* Deparse given operator expression. To avoid problems around
* priority of operations, we always parenthesize the arguments.
*/
static void
deparseOpExpr(StringInfo buf, OpExpr *node, PlannerInfo *root)
deparseOpExpr(OpExpr *node, deparse_expr_cxt *context)
{
StringInfo buf = context->buf;
HeapTuple tuple;
Form_pg_operator form;
char oprkind;
......@@ -1497,7 +1563,7 @@ deparseOpExpr(StringInfo buf, OpExpr *node, PlannerInfo *root)
if (oprkind == 'r' || oprkind == 'b')
{
arg = list_head(node->args);
deparseExpr(buf, lfirst(arg), root);
deparseExpr(lfirst(arg), context);
appendStringInfoChar(buf, ' ');
}
......@@ -1509,7 +1575,7 @@ deparseOpExpr(StringInfo buf, OpExpr *node, PlannerInfo *root)
{
arg = list_tail(node->args);
appendStringInfoChar(buf, ' ');
deparseExpr(buf, lfirst(arg), root);
deparseExpr(lfirst(arg), context);
}
appendStringInfoChar(buf, ')');
......@@ -1549,26 +1615,27 @@ deparseOperatorName(StringInfo buf, Form_pg_operator opform)
* Deparse IS DISTINCT FROM.
*/
static void
deparseDistinctExpr(StringInfo buf, DistinctExpr *node, PlannerInfo *root)
deparseDistinctExpr(DistinctExpr *node, deparse_expr_cxt *context)
{
StringInfo buf = context->buf;
Assert(list_length(node->args) == 2);
appendStringInfoChar(buf, '(');
deparseExpr(buf, linitial(node->args), root);
deparseExpr(linitial(node->args), context);
appendStringInfoString(buf, " IS DISTINCT FROM ");
deparseExpr(buf, lsecond(node->args), root);
deparseExpr(lsecond(node->args), context);
appendStringInfoChar(buf, ')');
}
/*
* Deparse given ScalarArrayOpExpr expression into buf. To avoid problems
* Deparse given ScalarArrayOpExpr expression. To avoid problems
* around priority of operations, we always parenthesize the arguments.
*/
static void
deparseScalarArrayOpExpr(StringInfo buf,
ScalarArrayOpExpr *node,
PlannerInfo *root)
deparseScalarArrayOpExpr(ScalarArrayOpExpr *node, deparse_expr_cxt *context)
{
StringInfo buf = context->buf;
HeapTuple tuple;
Form_pg_operator form;
Expr *arg1;
......@@ -1588,7 +1655,7 @@ deparseScalarArrayOpExpr(StringInfo buf,
/* Deparse left operand. */
arg1 = linitial(node->args);
deparseExpr(buf, arg1, root);
deparseExpr(arg1, context);
appendStringInfoChar(buf, ' ');
/* Deparse operator name plus decoration. */
......@@ -1597,7 +1664,7 @@ deparseScalarArrayOpExpr(StringInfo buf,
/* Deparse right operand. */
arg2 = lsecond(node->args);
deparseExpr(buf, arg2, root);
deparseExpr(arg2, context);
appendStringInfoChar(buf, ')');
......@@ -1611,11 +1678,11 @@ deparseScalarArrayOpExpr(StringInfo buf,
* Deparse a RelabelType (binary-compatible cast) node.
*/
static void
deparseRelabelType(StringInfo buf, RelabelType *node, PlannerInfo *root)
deparseRelabelType(RelabelType *node, deparse_expr_cxt *context)
{
deparseExpr(buf, node->arg, root);
deparseExpr(node->arg, context);
if (node->relabelformat != COERCE_IMPLICIT_CAST)
appendStringInfo(buf, "::%s",
appendStringInfo(context->buf, "::%s",
format_type_with_typemod(node->resulttype,
node->resulttypmod));
}
......@@ -1627,8 +1694,9 @@ deparseRelabelType(StringInfo buf, RelabelType *node, PlannerInfo *root)
* into N-argument form, so we'd better be prepared to deal with that.
*/
static void
deparseBoolExpr(StringInfo buf, BoolExpr *node, PlannerInfo *root)
deparseBoolExpr(BoolExpr *node, deparse_expr_cxt *context)
{
StringInfo buf = context->buf;
const char *op = NULL; /* keep compiler quiet */
bool first;
ListCell *lc;
......@@ -1643,7 +1711,7 @@ deparseBoolExpr(StringInfo buf, BoolExpr *node, PlannerInfo *root)
break;
case NOT_EXPR:
appendStringInfoString(buf, "(NOT ");
deparseExpr(buf, linitial(node->args), root);
deparseExpr(linitial(node->args), context);
appendStringInfoChar(buf, ')');
return;
}
......@@ -1654,7 +1722,7 @@ deparseBoolExpr(StringInfo buf, BoolExpr *node, PlannerInfo *root)
{
if (!first)
appendStringInfo(buf, " %s ", op);
deparseExpr(buf, (Expr *) lfirst(lc), root);
deparseExpr((Expr *) lfirst(lc), context);
first = false;
}
appendStringInfoChar(buf, ')');
......@@ -1664,10 +1732,12 @@ deparseBoolExpr(StringInfo buf, BoolExpr *node, PlannerInfo *root)
* Deparse IS [NOT] NULL expression.
*/
static void
deparseNullTest(StringInfo buf, NullTest *node, PlannerInfo *root)
deparseNullTest(NullTest *node, deparse_expr_cxt *context)
{
StringInfo buf = context->buf;
appendStringInfoChar(buf, '(');
deparseExpr(buf, node->arg, root);
deparseExpr(node->arg, context);
if (node->nulltesttype == IS_NULL)
appendStringInfoString(buf, " IS NULL)");
else
......@@ -1678,8 +1748,9 @@ deparseNullTest(StringInfo buf, NullTest *node, PlannerInfo *root)
* Deparse ARRAY[...] construct.
*/
static void
deparseArrayExpr(StringInfo buf, ArrayExpr *node, PlannerInfo *root)
deparseArrayExpr(ArrayExpr *node, deparse_expr_cxt *context)
{
StringInfo buf = context->buf;
bool first = true;
ListCell *lc;
......@@ -1688,7 +1759,7 @@ deparseArrayExpr(StringInfo buf, ArrayExpr *node, PlannerInfo *root)
{
if (!first)
appendStringInfoString(buf, ", ");
deparseExpr(buf, lfirst(lc), root);
deparseExpr(lfirst(lc), context);
first = false;
}
appendStringInfoChar(buf, ']');
......
......@@ -446,6 +446,27 @@ EXPLAIN (VERBOSE, COSTS false) SELECT * FROM ft1 t1 WHERE c8 = 'foo'; -- can't
Remote SQL: SELECT "C 1", c2, c3, c4, c5, c6, c7, c8 FROM "S 1"."T 1"
(4 rows)
-- parameterized remote path
EXPLAIN (VERBOSE, COSTS false)
SELECT * FROM ft2 a, ft2 b WHERE a.c1 = 47 AND b.c1 = a.c2;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------
Nested Loop
Output: a.c1, a.c2, a.c3, a.c4, a.c5, a.c6, a.c7, a.c8, b.c1, b.c2, b.c3, b.c4, b.c5, b.c6, b.c7, b.c8
-> Foreign Scan on public.ft2 a
Output: a.c1, a.c2, a.c3, a.c4, a.c5, a.c6, a.c7, a.c8
Remote SQL: SELECT "C 1", c2, c3, c4, c5, c6, c7, c8 FROM "S 1"."T 1" WHERE (("C 1" = 47))
-> Foreign Scan on public.ft2 b
Output: b.c1, b.c2, b.c3, b.c4, b.c5, b.c6, b.c7, b.c8
Remote SQL: SELECT "C 1", c2, c3, c4, c5, c6, c7, c8 FROM "S 1"."T 1" WHERE (($1::integer = "C 1"))
(8 rows)
SELECT * FROM ft2 a, ft2 b WHERE a.c1 = 47 AND b.c1 = a.c2;
c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 | c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8
----+----+-------+------------------------------+--------------------------+----+------------+-----+----+----+-------+------------------------------+--------------------------+----+------------+-----
47 | 7 | 00047 | Tue Feb 17 00:00:00 1970 PST | Tue Feb 17 00:00:00 1970 | 7 | 7 | foo | 7 | 7 | 00007 | Thu Jan 08 00:00:00 1970 PST | Thu Jan 08 00:00:00 1970 | 7 | 7 | foo
(1 row)
-- ===================================================================
-- parameterized queries
-- ===================================================================
......@@ -646,7 +667,7 @@ EXPLAIN (VERBOSE, COSTS false) EXECUTE st5('foo', 1);
Foreign Scan on public.ft1 t1
Output: c1, c2, c3, c4, c5, c6, c7, c8
Filter: (t1.c8 = $1)
Remote SQL: SELECT "C 1", c2, c3, c4, c5, c6, c7, c8 FROM "S 1"."T 1" WHERE (("C 1" = $2::integer))
Remote SQL: SELECT "C 1", c2, c3, c4, c5, c6, c7, c8 FROM "S 1"."T 1" WHERE (("C 1" = $1::integer))
(4 rows)
EXECUTE st5('foo', 1);
......
......@@ -23,10 +23,13 @@
#include "funcapi.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/prep.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/var.h"
#include "parser/parsetree.h"
#include "utils/builtins.h"
......@@ -49,28 +52,41 @@ PG_MODULE_MAGIC;
*/
typedef struct PgFdwRelationInfo
{
/* XXX underdocumented, but a lot of this shouldn't be here anyway */
StringInfoData sql;
Cost startup_cost;
Cost total_cost;
/* baserestrictinfo clauses, broken down into safe and unsafe subsets. */
List *remote_conds;
List *param_conds;
List *local_conds;
List *param_numbers;
/* Bitmap of attr numbers we need to fetch from the remote server. */
Bitmapset *attrs_used;
/* Cost and selectivity of local_conds. */
QualCost local_conds_cost;
Selectivity local_conds_sel;
/* Estimated size and cost for a scan with baserestrictinfo quals. */
double rows;
int width;
Cost startup_cost;
Cost total_cost;
/* Options extracted from catalogs. */
bool use_remote_estimate;
Cost fdw_startup_cost;
Cost fdw_tuple_cost;
/* Cached catalog information. */
ForeignTable *table;
ForeignServer *server;
UserMapping *user; /* only set in use_remote_estimate mode */
} PgFdwRelationInfo;
/*
* Indexes of FDW-private information stored in fdw_private lists.
*
* We store various information in ForeignScan.fdw_private to pass it from
* planner to executor. Specifically there is:
* planner to executor. Currently there is just:
*
* 1) SELECT statement text to be sent to the remote server
* 2) IDs of PARAM_EXEC Params used in the SELECT statement
*
* These items are indexed with the enum FdwScanPrivateIndex, so an item
* can be fetched with list_nth(). For example, to get the SELECT statement:
......@@ -79,9 +95,7 @@ typedef struct PgFdwRelationInfo
enum FdwScanPrivateIndex
{
/* SQL statement to execute remotely (as a String node) */
FdwScanPrivateSelectSql,
/* Integer list of param IDs of PARAM_EXEC Params used in SQL stmt */
FdwScanPrivateExternParamIds
FdwScanPrivateSelectSql
};
/*
......@@ -117,10 +131,10 @@ typedef struct PgFdwScanState
PGconn *conn; /* connection for the scan */
unsigned int cursor_number; /* quasi-unique ID for my cursor */
bool cursor_exists; /* have we created the cursor? */
bool extparams_done; /* have we converted PARAM_EXTERN params? */
int numParams; /* number of parameters passed to query */
Oid *param_types; /* array of types of query parameters */
const char **param_values; /* array of values of query parameters */
FmgrInfo *param_flinfo; /* output conversion functions for them */
List *param_exprs; /* executable expressions for param values */
const char **param_values; /* textual values of query parameters */
/* for storing result tuples */
HeapTuple *tuples; /* array of currently-retrieved tuples */
......@@ -194,6 +208,13 @@ typedef struct ConversionLocation
AttrNumber cur_attno; /* attribute number being processed, or 0 */
} ConversionLocation;
/* Callback argument for ec_member_matches_foreign */
typedef struct
{
Expr *current; /* current expr, or NULL if not yet found */
List *already_used; /* expressions already dealt with */
} ec_member_foreign_arg;
/*
* SQL functions
*/
......@@ -260,12 +281,20 @@ static bool postgresAnalyzeForeignTable(Relation relation,
/*
* Helper functions
*/
static void estimate_path_cost_size(PlannerInfo *root,
RelOptInfo *baserel,
List *join_conds,
double *p_rows, int *p_width,
Cost *p_startup_cost, Cost *p_total_cost);
static void get_remote_estimate(const char *sql,
PGconn *conn,
double *rows,
int *width,
Cost *startup_cost,
Cost *total_cost);
static bool ec_member_matches_foreign(PlannerInfo *root, RelOptInfo *rel,
EquivalenceClass *ec, EquivalenceMember *em,
void *arg);
static void create_cursor(ForeignScanState *node);
static void fetch_more_data(ForeignScanState *node);
static void close_cursor(PGconn *conn, unsigned int cursor_number);
......@@ -330,38 +359,15 @@ postgres_fdw_handler(PG_FUNCTION_ARGS)
* postgresGetForeignRelSize
* Estimate # of rows and width of the result of the scan
*
* Here we estimate number of rows returned by the scan in two steps. In the
* first step, we execute remote EXPLAIN command to obtain the number of rows
* returned from remote side. In the second step, we calculate the selectivity
* of the filtering done on local side, and modify first estimate.
*
* We have to get some catalog objects and generate remote query string here,
* so we store such expensive information in FDW private area of RelOptInfo and
* pass them to subsequent functions for reuse.
* We should consider the effect of all baserestrictinfo clauses here, but
* not any join clauses.
*/
static void
postgresGetForeignRelSize(PlannerInfo *root,
RelOptInfo *baserel,
Oid foreigntableid)
{
bool use_remote_estimate = false;
PgFdwRelationInfo *fpinfo;
StringInfo sql;
ForeignTable *table;
ForeignServer *server;
Selectivity sel;
double rows;
int width;
Cost startup_cost;
Cost total_cost;
Cost run_cost;
QualCost qpqual_cost;
Cost cpu_per_tuple;
List *remote_conds;
List *param_conds;
List *local_conds;
List *param_numbers;
Bitmapset *attrs_used;
ListCell *lc;
/*
......@@ -369,127 +375,122 @@ postgresGetForeignRelSize(PlannerInfo *root,
* functions.
*/
fpinfo = (PgFdwRelationInfo *) palloc0(sizeof(PgFdwRelationInfo));
initStringInfo(&fpinfo->sql);
sql = &fpinfo->sql;
baserel->fdw_private = (void *) fpinfo;
/* Look up foreign-table catalog info. */
fpinfo->table = GetForeignTable(foreigntableid);
fpinfo->server = GetForeignServer(fpinfo->table->serverid);
/*
* Determine whether we use remote estimate or not. Note that per-table
* setting overrides per-server setting.
* Extract user-settable option values. Note that per-table setting of
* use_remote_estimate overrides per-server setting.
*/
table = GetForeignTable(foreigntableid);
server = GetForeignServer(table->serverid);
foreach(lc, server->options)
fpinfo->use_remote_estimate = false;
fpinfo->fdw_startup_cost = DEFAULT_FDW_STARTUP_COST;
fpinfo->fdw_tuple_cost = DEFAULT_FDW_TUPLE_COST;
foreach(lc, fpinfo->server->options)
{
DefElem *def = (DefElem *) lfirst(lc);
if (strcmp(def->defname, "use_remote_estimate") == 0)
{
use_remote_estimate = defGetBoolean(def);
break;
}
fpinfo->use_remote_estimate = defGetBoolean(def);
else if (strcmp(def->defname, "fdw_startup_cost") == 0)
fpinfo->fdw_startup_cost = strtod(defGetString(def), NULL);
else if (strcmp(def->defname, "fdw_tuple_cost") == 0)
fpinfo->fdw_tuple_cost = strtod(defGetString(def), NULL);
}
foreach(lc, table->options)
foreach(lc, fpinfo->table->options)
{
DefElem *def = (DefElem *) lfirst(lc);
if (strcmp(def->defname, "use_remote_estimate") == 0)
{
use_remote_estimate = defGetBoolean(def);
break;
fpinfo->use_remote_estimate = defGetBoolean(def);
break; /* only need the one value */
}
}
/*
* Identify which restriction clauses can be sent to the remote server and
* which can't. Conditions that are remotely executable but contain
* PARAM_EXTERN Params have to be treated separately because we can't use
* placeholders in remote EXPLAIN.
* If the table or the server is configured to use remote estimates,
* identify which user to do remote access as during planning. This
* should match what ExecCheckRTEPerms() does. If we fail due to lack of
* permissions, the query would have failed at runtime anyway.
*/
classifyConditions(root, baserel, &remote_conds, &param_conds,
&local_conds, &param_numbers);
if (fpinfo->use_remote_estimate)
{
RangeTblEntry *rte = planner_rt_fetch(baserel->relid, root);
Oid userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
fpinfo->user = GetUserMapping(userid, fpinfo->server->serverid);
}
else
fpinfo->user = NULL;
/*
* Identify which baserestrictinfo clauses can be sent to the remote
* server and which can't.
*/
classifyConditions(root, baserel,
&fpinfo->remote_conds, &fpinfo->local_conds);
/*
* Identify which attributes will need to be retrieved from the remote
* server. These include all attrs needed for joins or final output, plus
* all attrs used in the local_conds.
* all attrs used in the local_conds. (Note: if we end up using a
* parameterized scan, it's possible that some of the join clauses will be
* sent to the remote and thus we wouldn't really need to retrieve the
* columns used in them. Doesn't seem worth detecting that case though.)
*/
attrs_used = NULL;
fpinfo->attrs_used = NULL;
pull_varattnos((Node *) baserel->reltargetlist, baserel->relid,
&attrs_used);
foreach(lc, local_conds)
&fpinfo->attrs_used);
foreach(lc, fpinfo->local_conds)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
pull_varattnos((Node *) rinfo->clause, baserel->relid,
&attrs_used);
&fpinfo->attrs_used);
}
/*
* Construct remote query which consists of SELECT, FROM, and WHERE
* clauses. For now, leave out the param_conds.
* Compute the selectivity and cost of the local_conds, so we don't have
* to do it over again for each path. The best we can do for these
* conditions is to estimate selectivity on the basis of local statistics.
*/
deparseSelectSql(sql, root, baserel, attrs_used);
if (remote_conds)
appendWhereClause(sql, root, remote_conds, true);
fpinfo->local_conds_sel = clauselist_selectivity(root,
fpinfo->local_conds,
baserel->relid,
JOIN_INNER,
NULL);
cost_qual_eval(&fpinfo->local_conds_cost, fpinfo->local_conds, root);
/*
* If the table or the server is configured to use remote estimates,
* connect to the foreign server and execute EXPLAIN with the quals that
* don't contain any Param nodes. Otherwise, estimate rows using whatever
* statistics we have locally, in a way similar to ordinary tables.
* connect to the foreign server and execute EXPLAIN to estimate the
* number of rows selected by the restriction clauses, as well as the
* average row width. Otherwise, estimate using whatever statistics we
* have locally, in a way similar to ordinary tables.
*/
if (use_remote_estimate)
if (fpinfo->use_remote_estimate)
{
RangeTblEntry *rte;
Oid userid;
UserMapping *user;
PGconn *conn;
/*
* Identify which user to do the remote access as. This should match
* what ExecCheckRTEPerms() does. If we fail due to lack of
* permissions, the query would have failed at runtime anyway.
* Get cost/size estimates with help of remote server. Save the
* values in fpinfo so we don't need to do it again to generate the
* basic foreign path.
*/
rte = planner_rt_fetch(baserel->relid, root);
userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
estimate_path_cost_size(root, baserel, NIL,
&fpinfo->rows, &fpinfo->width,
&fpinfo->startup_cost, &fpinfo->total_cost);
user = GetUserMapping(userid, server->serverid);
conn = GetConnection(server, user, false);
get_remote_estimate(sql->data, conn, &rows, &width,
&startup_cost, &total_cost);
ReleaseConnection(conn);
/*
* Estimate selectivity of conditions which were not used in remote
* EXPLAIN by calling clauselist_selectivity(). The best we can do
* for these conditions is to estimate selectivity on the basis of
* local statistics.
*/
sel = clauselist_selectivity(root, param_conds,
baserel->relid, JOIN_INNER, NULL);
sel *= clauselist_selectivity(root, local_conds,
baserel->relid, JOIN_INNER, NULL);
/*
* Add in the eval cost of those conditions, too.
*/
cost_qual_eval(&qpqual_cost, param_conds, root);
startup_cost += qpqual_cost.startup;
total_cost += qpqual_cost.per_tuple * rows;
cost_qual_eval(&qpqual_cost, local_conds, root);
startup_cost += qpqual_cost.startup;
total_cost += qpqual_cost.per_tuple * rows;
/* Report estimated numbers to planner. */
baserel->rows = clamp_row_est(rows * sel);
baserel->width = width;
/* Report estimated baserel size to planner. */
baserel->rows = fpinfo->rows;
baserel->width = fpinfo->width;
}
else
{
/*
* Estimate rows from the result of the last ANALYZE, using all
* conditions specified in original query.
*
* If the foreign table has never been ANALYZEd, it will have relpages
* and reltuples equal to zero, which most likely has nothing to do
* with reality. We can't do a whole lot about that if we're not
......@@ -505,83 +506,14 @@ postgresGetForeignRelSize(PlannerInfo *root,
(10 * BLCKSZ) / (baserel->width + sizeof(HeapTupleHeaderData));
}
/* Estimate baserel size as best we can with local statistics. */
set_baserel_size_estimates(root, baserel);
/* Cost as though this were a seqscan, which is pessimistic. */
startup_cost = 0;
run_cost = 0;
run_cost += seq_page_cost * baserel->pages;
startup_cost += baserel->baserestrictcost.startup;
cpu_per_tuple = cpu_tuple_cost + baserel->baserestrictcost.per_tuple;
run_cost += cpu_per_tuple * baserel->tuples;
total_cost = startup_cost + run_cost;
}
/*
* Finish deparsing remote query by adding conditions which were unusable
* in remote EXPLAIN because they contain Param nodes.
*/
if (param_conds)
appendWhereClause(sql, root, param_conds, (remote_conds == NIL));
/*
* Add FOR UPDATE/SHARE if appropriate. We apply locking during the
* initial row fetch, rather than later on as is done for local tables.
* The extra roundtrips involved in trying to duplicate the local
* semantics exactly don't seem worthwhile (see also comments for
* RowMarkType).
*/
if (baserel->relid == root->parse->resultRelation &&
(root->parse->commandType == CMD_UPDATE ||
root->parse->commandType == CMD_DELETE))
{
/* Relation is UPDATE/DELETE target, so use FOR UPDATE */
appendStringInfo(sql, " FOR UPDATE");
/* Fill in basically-bogus cost estimates for use later. */
estimate_path_cost_size(root, baserel, NIL,
&fpinfo->rows, &fpinfo->width,
&fpinfo->startup_cost, &fpinfo->total_cost);
}
else
{
RowMarkClause *rc = get_parse_rowmark(root->parse, baserel->relid);
if (rc)
{
/*
* Relation is specified as a FOR UPDATE/SHARE target, so handle
* that.
*
* For now, just ignore any [NO] KEY specification, since (a) it's
* not clear what that means for a remote table that we don't have
* complete information about, and (b) it wouldn't work anyway on
* older remote servers. Likewise, we don't worry about NOWAIT.
*/
switch (rc->strength)
{
case LCS_FORKEYSHARE:
case LCS_FORSHARE:
appendStringInfo(sql, " FOR SHARE");
break;
case LCS_FORNOKEYUPDATE:
case LCS_FORUPDATE:
appendStringInfo(sql, " FOR UPDATE");
break;
}
}
}
/*
* Store obtained information into FDW-private area of RelOptInfo so it's
* available to subsequent functions.
*/
fpinfo->startup_cost = startup_cost;
fpinfo->total_cost = total_cost;
fpinfo->remote_conds = remote_conds;
fpinfo->param_conds = param_conds;
fpinfo->local_conds = local_conds;
fpinfo->param_numbers = param_numbers;
fpinfo->table = table;
fpinfo->server = server;
baserel->fdw_private = (void *) fpinfo;
}
/*
......@@ -595,77 +527,187 @@ postgresGetForeignPaths(PlannerInfo *root,
{
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *) baserel->fdw_private;
ForeignPath *path;
ListCell *lc;
double fdw_startup_cost = DEFAULT_FDW_STARTUP_COST;
double fdw_tuple_cost = DEFAULT_FDW_TUPLE_COST;
Relids lateral_referencers;
List *join_quals;
Relids required_outer;
double rows;
int width;
Cost startup_cost;
Cost total_cost;
List *fdw_private;
ListCell *lc;
/*
* Check for user override of fdw_startup_cost, fdw_tuple_cost values
* Create simplest ForeignScan path node and add it to baserel. This path
* corresponds to SeqScan path of regular tables (though depending on what
* baserestrict conditions we were able to send to remote, there might
* actually be an indexscan happening there). We already did all the work
* to estimate cost and size of this path.
*/
foreach(lc, fpinfo->server->options)
{
DefElem *d = (DefElem *) lfirst(lc);
if (strcmp(d->defname, "fdw_startup_cost") == 0)
fdw_startup_cost = strtod(defGetString(d), NULL);
else if (strcmp(d->defname, "fdw_tuple_cost") == 0)
fdw_tuple_cost = strtod(defGetString(d), NULL);
}
path = create_foreignscan_path(root, baserel,
fpinfo->rows,
fpinfo->startup_cost,
fpinfo->total_cost,
NIL, /* no pathkeys */
NULL, /* no outer rel either */
NIL); /* no fdw_private list */
add_path(baserel, (Path *) path);
/*
* We have cost values which are estimated on remote side, so adjust them
* for better estimate which respect various stuffs to complete the scan,
* such as sending query, transferring result, and local filtering.
* If we're not using remote estimates, stop here. We have no way to
* estimate whether any join clauses would be worth sending across, so
* don't bother building parameterized paths.
*/
startup_cost = fpinfo->startup_cost;
total_cost = fpinfo->total_cost;
if (!fpinfo->use_remote_estimate)
return;
/*----------
* Adjust costs with factors of the corresponding foreign server:
* - add cost to establish connection to both startup and total
* - add cost to manipulate on remote, and transfer result to total
* - add cost to manipulate tuples on local side to total
*----------
/*
* As a crude first hack, we consider each available join clause and try
* to make a parameterized path using just that clause. Later we should
* consider combinations of clauses, probably.
*/
startup_cost += fdw_startup_cost;
total_cost += fdw_startup_cost;
total_cost += fdw_tuple_cost * baserel->rows;
total_cost += cpu_tuple_cost * baserel->rows;
/*
* Build the fdw_private list that will be available to the executor.
* Items in the list must match enum FdwScanPrivateIndex, above.
* If there are any rels that have LATERAL references to this one, we
* cannot use join quals referencing them as remote quals for this one,
* since such rels would have to be on the inside not the outside of a
* nestloop join relative to this one. Create a Relids set listing all
* such rels, for use in checks of potential join clauses.
*/
fdw_private = list_make2(makeString(fpinfo->sql.data),
fpinfo->param_numbers);
lateral_referencers = NULL;
foreach(lc, root->lateral_info_list)
{
LateralJoinInfo *ljinfo = (LateralJoinInfo *) lfirst(lc);
if (bms_is_member(baserel->relid, ljinfo->lateral_lhs))
lateral_referencers = bms_add_member(lateral_referencers,
ljinfo->lateral_rhs);
}
/* Scan the rel's join clauses */
foreach(lc, baserel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
/* Check if clause can be moved to this rel */
if (!join_clause_is_movable_to(rinfo, baserel->relid))
continue;
/* Not useful if it conflicts with any LATERAL references */
if (bms_overlap(rinfo->clause_relids, lateral_referencers))
continue;
/* See if it is safe to send to remote */
if (!is_foreign_expr(root, baserel, rinfo->clause))
continue;
/*
* Create simplest ForeignScan path node and add it to baserel. This path
* corresponds to SeqScan path of regular tables (though depending on what
* baserestrict conditions we were able to send to remote, there might
* actually be an indexscan happening there).
* OK, get a cost estimate from the remote, and make a path.
*/
join_quals = list_make1(rinfo);
estimate_path_cost_size(root, baserel, join_quals,
&rows, &width,
&startup_cost, &total_cost);
/* Must calculate required outer rels for this path */
required_outer = bms_union(rinfo->clause_relids,
baserel->lateral_relids);
/* We do not want the foreign rel itself listed in required_outer */
required_outer = bms_del_member(required_outer, baserel->relid);
/* Enforce convention that required_outer is exactly NULL if empty */
if (bms_is_empty(required_outer))
required_outer = NULL;
path = create_foreignscan_path(root, baserel,
baserel->rows,
rows,
startup_cost,
total_cost,
NIL, /* no pathkeys */
NULL, /* no outer rel either */
fdw_private);
required_outer,
NIL); /* no fdw_private list */
add_path(baserel, (Path *) path);
}
/*
* XXX We can consider sorted path or parameterized path here if we know
* that foreign table is indexed on remote end. For this purpose, we
* might have to support FOREIGN INDEX to represent possible sets of sort
* keys and/or filtering. Or we could just try some join conditions and
* see if remote side estimates using them as markedly cheaper. Note that
* executor functions need work to support internal Params before we can
* try generating any parameterized paths, though.
* The above scan examined only "generic" join clauses, not those that
* were absorbed into EquivalenceClauses. See if we can make anything out
* of EquivalenceClauses.
*/
if (baserel->has_eclass_joins)
{
/*
* We repeatedly scan the eclass list looking for column references
* (or expressions) belonging to the foreign rel. Each time we find
* one, we generate a list of equivalence joinclauses for it, and then
* try to make those into foreign paths. Repeat till there are no
* more candidate EC members.
*/
ec_member_foreign_arg arg;
arg.already_used = NIL;
for (;;)
{
List *clauses;
/* Make clauses, skipping any that join to lateral_referencers */
arg.current = NULL;
clauses = generate_implied_equalities_for_column(root,
baserel,
ec_member_matches_foreign,
(void *) &arg,
lateral_referencers);
/* Done if there are no more expressions in the foreign rel */
if (arg.current == NULL)
{
Assert(clauses == NIL);
break;
}
/* Scan the extracted join clauses */
foreach(lc, clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
/* Check if clause can be moved to this rel */
if (!join_clause_is_movable_to(rinfo, baserel->relid))
continue;
/* Shouldn't conflict with any LATERAL references */
Assert(!bms_overlap(rinfo->clause_relids, lateral_referencers));
/* See if it is safe to send to remote */
if (!is_foreign_expr(root, baserel, rinfo->clause))
continue;
/*
* OK, get a cost estimate from the remote, and make a path.
*/
join_quals = list_make1(rinfo);
estimate_path_cost_size(root, baserel, join_quals,
&rows, &width,
&startup_cost, &total_cost);
/* Must calculate required outer rels for this path */
required_outer = bms_union(rinfo->clause_relids,
baserel->lateral_relids);
required_outer = bms_del_member(required_outer, baserel->relid);
if (bms_is_empty(required_outer))
required_outer = NULL;
path = create_foreignscan_path(root, baserel,
rows,
startup_cost,
total_cost,
NIL, /* no pathkeys */
required_outer,
NIL); /* no fdw_private */
add_path(baserel, (Path *) path);
}
/* Try again, now ignoring the expression we found this time */
arg.already_used = lappend(arg.already_used, arg.current);
}
}
}
/*
......@@ -682,19 +724,32 @@ postgresGetForeignPlan(PlannerInfo *root,
{
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *) baserel->fdw_private;
Index scan_relid = baserel->relid;
List *fdw_private = best_path->fdw_private;
List *remote_exprs = NIL;
List *fdw_private;
List *remote_conds = NIL;
List *local_exprs = NIL;
List *params_list = NIL;
StringInfoData sql;
ListCell *lc;
/*
* Separate the scan_clauses into those that can be executed remotely and
* those that can't. For now, we accept only remote clauses that were
* previously determined to be safe by classifyClauses (so, only
* baserestrictinfo clauses can be used that way).
* those that can't. baserestrictinfo clauses that were previously
* determined to be safe or unsafe by classifyClauses are shown in
* fpinfo->remote_conds and fpinfo->local_conds. Anything else in the
* scan_clauses list should be a join clause that was found safe by
* postgresGetForeignPaths.
*
* Note: for clauses extracted from EquivalenceClasses, it's possible that
* what we get here is a different representation of the clause than what
* postgresGetForeignPaths saw; for example we might get a commuted
* version of the clause. So we can't insist on simple equality as we do
* for the baserestrictinfo clauses.
*
* This code must match "extract_actual_clauses(scan_clauses, false)"
* except for the additional decision about remote versus local execution.
* Note however that we only strip the RestrictInfo nodes from the
* local_exprs list, since appendWhereClause expects a list of
* RestrictInfos.
*/
foreach(lc, scan_clauses)
{
......@@ -706,30 +761,88 @@ postgresGetForeignPlan(PlannerInfo *root,
if (rinfo->pseudoconstant)
continue;
/* Either simple or parameterized remote clauses are OK now */
if (list_member_ptr(fpinfo->remote_conds, rinfo) ||
list_member_ptr(fpinfo->param_conds, rinfo))
remote_exprs = lappend(remote_exprs, rinfo->clause);
else
if (list_member_ptr(fpinfo->remote_conds, rinfo))
remote_conds = lappend(remote_conds, rinfo);
else if (list_member_ptr(fpinfo->local_conds, rinfo))
local_exprs = lappend(local_exprs, rinfo->clause);
else
{
Assert(is_foreign_expr(root, baserel, rinfo->clause));
remote_conds = lappend(remote_conds, rinfo);
}
}
/*
* Create the ForeignScan node from target list, local filtering
* expressions, remote filtering expressions, and FDW private information.
* Build the query string to be sent for execution, and identify
* expressions to be sent as parameters.
*/
initStringInfo(&sql);
deparseSelectSql(&sql, root, baserel, fpinfo->attrs_used);
if (remote_conds)
appendWhereClause(&sql, root, baserel, remote_conds,
true, &params_list);
/*
* Add FOR UPDATE/SHARE if appropriate. We apply locking during the
* initial row fetch, rather than later on as is done for local tables.
* The extra roundtrips involved in trying to duplicate the local
* semantics exactly don't seem worthwhile (see also comments for
* RowMarkType).
*/
if (baserel->relid == root->parse->resultRelation &&
(root->parse->commandType == CMD_UPDATE ||
root->parse->commandType == CMD_DELETE))
{
/* Relation is UPDATE/DELETE target, so use FOR UPDATE */
appendStringInfo(&sql, " FOR UPDATE");
}
else
{
RowMarkClause *rc = get_parse_rowmark(root->parse, baserel->relid);
if (rc)
{
/*
* Relation is specified as a FOR UPDATE/SHARE target, so handle
* that.
*
* Note that the remote_exprs are stored in the fdw_exprs field of the
* finished plan node; we can't keep them in private state because then
* they wouldn't be subject to later planner processing.
* For now, just ignore any [NO] KEY specification, since (a) it's
* not clear what that means for a remote table that we don't have
* complete information about, and (b) it wouldn't work anyway on
* older remote servers. Likewise, we don't worry about NOWAIT.
*/
switch (rc->strength)
{
case LCS_FORKEYSHARE:
case LCS_FORSHARE:
appendStringInfo(&sql, " FOR SHARE");
break;
case LCS_FORNOKEYUPDATE:
case LCS_FORUPDATE:
appendStringInfo(&sql, " FOR UPDATE");
break;
}
}
}
/*
* Build the fdw_private list that will be available to the executor.
* Items in the list must match enum FdwScanPrivateIndex, above.
*/
fdw_private = list_make1(makeString(sql.data));
/*
* Create the ForeignScan node from target list, local filtering
* expressions, remote parameter expressions, and FDW private information.
*
* XXX Currently, the remote_exprs aren't actually used at runtime, so we
* don't need to store them at all. But we'll keep this behavior for a
* little while for debugging reasons.
* Note that the remote parameter expressions are stored in the fdw_exprs
* field of the finished plan node; we can't keep them in private state
* because then they wouldn't be subject to later planner processing.
*/
return make_foreignscan(tlist,
local_exprs,
scan_relid,
remote_exprs,
params_list,
fdw_private);
}
......@@ -748,9 +861,9 @@ postgresBeginForeignScan(ForeignScanState *node, int eflags)
ForeignTable *table;
ForeignServer *server;
UserMapping *user;
List *param_numbers;
int numParams;
int i;
ListCell *lc;
/*
* Do nothing in EXPLAIN (no ANALYZE) case. node->fdw_state stays NULL.
......@@ -805,40 +918,42 @@ postgresBeginForeignScan(ForeignScanState *node, int eflags)
/* Get info we'll need for data conversion. */
fsstate->attinmeta = TupleDescGetAttInMetadata(RelationGetDescr(fsstate->rel));
/*
* Allocate buffer for query parameters, if the remote conditions use any.
*
* We use a parameter slot for each PARAM_EXTERN parameter, even though
* not all of them may get sent to the remote server. This allows us to
* refer to Params by their original number rather than remapping, and it
* doesn't cost much. Slots that are not actually used get filled with
* null values that are arbitrarily marked as being of type int4.
*/
param_numbers = (List *)
list_nth(fsstate->fdw_private, FdwScanPrivateExternParamIds);
if (param_numbers != NIL)
/* Prepare for output conversion of parameters used in remote query. */
numParams = list_length(fsplan->fdw_exprs);
fsstate->numParams = numParams;
fsstate->param_flinfo = (FmgrInfo *) palloc0(sizeof(FmgrInfo) * numParams);
i = 0;
foreach(lc, fsplan->fdw_exprs)
{
ParamListInfo params = estate->es_param_list_info;
Node *param_expr = (Node *) lfirst(lc);
Oid typefnoid;
bool isvarlena;
numParams = params ? params->numParams : 0;
getTypeOutputInfo(exprType(param_expr), &typefnoid, &isvarlena);
fmgr_info(typefnoid, &fsstate->param_flinfo[i]);
i++;
}
else
numParams = 0;
fsstate->numParams = numParams;
/*
* Prepare remote-parameter expressions for evaluation. (Note: in
* practice, we expect that all these expressions will be just Params, so
* we could possibly do something more efficient than using the full
* expression-eval machinery for this. But probably there would be little
* benefit, and it'd require postgres_fdw to know more than is desirable
* about Param evaluation.)
*/
fsstate->param_exprs = (List *)
ExecInitExpr((Expr *) fsplan->fdw_exprs,
(PlanState *) node);
/*
* Allocate buffer for text form of query parameters, if any.
*/
if (numParams > 0)
{
/* we initially fill all slots with value = NULL, type = int4 */
fsstate->param_types = (Oid *) palloc(numParams * sizeof(Oid));
fsstate->param_values = (const char **) palloc0(numParams * sizeof(char *));
for (i = 0; i < numParams; i++)
fsstate->param_types[i] = INT4OID;
}
else
{
fsstate->param_types = NULL;
fsstate->param_values = NULL;
}
fsstate->extparams_done = false;
}
/*
......@@ -894,11 +1009,6 @@ postgresReScanForeignScan(ForeignScanState *node)
char sql[64];
PGresult *res;
/*
* Note: we assume that PARAM_EXTERN params don't change over the life of
* the query, so no need to reset extparams_done.
*/
/* If we haven't created the cursor yet, nothing to do. */
if (!fsstate->cursor_exists)
return;
......@@ -1497,8 +1607,128 @@ postgresExplainForeignModify(ModifyTableState *mtstate,
}
}
/*
* Estimate costs of executing given SQL statement.
* estimate_path_cost_size
* Get cost and size estimates for a foreign scan
*
* We assume that all the baserestrictinfo clauses will be applied, plus
* any join clauses listed in join_conds.
*/
static void
estimate_path_cost_size(PlannerInfo *root,
RelOptInfo *baserel,
List *join_conds,
double *p_rows, int *p_width,
Cost *p_startup_cost, Cost *p_total_cost)
{
PgFdwRelationInfo *fpinfo = (PgFdwRelationInfo *) baserel->fdw_private;
double rows;
double retrieved_rows;
int width;
Cost startup_cost;
Cost total_cost;
Cost run_cost;
Cost cpu_per_tuple;
/*
* If the table or the server is configured to use remote estimates,
* connect to the foreign server and execute EXPLAIN to estimate the
* number of rows selected by the restriction+join clauses. Otherwise,
* estimate rows using whatever statistics we have locally, in a way
* similar to ordinary tables.
*/
if (fpinfo->use_remote_estimate)
{
StringInfoData sql;
PGconn *conn;
/*
* Construct EXPLAIN query including the desired SELECT, FROM, and
* WHERE clauses. Params and other-relation Vars are replaced by
* dummy values.
*/
initStringInfo(&sql);
appendStringInfoString(&sql, "EXPLAIN ");
deparseSelectSql(&sql, root, baserel, fpinfo->attrs_used);
if (fpinfo->remote_conds)
appendWhereClause(&sql, root, baserel, fpinfo->remote_conds,
true, NULL);
if (join_conds)
appendWhereClause(&sql, root, baserel, join_conds,
(fpinfo->remote_conds == NIL), NULL);
/* Get the remote estimate */
conn = GetConnection(fpinfo->server, fpinfo->user, false);
get_remote_estimate(sql.data, conn, &rows, &width,
&startup_cost, &total_cost);
ReleaseConnection(conn);
retrieved_rows = rows;
/* Factor in the selectivity of the local_conds */
rows = clamp_row_est(rows * fpinfo->local_conds_sel);
/* Add in the eval cost of the local_conds */
startup_cost += fpinfo->local_conds_cost.startup;
total_cost += fpinfo->local_conds_cost.per_tuple * retrieved_rows;
}
else
{
/*
* We don't support join conditions in this mode (hence, no
* parameterized paths can be made).
*/
Assert(join_conds == NIL);
/* Use rows/width estimates made by set_baserel_size_estimates. */
rows = baserel->rows;
width = baserel->width;
/*
* Back into an estimate of the number of retrieved rows. Just in
* case this is nuts, clamp to at most baserel->tuples.
*/
retrieved_rows = clamp_row_est(rows / fpinfo->local_conds_sel);
retrieved_rows = Min(retrieved_rows, baserel->tuples);
/*
* Cost as though this were a seqscan, which is pessimistic. We
* effectively imagine the local_conds are being evaluated remotely,
* too.
*/
startup_cost = 0;
run_cost = 0;
run_cost += seq_page_cost * baserel->pages;
startup_cost += baserel->baserestrictcost.startup;
cpu_per_tuple = cpu_tuple_cost + baserel->baserestrictcost.per_tuple;
run_cost += cpu_per_tuple * baserel->tuples;
total_cost = startup_cost + run_cost;
}
/*
* Add some additional cost factors to account for connection overhead
* (fdw_startup_cost), transferring data across the network
* (fdw_tuple_cost per retrieved row), and local manipulation of the data
* (cpu_tuple_cost per retrieved row).
*/
startup_cost += fpinfo->fdw_startup_cost;
total_cost += fpinfo->fdw_startup_cost;
total_cost += fpinfo->fdw_tuple_cost * retrieved_rows;
total_cost += cpu_tuple_cost * retrieved_rows;
/* Return results. */
*p_rows = rows;
*p_width = width;
*p_startup_cost = startup_cost;
*p_total_cost = total_cost;
}
/*
* Estimate costs of executing a SQL statement remotely.
* The given "sql" must be an EXPLAIN command.
*/
static void
get_remote_estimate(const char *sql, PGconn *conn,
......@@ -1510,19 +1740,16 @@ get_remote_estimate(const char *sql, PGconn *conn,
/* PGresult must be released before leaving this function. */
PG_TRY();
{
StringInfoData buf;
char *line;
char *p;
int n;
/*
* Execute EXPLAIN remotely on given SQL statement.
* Execute EXPLAIN remotely.
*/
initStringInfo(&buf);
appendStringInfo(&buf, "EXPLAIN %s", sql);
res = PQexec(conn, buf.data);
res = PQexec(conn, sql);
if (PQresultStatus(res) != PGRES_TUPLES_OK)
pgfdw_report_error(ERROR, res, false, buf.data);
pgfdw_report_error(ERROR, res, false, sql);
/*
* Extract cost numbers for topmost plan node. Note we search for a
......@@ -1550,6 +1777,37 @@ get_remote_estimate(const char *sql, PGconn *conn,
PG_END_TRY();
}
/*
* Detect whether we want to process an EquivalenceClass member.
*
* This is a callback for use by generate_implied_equalities_for_column.
*/
static bool
ec_member_matches_foreign(PlannerInfo *root, RelOptInfo *rel,
EquivalenceClass *ec, EquivalenceMember *em,
void *arg)
{
ec_member_foreign_arg *state = (ec_member_foreign_arg *) arg;
Expr *expr = em->em_expr;
/*
* If we've identified what we're processing in the current scan, we only
* want to match that expression.
*/
if (state->current != NULL)
return equal(expr, state->current);
/*
* Otherwise, ignore anything we've already processed.
*/
if (list_member(state->already_used, expr))
return false;
/* This is the new target to process. */
state->current = expr;
return true;
}
/*
* Create cursor for node's query with current parameter values.
*/
......@@ -1557,8 +1815,8 @@ static void
create_cursor(ForeignScanState *node)
{
PgFdwScanState *fsstate = (PgFdwScanState *) node->fdw_state;
ExprContext *econtext = node->ss.ps.ps_ExprContext;
int numParams = fsstate->numParams;
Oid *types = fsstate->param_types;
const char **values = fsstate->param_values;
PGconn *conn = fsstate->conn;
char *sql;
......@@ -1566,69 +1824,46 @@ create_cursor(ForeignScanState *node)
PGresult *res;
/*
* Construct array of external parameter values in text format. Since
* there might be random unconvertible stuff in the ParamExternData array,
* take care to convert only values we actually need.
*
* Note that we leak the memory for the value strings until end of query;
* this doesn't seem like a big problem, and in any case we might need to
* recreate the cursor after a rescan, so we could need to re-use the
* values anyway.
* Construct array of query parameter values in text format. We do the
* conversions in the short-lived per-tuple context, so as not to cause a
* memory leak over repeated scans.
*/
if (numParams > 0 && !fsstate->extparams_done)
if (numParams > 0)
{
ParamListInfo params = node->ss.ps.state->es_param_list_info;
int nestlevel;
List *param_numbers;
MemoryContext oldcontext;
int i;
ListCell *lc;
oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
nestlevel = set_transmission_modes();
param_numbers = (List *)
list_nth(fsstate->fdw_private, FdwScanPrivateExternParamIds);
foreach(lc, param_numbers)
i = 0;
foreach(lc, fsstate->param_exprs)
{
int paramno = lfirst_int(lc);
ParamExternData *prm = &params->params[paramno - 1];
/* give hook a chance in case parameter is dynamic */
if (!OidIsValid(prm->ptype) && params->paramFetch != NULL)
params->paramFetch(params, paramno);
ExprState *expr_state = (ExprState *) lfirst(lc);
Datum expr_value;
bool isNull;
/*
* Force the remote server to infer a type for this parameter.
* Since we explicitly cast every parameter (see deparse.c), the
* "inference" is trivial and will produce the desired result.
* This allows us to avoid assuming that the remote server has the
* same OIDs we do for the parameters' types.
*
* We'd not need to pass a type array to PQexecParams at all,
* except that there may be unused holes in the array, which will
* have to be filled with something or the remote server will
* complain. We arbitrarily set them to INT4OID earlier.
*/
types[paramno - 1] = InvalidOid;
/* Evaluate the parameter expression */
expr_value = ExecEvalExpr(expr_state, econtext, &isNull, NULL);
/*
* Get string representation of each parameter value by invoking
* type-specific output function, unless the value is null.
*/
if (prm->isnull)
values[paramno - 1] = NULL;
if (isNull)
values[i] = NULL;
else
{
Oid out_func;
bool isvarlena;
getTypeOutputInfo(prm->ptype, &out_func, &isvarlena);
values[paramno - 1] = OidOutputFunctionCall(out_func,
prm->value);
}
values[i] = OutputFunctionCall(&fsstate->param_flinfo[i],
expr_value);
i++;
}
reset_transmission_modes(nestlevel);
fsstate->extparams_done = true;
MemoryContextSwitchTo(oldcontext);
}
/* Construct the DECLARE CURSOR command */
......@@ -1638,10 +1873,16 @@ create_cursor(ForeignScanState *node)
fsstate->cursor_number, sql);
/*
* Notice that we pass NULL for paramTypes, thus forcing the remote server
* to infer types for all parameters. Since we explicitly cast every
* parameter (see deparse.c), the "inference" is trivial and will produce
* the desired result. This allows us to avoid assuming that the remote
* server has the same OIDs we do for the parameters' types.
*
* We don't use a PG_TRY block here, so be careful not to throw error
* without releasing the PGresult.
*/
res = PQexecParams(conn, buf.data, numParams, types, values,
res = PQexecParams(conn, buf.data, numParams, NULL, values,
NULL, NULL, 0);
if (PQresultStatus(res) != PGRES_COMMAND_OK)
pgfdw_report_error(ERROR, res, true, sql);
......
......@@ -42,17 +42,20 @@ extern int ExtractConnectionOptions(List *defelems,
extern void classifyConditions(PlannerInfo *root,
RelOptInfo *baserel,
List **remote_conds,
List **param_conds,
List **local_conds,
List **param_numbers);
List **local_conds);
extern bool is_foreign_expr(PlannerInfo *root,
RelOptInfo *baserel,
Expr *expr);
extern void deparseSelectSql(StringInfo buf,
PlannerInfo *root,
RelOptInfo *baserel,
Bitmapset *attrs_used);
extern void appendWhereClause(StringInfo buf,
PlannerInfo *root,
RelOptInfo *baserel,
List *exprs,
bool is_first);
bool is_first,
List **params);
extern void deparseInsertSql(StringInfo buf, PlannerInfo *root,
Index rtindex, Relation rel,
List *targetAttrs, List *returningList);
......
......@@ -189,6 +189,10 @@ EXPLAIN (VERBOSE, COSTS false) SELECT * FROM ft1 t1 WHERE c1 = ANY(ARRAY[c2, 1,
EXPLAIN (VERBOSE, COSTS false) SELECT * FROM ft1 t1 WHERE c1 = (ARRAY[c1,c2,3])[1]; -- ArrayRef
EXPLAIN (VERBOSE, COSTS false) SELECT * FROM ft1 t1 WHERE c6 = E'foo''s\\bar'; -- check special chars
EXPLAIN (VERBOSE, COSTS false) SELECT * FROM ft1 t1 WHERE c8 = 'foo'; -- can't be sent to remote
-- parameterized remote path
EXPLAIN (VERBOSE, COSTS false)
SELECT * FROM ft2 a, ft2 b WHERE a.c1 = 47 AND b.c1 = a.c2;
SELECT * FROM ft2 a, ft2 b WHERE a.c1 = 47 AND b.c1 = a.c2;
-- ===================================================================
-- parameterized queries
......
......@@ -512,7 +512,7 @@ add_eq_member(EquivalenceClass *ec, Expr *expr, Relids relids,
* be more than one EC that matches the expression; if so it's order-dependent
* which one you get. This is annoying but it only happens in corner cases,
* so for now we live with just reporting the first match. See also
* generate_implied_equalities_for_indexcol and match_pathkeys_to_index.)
* generate_implied_equalities_for_column and match_pathkeys_to_index.)
*
* If create_it is TRUE, we'll build a new EquivalenceClass when there is no
* match. If create_it is FALSE, we just return NULL when no match.
......@@ -2013,15 +2013,21 @@ mutate_eclass_expressions(PlannerInfo *root,
/*
* generate_implied_equalities_for_indexcol
* Create EC-derived joinclauses usable with a specific index column.
* generate_implied_equalities_for_column
* Create EC-derived joinclauses usable with a specific column.
*
* We assume that any given index column could appear in only one EC.
* This is used by indxpath.c to extract potentially indexable joinclauses
* from ECs, and can be used by foreign data wrappers for similar purposes.
* We assume that only expressions in Vars of a single table are of interest,
* but the caller provides a callback function to identify exactly which
* such expressions it would like to know about.
*
* We assume that any given table/index column could appear in only one EC.
* (This should be true in all but the most pathological cases, and if it
* isn't, we stop on the first match anyway.) Therefore, what we return
* is a redundant list of clauses equating the index column to each of
* is a redundant list of clauses equating the table/index column to each of
* the other-relation values it is known to be equal to. Any one of
* these clauses can be used to create a parameterized indexscan, and there
* these clauses can be used to create a parameterized path, and there
* is no value in using more than one. (But it *is* worthwhile to create
* a separate parameterized path for each one, since that leads to different
* join orders.)
......@@ -2030,13 +2036,13 @@ mutate_eclass_expressions(PlannerInfo *root,
* to, so as to save the work of creating useless clauses.
*/
List *
generate_implied_equalities_for_indexcol(PlannerInfo *root,
IndexOptInfo *index,
int indexcol,
generate_implied_equalities_for_column(PlannerInfo *root,
RelOptInfo *rel,
ec_matches_callback_type callback,
void *callback_arg,
Relids prohibited_rels)
{
List *result = NIL;
RelOptInfo *rel = index->rel;
bool is_child_rel = (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
Index parent_relid;
ListCell *lc1;
......@@ -2069,11 +2075,11 @@ generate_implied_equalities_for_indexcol(PlannerInfo *root,
continue;
/*
* Scan members, looking for a match to the indexable column. Note
* Scan members, looking for a match to the target column. Note
* that child EC members are considered, but only when they belong to
* the target relation. (Unlike regular members, the same expression
* could be a child member of more than one EC. Therefore, it's
* potentially order-dependent which EC a child relation's index
* potentially order-dependent which EC a child relation's target
* column gets matched to. This is annoying but it only happens in
* corner cases, so for now we live with just reporting the first
* match. See also get_eclass_for_sort_expr.)
......@@ -2083,8 +2089,7 @@ generate_implied_equalities_for_indexcol(PlannerInfo *root,
{
cur_em = (EquivalenceMember *) lfirst(lc2);
if (bms_equal(cur_em->em_relids, rel->relids) &&
eclass_member_matches_indexcol(cur_ec, cur_em,
index, indexcol))
callback(root, rel, cur_ec, cur_em, callback_arg))
break;
cur_em = NULL;
}
......
......@@ -78,6 +78,13 @@ typedef struct
Bitmapset *clauseids; /* quals+preds represented as a bitmapset */
} PathClauseUsage;
/* Callback argument for ec_member_matches_indexcol */
typedef struct
{
IndexOptInfo *index; /* index we're considering */
int indexcol; /* index column we want to match to */
} ec_member_matches_arg;
static void consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index,
......@@ -162,6 +169,9 @@ static void match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys,
List **clause_columns_p);
static Expr *match_clause_to_ordering_op(IndexOptInfo *index,
int indexcol, Expr *clause, Oid pk_opfamily);
static bool ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel,
EquivalenceClass *ec, EquivalenceMember *em,
void *arg);
static bool match_boolean_index_clause(Node *clause, int indexcol,
IndexOptInfo *index);
static bool match_special_index_operator(Expr *clause,
......@@ -645,7 +655,7 @@ get_join_index_paths(PlannerInfo *root, RelOptInfo *rel,
/*
* Add applicable eclass join clauses. The clauses generated for each
* column are redundant (cf generate_implied_equalities_for_indexcol),
* column are redundant (cf generate_implied_equalities_for_column),
* so we need at most one. This is the only exception to the general
* rule of using all available index clauses.
*/
......@@ -1992,18 +2002,22 @@ match_eclass_clauses_to_index(PlannerInfo *root, IndexOptInfo *index,
for (indexcol = 0; indexcol < index->ncolumns; indexcol++)
{
ec_member_matches_arg arg;
List *clauses;
/* Generate clauses, skipping any that join to lateral_referencers */
clauses = generate_implied_equalities_for_indexcol(root,
index,
indexcol,
arg.index = index;
arg.indexcol = indexcol;
clauses = generate_implied_equalities_for_column(root,
index->rel,
ec_member_matches_indexcol,
(void *) &arg,
lateral_referencers);
/*
* We have to check whether the results actually do match the index,
* since for non-btree indexes the EC's equality operators might not
* be in the index opclass (cf eclass_member_matches_indexcol).
* be in the index opclass (cf ec_member_matches_indexcol).
*/
match_clauses_to_index(index, clauses, clauseset);
}
......@@ -2682,15 +2696,18 @@ check_partial_indexes(PlannerInfo *root, RelOptInfo *rel)
****************************************************************************/
/*
* eclass_member_matches_indexcol
* ec_member_matches_indexcol
* Test whether an EquivalenceClass member matches an index column.
*
* This is exported for use by generate_implied_equalities_for_indexcol.
* This is a callback for use by generate_implied_equalities_for_column.
*/
bool
eclass_member_matches_indexcol(EquivalenceClass *ec, EquivalenceMember *em,
IndexOptInfo *index, int indexcol)
static bool
ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel,
EquivalenceClass *ec, EquivalenceMember *em,
void *arg)
{
IndexOptInfo *index = ((ec_member_matches_arg *) arg)->index;
int indexcol = ((ec_member_matches_arg *) arg)->indexcol;
Oid curFamily = index->opfamily[indexcol];
Oid curCollation = index->indexcollations[indexcol];
......@@ -2701,7 +2718,7 @@ eclass_member_matches_indexcol(EquivalenceClass *ec, EquivalenceMember *em,
* whether clauses generated from the EC could be used with the index, so
* don't check the opfamily. This might mean we return "true" for a
* useless EC, so we have to recheck the results of
* generate_implied_equalities_for_indexcol; see
* generate_implied_equalities_for_column; see
* match_eclass_clauses_to_index.
*/
if (index->relam == BTREE_AM_OID &&
......
......@@ -49,9 +49,6 @@ extern List *generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel,
extern bool relation_has_unique_index_for(PlannerInfo *root, RelOptInfo *rel,
List *restrictlist,
List *exprlist, List *oprlist);
extern bool eclass_member_matches_indexcol(EquivalenceClass *ec,
EquivalenceMember *em,
IndexOptInfo *index, int indexcol);
extern bool match_index_to_operand(Node *operand, int indexcol,
IndexOptInfo *index);
extern void expand_indexqual_conditions(IndexOptInfo *index,
......@@ -99,6 +96,12 @@ extern bool have_join_order_restriction(PlannerInfo *root,
* equivclass.c
* routines for managing EquivalenceClasses
*/
typedef bool (*ec_matches_callback_type) (PlannerInfo *root,
RelOptInfo *rel,
EquivalenceClass *ec,
EquivalenceMember *em,
void *arg);
extern bool process_equivalence(PlannerInfo *root, RestrictInfo *restrictinfo,
bool below_outer_join);
extern Expr *canonicalize_ec_expression(Expr *expr,
......@@ -126,9 +129,10 @@ extern void mutate_eclass_expressions(PlannerInfo *root,
Node *(*mutator) (),
void *context,
bool include_child_exprs);
extern List *generate_implied_equalities_for_indexcol(PlannerInfo *root,
IndexOptInfo *index,
int indexcol,
extern List *generate_implied_equalities_for_column(PlannerInfo *root,
RelOptInfo *rel,
ec_matches_callback_type callback,
void *callback_arg,
Relids prohibited_rels);
extern bool have_relevant_eclass_joinclause(PlannerInfo *root,
RelOptInfo *rel1, RelOptInfo *rel2);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment