Commit 98a64d0b authored by Andres Freund's avatar Andres Freund

Introduce WaitEventSet API.

Commit ac1d7945 ("Make idle backends exit if the postmaster dies.")
introduced a regression on, at least, large linux systems. Constantly
adding the same postmaster_alive_fds to the OSs internal datastructures
for implementing poll/select can cause significant contention; leading
to a performance regression of nearly 3x in one example.

This can be avoided by using e.g. linux' epoll, which avoids having to
add/remove file descriptors to the wait datastructures at a high rate.
Unfortunately the current latch interface makes it hard to allocate any
persistent per-backend resources.

Replace, with a backward compatibility layer, WaitLatchOrSocket with a
new WaitEventSet API. Users can allocate such a Set across multiple
calls, and add more than one file-descriptor to wait on. The latter has
been added because there's upcoming postgres features where that will be
helpful.

In addition to the previously existing poll(2), select(2),
WaitForMultipleObjects() implementations also provide an epoll_wait(2)
based implementation to address the aforementioned performance
problem. Epoll is only available on linux, but that is the most likely
OS for machines large enough (four sockets) to reproduce the problem.

To actually address the aforementioned regression, create and use a
long-lived WaitEventSet for FE/BE communication.  There are additional
places that would benefit from a long-lived set, but that's a task for
another day.

Thanks to Amit Kapila, who helped make the windows code I blindly wrote
actually work.

Reported-By: Dmitry Vasilyev Discussion:
CAB-SwXZh44_2ybvS5Z67p_CDz=XFn4hNAD=CnMEF+QqkXwFrGg@mail.gmail.com
20160114143931.GG10941@awork2.anarazel.de
parent 72e2d21c
...@@ -10193,7 +10193,7 @@ fi ...@@ -10193,7 +10193,7 @@ fi
## Header files ## Header files
## ##
for ac_header in atomic.h crypt.h dld.h fp_class.h getopt.h ieeefp.h ifaddrs.h langinfo.h mbarrier.h poll.h pwd.h sys/ioctl.h sys/ipc.h sys/poll.h sys/pstat.h sys/resource.h sys/select.h sys/sem.h sys/shm.h sys/socket.h sys/sockio.h sys/tas.h sys/time.h sys/un.h termios.h ucred.h utime.h wchar.h wctype.h for ac_header in atomic.h crypt.h dld.h fp_class.h getopt.h ieeefp.h ifaddrs.h langinfo.h mbarrier.h poll.h pwd.h sys/epoll.h sys/ioctl.h sys/ipc.h sys/poll.h sys/pstat.h sys/resource.h sys/select.h sys/sem.h sys/shm.h sys/socket.h sys/sockio.h sys/tas.h sys/time.h sys/un.h termios.h ucred.h utime.h wchar.h wctype.h
do : do :
as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh` as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh`
ac_fn_c_check_header_mongrel "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default" ac_fn_c_check_header_mongrel "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default"
......
...@@ -1183,7 +1183,7 @@ AC_SUBST(UUID_LIBS) ...@@ -1183,7 +1183,7 @@ AC_SUBST(UUID_LIBS)
## ##
dnl sys/socket.h is required by AC_FUNC_ACCEPT_ARGTYPES dnl sys/socket.h is required by AC_FUNC_ACCEPT_ARGTYPES
AC_CHECK_HEADERS([atomic.h crypt.h dld.h fp_class.h getopt.h ieeefp.h ifaddrs.h langinfo.h mbarrier.h poll.h pwd.h sys/ioctl.h sys/ipc.h sys/poll.h sys/pstat.h sys/resource.h sys/select.h sys/sem.h sys/shm.h sys/socket.h sys/sockio.h sys/tas.h sys/time.h sys/un.h termios.h ucred.h utime.h wchar.h wctype.h]) AC_CHECK_HEADERS([atomic.h crypt.h dld.h fp_class.h getopt.h ieeefp.h ifaddrs.h langinfo.h mbarrier.h poll.h pwd.h sys/epoll.h sys/ioctl.h sys/ipc.h sys/poll.h sys/pstat.h sys/resource.h sys/select.h sys/sem.h sys/shm.h sys/socket.h sys/sockio.h sys/tas.h sys/time.h sys/un.h termios.h ucred.h utime.h wchar.h wctype.h])
# On BSD, test for net/if.h will fail unless sys/socket.h # On BSD, test for net/if.h will fail unless sys/socket.h
# is included first. # is included first.
......
...@@ -140,13 +140,13 @@ retry: ...@@ -140,13 +140,13 @@ retry:
/* In blocking mode, wait until the socket is ready */ /* In blocking mode, wait until the socket is ready */
if (n < 0 && !port->noblock && (errno == EWOULDBLOCK || errno == EAGAIN)) if (n < 0 && !port->noblock && (errno == EWOULDBLOCK || errno == EAGAIN))
{ {
int w; WaitEvent event;
Assert(waitfor); Assert(waitfor);
w = WaitLatchOrSocket(MyLatch, ModifyWaitEvent(FeBeWaitSet, 0, waitfor, NULL);
WL_LATCH_SET | WL_POSTMASTER_DEATH | waitfor,
port->sock, 0); WaitEventSetWait(FeBeWaitSet, -1 /* no timeout */, &event, 1);
/* /*
* If the postmaster has died, it's not safe to continue running, * If the postmaster has died, it's not safe to continue running,
...@@ -165,13 +165,13 @@ retry: ...@@ -165,13 +165,13 @@ retry:
* cycles checking for this very rare condition, and this should cause * cycles checking for this very rare condition, and this should cause
* us to exit quickly in most cases.) * us to exit quickly in most cases.)
*/ */
if (w & WL_POSTMASTER_DEATH) if (event.events & WL_POSTMASTER_DEATH)
ereport(FATAL, ereport(FATAL,
(errcode(ERRCODE_ADMIN_SHUTDOWN), (errcode(ERRCODE_ADMIN_SHUTDOWN),
errmsg("terminating connection due to unexpected postmaster exit"))); errmsg("terminating connection due to unexpected postmaster exit")));
/* Handle interrupt. */ /* Handle interrupt. */
if (w & WL_LATCH_SET) if (event.events & WL_LATCH_SET)
{ {
ResetLatch(MyLatch); ResetLatch(MyLatch);
ProcessClientReadInterrupt(true); ProcessClientReadInterrupt(true);
...@@ -241,22 +241,22 @@ retry: ...@@ -241,22 +241,22 @@ retry:
if (n < 0 && !port->noblock && (errno == EWOULDBLOCK || errno == EAGAIN)) if (n < 0 && !port->noblock && (errno == EWOULDBLOCK || errno == EAGAIN))
{ {
int w; WaitEvent event;
Assert(waitfor); Assert(waitfor);
w = WaitLatchOrSocket(MyLatch, ModifyWaitEvent(FeBeWaitSet, 0, waitfor, NULL);
WL_LATCH_SET | WL_POSTMASTER_DEATH | waitfor,
port->sock, 0); WaitEventSetWait(FeBeWaitSet, -1 /* no timeout */, &event, 1);
/* See comments in secure_read. */ /* See comments in secure_read. */
if (w & WL_POSTMASTER_DEATH) if (event.events & WL_POSTMASTER_DEATH)
ereport(FATAL, ereport(FATAL,
(errcode(ERRCODE_ADMIN_SHUTDOWN), (errcode(ERRCODE_ADMIN_SHUTDOWN),
errmsg("terminating connection due to unexpected postmaster exit"))); errmsg("terminating connection due to unexpected postmaster exit")));
/* Handle interrupt. */ /* Handle interrupt. */
if (w & WL_LATCH_SET) if (event.events & WL_LATCH_SET)
{ {
ResetLatch(MyLatch); ResetLatch(MyLatch);
ProcessClientWriteInterrupt(true); ProcessClientWriteInterrupt(true);
......
...@@ -201,6 +201,11 @@ pq_init(void) ...@@ -201,6 +201,11 @@ pq_init(void)
(errmsg("could not set socket to nonblocking mode: %m"))); (errmsg("could not set socket to nonblocking mode: %m")));
#endif #endif
FeBeWaitSet = CreateWaitEventSet(TopMemoryContext, 3);
AddWaitEventToSet(FeBeWaitSet, WL_SOCKET_WRITEABLE, MyProcPort->sock,
NULL, NULL);
AddWaitEventToSet(FeBeWaitSet, WL_LATCH_SET, -1, MyLatch, NULL);
AddWaitEventToSet(FeBeWaitSet, WL_POSTMASTER_DEATH, -1, NULL, NULL);
} }
/* -------------------------------- /* --------------------------------
......
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
* however reliably interrupts the sleep, and causes select() to return * however reliably interrupts the sleep, and causes select() to return
* immediately even if the signal arrives before select() begins. * immediately even if the signal arrives before select() begins.
* *
* (Actually, we prefer poll() over select() where available, but the * (Actually, we prefer epoll_wait() over poll() over select() where
* same comments apply to it.) * available, but the same comments apply.)
* *
* When SetLatch is called from the same process that owns the latch, * When SetLatch is called from the same process that owns the latch,
* SetLatch writes the byte directly to the pipe. If it's owned by another * SetLatch writes the byte directly to the pipe. If it's owned by another
...@@ -41,6 +41,9 @@ ...@@ -41,6 +41,9 @@
#include <unistd.h> #include <unistd.h>
#include <sys/time.h> #include <sys/time.h>
#include <sys/types.h> #include <sys/types.h>
#ifdef HAVE_SYS_EPOLL_H
#include <sys/epoll.h>
#endif
#ifdef HAVE_POLL_H #ifdef HAVE_POLL_H
#include <poll.h> #include <poll.h>
#endif #endif
...@@ -65,18 +68,59 @@ ...@@ -65,18 +68,59 @@
* useful to manually specify the used primitive. If desired, just add a * useful to manually specify the used primitive. If desired, just add a
* define somewhere before this block. * define somewhere before this block.
*/ */
#if defined(LATCH_USE_POLL) || defined(LATCH_USE_SELECT) \ #if defined(WAIT_USE_EPOLL) || defined(WAIT_USE_POLL) || \
|| defined(LATCH_USE_WIN32) defined(WAIT_USE_SELECT) || defined(WAIT_USE_WIN32)
/* don't overwrite manual choice */ /* don't overwrite manual choice */
#elif defined(HAVE_SYS_EPOLL_H)
#define WAIT_USE_EPOLL
#elif defined(HAVE_POLL) #elif defined(HAVE_POLL)
#define LATCH_USE_POLL #define WAIT_USE_POLL
#elif HAVE_SYS_SELECT_H #elif HAVE_SYS_SELECT_H
#define LATCH_USE_SELECT #define WAIT_USE_SELECT
#elif WIN32 #elif WIN32
#define LATCH_USE_WIN32 #define WAIT_USE_WIN32
#else #else
#error "no latch implementation available" #error "no wait set implementation available"
#endif
/* typedef in latch.h */
struct WaitEventSet
{
int nevents; /* number of registered events */
int nevents_space; /* maximum number of events in this set */
/*
* Array, of nevents_space length, storing the definition of events this
* set is waiting for.
*/
WaitEvent *events;
/*
* If WL_LATCH_SET is specified in any wait event, latch is a pointer to
* said latch, and latch_pos the offset in the ->events array. This is
* useful because we check the state of the latch before performing doing
* syscalls related to waiting.
*/
Latch *latch;
int latch_pos;
#if defined(WAIT_USE_EPOLL)
int epoll_fd;
/* epoll_wait returns events in a user provided arrays, allocate once */
struct epoll_event *epoll_ret_events;
#elif defined(WAIT_USE_POLL)
/* poll expects events to be waited on every poll() call, prepare once */
struct pollfd *pollfds;
#elif defined(WAIT_USE_WIN32)
/*
* Array of windows events. The first element always contains
* pgwin32_signal_event, so the remaining elements are offset by one (i.e.
* event->pos + 1).
*/
HANDLE *handles;
#endif #endif
};
#ifndef WIN32 #ifndef WIN32
/* Are we currently in WaitLatch? The signal handler would like to know. */ /* Are we currently in WaitLatch? The signal handler would like to know. */
...@@ -91,6 +135,16 @@ static void sendSelfPipeByte(void); ...@@ -91,6 +135,16 @@ static void sendSelfPipeByte(void);
static void drainSelfPipe(void); static void drainSelfPipe(void);
#endif /* WIN32 */ #endif /* WIN32 */
#if defined(WAIT_USE_EPOLL)
static void WaitEventAdjustEpoll(WaitEventSet *set, WaitEvent *event, int action);
#elif defined(WAIT_USE_POLL)
static void WaitEventAdjustPoll(WaitEventSet *set, WaitEvent *event);
#elif defined(WAIT_USE_WIN32)
static void WaitEventAdjustWin32(WaitEventSet *set, WaitEvent *event);
#endif
static int WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents);
/* /*
* Initialize the process-local latch infrastructure. * Initialize the process-local latch infrastructure.
...@@ -255,531 +309,57 @@ WaitLatch(volatile Latch *latch, int wakeEvents, long timeout) ...@@ -255,531 +309,57 @@ WaitLatch(volatile Latch *latch, int wakeEvents, long timeout)
* When waiting on a socket, EOF and error conditions are reported by * When waiting on a socket, EOF and error conditions are reported by
* returning the socket as readable/writable or both, depending on * returning the socket as readable/writable or both, depending on
* WL_SOCKET_READABLE/WL_SOCKET_WRITEABLE being specified. * WL_SOCKET_READABLE/WL_SOCKET_WRITEABLE being specified.
*
* NB: These days this is just a wrapper around the WaitEventSet API. When
* using a latch very frequently, consider creating a longer living
* WaitEventSet instead; that's more efficient.
*/ */
#ifndef LATCH_USE_WIN32
int int
WaitLatchOrSocket(volatile Latch *latch, int wakeEvents, pgsocket sock, WaitLatchOrSocket(volatile Latch *latch, int wakeEvents, pgsocket sock,
long timeout) long timeout)
{ {
int result = 0; int ret = 0;
int rc; int rc;
instr_time start_time, WaitEvent event;
cur_time; WaitEventSet *set = CreateWaitEventSet(CurrentMemoryContext, 3);
long cur_timeout;
#if defined(LATCH_USE_POLL)
struct pollfd pfds[3];
int nfds;
#elif defined(LATCH_USE_SELECT)
struct timeval tv,
*tvp;
fd_set input_mask;
fd_set output_mask;
int hifd;
#endif
Assert(wakeEvents != 0); /* must have at least one wake event */
/* waiting for socket readiness without a socket indicates a bug */
if (sock == PGINVALID_SOCKET &&
(wakeEvents & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE)) != 0)
elog(ERROR, "cannot wait on socket event without a socket");
if ((wakeEvents & WL_LATCH_SET) && latch->owner_pid != MyProcPid)
elog(ERROR, "cannot wait on a latch owned by another process");
/*
* Initialize timeout if requested. We must record the current time so
* that we can determine the remaining timeout if the poll() or select()
* is interrupted. (On some platforms, select() will update the contents
* of "tv" for us, but unfortunately we can't rely on that.)
*/
if (wakeEvents & WL_TIMEOUT) if (wakeEvents & WL_TIMEOUT)
{ Assert(timeout >= 0);
INSTR_TIME_SET_CURRENT(start_time);
Assert(timeout >= 0 && timeout <= INT_MAX);
cur_timeout = timeout;
#ifdef LATCH_USE_SELECT
tv.tv_sec = cur_timeout / 1000L;
tv.tv_usec = (cur_timeout % 1000L) * 1000L;
tvp = &tv;
#endif
}
else else
{ timeout = -1;
cur_timeout = -1;
#ifdef LATCH_USE_SELECT
tvp = NULL;
#endif
}
waiting = true;
do
{
/*
* Check if the latch is set already. If so, leave loop immediately,
* avoid blocking again. We don't attempt to report any other events
* that might also be satisfied.
*
* If someone sets the latch between this and the poll()/select()
* below, the setter will write a byte to the pipe (or signal us and
* the signal handler will do that), and the poll()/select() will
* return immediately.
*
* If there's a pending byte in the self pipe, we'll notice whenever
* blocking. Only clearing the pipe in that case avoids having to
* drain it every time WaitLatchOrSocket() is used. Should the
* pipe-buffer fill up we're still ok, because the pipe is in
* nonblocking mode. It's unlikely for that to happen, because the
* self pipe isn't filled unless we're blocking (waiting = true), or
* from inside a signal handler in latch_sigusr1_handler().
*
* Note: we assume that the kernel calls involved in drainSelfPipe()
* and SetLatch() will provide adequate synchronization on machines
* with weak memory ordering, so that we cannot miss seeing is_set if
* the signal byte is already in the pipe when we drain it.
*/
if ((wakeEvents & WL_LATCH_SET) && latch->is_set)
{
result |= WL_LATCH_SET;
break;
}
/*
* Must wait ... we use the polling interface determined at the top of
* this file to do so.
*/
#if defined(LATCH_USE_POLL)
nfds = 0;
/* selfpipe is always in pfds[0] */
pfds[0].fd = selfpipe_readfd;
pfds[0].events = POLLIN;
pfds[0].revents = 0;
nfds++;
if (wakeEvents & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
{
/* socket, if used, is always in pfds[1] */
pfds[1].fd = sock;
pfds[1].events = 0;
if (wakeEvents & WL_SOCKET_READABLE)
pfds[1].events |= POLLIN;
if (wakeEvents & WL_SOCKET_WRITEABLE)
pfds[1].events |= POLLOUT;
pfds[1].revents = 0;
nfds++;
}
if (wakeEvents & WL_POSTMASTER_DEATH)
{
/* postmaster fd, if used, is always in pfds[nfds - 1] */
pfds[nfds].fd = postmaster_alive_fds[POSTMASTER_FD_WATCH];
pfds[nfds].events = POLLIN;
pfds[nfds].revents = 0;
nfds++;
}
/* Sleep */
rc = poll(pfds, nfds, (int) cur_timeout);
/* Check return code */
if (rc < 0)
{
/* EINTR is okay, otherwise complain */
if (errno != EINTR)
{
waiting = false;
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("poll() failed: %m")));
}
}
else if (rc == 0)
{
/* timeout exceeded */
if (wakeEvents & WL_TIMEOUT)
result |= WL_TIMEOUT;
}
else
{
/* at least one event occurred, so check revents values */
if (pfds[0].revents & POLLIN)
{
/* There's data in the self-pipe, clear it. */
drainSelfPipe();
}
if ((wakeEvents & WL_SOCKET_READABLE) &&
(pfds[1].revents & POLLIN))
{
/* data available in socket, or EOF/error condition */
result |= WL_SOCKET_READABLE;
}
if ((wakeEvents & WL_SOCKET_WRITEABLE) &&
(pfds[1].revents & POLLOUT))
{
/* socket is writable */
result |= WL_SOCKET_WRITEABLE;
}
if ((wakeEvents & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE)) &&
(pfds[1].revents & (POLLHUP | POLLERR | POLLNVAL)))
{
/* EOF/error condition */
if (wakeEvents & WL_SOCKET_READABLE)
result |= WL_SOCKET_READABLE;
if (wakeEvents & WL_SOCKET_WRITEABLE)
result |= WL_SOCKET_WRITEABLE;
}
/*
* We expect a POLLHUP when the remote end is closed, but because
* we don't expect the pipe to become readable or to have any
* errors either, treat those cases as postmaster death, too.
*/
if ((wakeEvents & WL_POSTMASTER_DEATH) &&
(pfds[nfds - 1].revents & (POLLHUP | POLLIN | POLLERR | POLLNVAL)))
{
/*
* According to the select(2) man page on Linux, select(2) may
* spuriously return and report a file descriptor as readable,
* when it's not; and presumably so can poll(2). It's not
* clear that the relevant cases would ever apply to the
* postmaster pipe, but since the consequences of falsely
* returning WL_POSTMASTER_DEATH could be pretty unpleasant,
* we take the trouble to positively verify EOF with
* PostmasterIsAlive().
*/
if (!PostmasterIsAlive())
result |= WL_POSTMASTER_DEATH;
}
}
#elif defined(LATCH_USE_SELECT)
/*
* On at least older linux kernels select(), in violation of POSIX,
* doesn't reliably return a socket as writable if closed - but we
* rely on that. So far all the known cases of this problem are on
* platforms that also provide a poll() implementation without that
* bug. If we find one where that's not the case, we'll need to add a
* workaround.
*/
FD_ZERO(&input_mask);
FD_ZERO(&output_mask);
FD_SET(selfpipe_readfd, &input_mask);
hifd = selfpipe_readfd;
if (wakeEvents & WL_POSTMASTER_DEATH)
{
FD_SET(postmaster_alive_fds[POSTMASTER_FD_WATCH], &input_mask);
if (postmaster_alive_fds[POSTMASTER_FD_WATCH] > hifd)
hifd = postmaster_alive_fds[POSTMASTER_FD_WATCH];
}
if (wakeEvents & WL_SOCKET_READABLE)
{
FD_SET(sock, &input_mask);
if (sock > hifd)
hifd = sock;
}
if (wakeEvents & WL_SOCKET_WRITEABLE)
{
FD_SET(sock, &output_mask);
if (sock > hifd)
hifd = sock;
}
/* Sleep */
rc = select(hifd + 1, &input_mask, &output_mask, NULL, tvp);
/* Check return code */
if (rc < 0)
{
/* EINTR is okay, otherwise complain */
if (errno != EINTR)
{
waiting = false;
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("select() failed: %m")));
}
}
else if (rc == 0)
{
/* timeout exceeded */
if (wakeEvents & WL_TIMEOUT)
result |= WL_TIMEOUT;
}
else
{
/* at least one event occurred, so check masks */
if (FD_ISSET(selfpipe_readfd, &input_mask))
{
/* There's data in the self-pipe, clear it. */
drainSelfPipe();
}
if ((wakeEvents & WL_SOCKET_READABLE) && FD_ISSET(sock, &input_mask))
{
/* data available in socket, or EOF */
result |= WL_SOCKET_READABLE;
}
if ((wakeEvents & WL_SOCKET_WRITEABLE) && FD_ISSET(sock, &output_mask))
{
/* socket is writable, or EOF */
result |= WL_SOCKET_WRITEABLE;
}
if ((wakeEvents & WL_POSTMASTER_DEATH) &&
FD_ISSET(postmaster_alive_fds[POSTMASTER_FD_WATCH],
&input_mask))
{
/*
* According to the select(2) man page on Linux, select(2) may
* spuriously return and report a file descriptor as readable,
* when it's not; and presumably so can poll(2). It's not
* clear that the relevant cases would ever apply to the
* postmaster pipe, but since the consequences of falsely
* returning WL_POSTMASTER_DEATH could be pretty unpleasant,
* we take the trouble to positively verify EOF with
* PostmasterIsAlive().
*/
if (!PostmasterIsAlive())
result |= WL_POSTMASTER_DEATH;
}
}
#endif /* LATCH_USE_SELECT */
/*
* Check again whether latch is set, the arrival of a signal/self-byte
* might be what stopped our sleep. It's not required for correctness
* to signal the latch as being set (we'd just loop if there's no
* other event), but it seems good to report an arrived latch asap.
* This way we also don't have to compute the current timestamp again.
*/
if ((wakeEvents & WL_LATCH_SET) && latch->is_set)
result |= WL_LATCH_SET;
/* If we're not done, update cur_timeout for next iteration */
if (result == 0 && (wakeEvents & WL_TIMEOUT))
{
INSTR_TIME_SET_CURRENT(cur_time);
INSTR_TIME_SUBTRACT(cur_time, start_time);
cur_timeout = timeout - (long) INSTR_TIME_GET_MILLISEC(cur_time);
if (cur_timeout <= 0)
{
/* Timeout has expired, no need to continue looping */
result |= WL_TIMEOUT;
}
#ifdef LATCH_USE_SELECT
else
{
tv.tv_sec = cur_timeout / 1000L;
tv.tv_usec = (cur_timeout % 1000L) * 1000L;
}
#endif
}
} while (result == 0);
waiting = false;
return result;
}
#else /* LATCH_USE_WIN32 */
int
WaitLatchOrSocket(volatile Latch *latch, int wakeEvents, pgsocket sock,
long timeout)
{
DWORD rc;
instr_time start_time,
cur_time;
long cur_timeout;
HANDLE events[4];
HANDLE latchevent;
HANDLE sockevent = WSA_INVALID_EVENT;
int numevents;
int result = 0;
int pmdeath_eventno = 0;
Assert(wakeEvents != 0); /* must have at least one wake event */
/* waiting for socket readiness without a socket indicates a bug */
if (sock == PGINVALID_SOCKET &&
(wakeEvents & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE)) != 0)
elog(ERROR, "cannot wait on socket event without a socket");
if ((wakeEvents & WL_LATCH_SET) && latch->owner_pid != MyProcPid)
elog(ERROR, "cannot wait on a latch owned by another process");
/* if (wakeEvents & WL_LATCH_SET)
* Initialize timeout if requested. We must record the current time so AddWaitEventToSet(set, WL_LATCH_SET, PGINVALID_SOCKET,
* that we can determine the remaining timeout if WaitForMultipleObjects (Latch *) latch, NULL);
* is interrupted.
*/
if (wakeEvents & WL_TIMEOUT)
{
INSTR_TIME_SET_CURRENT(start_time);
Assert(timeout >= 0 && timeout <= INT_MAX);
cur_timeout = timeout;
}
else
cur_timeout = INFINITE;
/* if (wakeEvents & WL_POSTMASTER_DEATH)
* Construct an array of event handles for WaitforMultipleObjects(). AddWaitEventToSet(set, WL_POSTMASTER_DEATH, PGINVALID_SOCKET,
* NULL, NULL);
* Note: pgwin32_signal_event should be first to ensure that it will be
* reported when multiple events are set. We want to guarantee that
* pending signals are serviced.
*/
latchevent = latch->event;
events[0] = pgwin32_signal_event;
events[1] = latchevent;
numevents = 2;
if (wakeEvents & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE)) if (wakeEvents & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
{ {
/* Need an event object to represent events on the socket */ int ev;
int flags = FD_CLOSE; /* always check for errors/EOF */
if (wakeEvents & WL_SOCKET_READABLE)
flags |= FD_READ;
if (wakeEvents & WL_SOCKET_WRITEABLE)
flags |= FD_WRITE;
sockevent = WSACreateEvent();
if (sockevent == WSA_INVALID_EVENT)
elog(ERROR, "failed to create event for socket: error code %u",
WSAGetLastError());
if (WSAEventSelect(sock, sockevent, flags) != 0)
elog(ERROR, "failed to set up event for socket: error code %u",
WSAGetLastError());
events[numevents++] = sockevent; ev = wakeEvents & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE);
} AddWaitEventToSet(set, ev, sock, NULL, NULL);
if (wakeEvents & WL_POSTMASTER_DEATH)
{
pmdeath_eventno = numevents;
events[numevents++] = PostmasterHandle;
} }
/* Ensure that signals are serviced even if latch is already set */ rc = WaitEventSetWait(set, timeout, &event, 1);
pgwin32_dispatch_queued_signals();
do
{
/*
* The comment in the unix version above applies here as well. At
* least after mentally replacing self-pipe with windows event.
* There's no danger of overflowing, as "Setting an event that is
* already set has no effect.".
*/
if ((wakeEvents & WL_LATCH_SET) && latch->is_set)
{
result |= WL_LATCH_SET;
/*
* Leave loop immediately, avoid blocking again. We don't attempt
* to report any other events that might also be satisfied.
*/
break;
}
rc = WaitForMultipleObjects(numevents, events, FALSE, cur_timeout);
if (rc == WAIT_FAILED)
elog(ERROR, "WaitForMultipleObjects() failed: error code %lu",
GetLastError());
else if (rc == WAIT_TIMEOUT)
{
result |= WL_TIMEOUT;
}
else if (rc == WAIT_OBJECT_0)
{
/* Service newly-arrived signals */
pgwin32_dispatch_queued_signals();
}
else if (rc == WAIT_OBJECT_0 + 1)
{
/*
* Reset the event. We'll re-check the, potentially, set latch on
* next iteration of loop, but let's not waste the cycles to
* update cur_timeout below.
*/
if (!ResetEvent(latchevent))
elog(ERROR, "ResetEvent failed: error code %lu", GetLastError());
continue;
}
else if ((wakeEvents & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE)) &&
rc == WAIT_OBJECT_0 + 2) /* socket is at event slot 2 */
{
WSANETWORKEVENTS resEvents;
ZeroMemory(&resEvents, sizeof(resEvents));
if (WSAEnumNetworkEvents(sock, sockevent, &resEvents) != 0)
elog(ERROR, "failed to enumerate network events: error code %u",
WSAGetLastError());
if ((wakeEvents & WL_SOCKET_READABLE) &&
(resEvents.lNetworkEvents & FD_READ))
{
result |= WL_SOCKET_READABLE;
}
if ((wakeEvents & WL_SOCKET_WRITEABLE) &&
(resEvents.lNetworkEvents & FD_WRITE))
{
result |= WL_SOCKET_WRITEABLE;
}
if (resEvents.lNetworkEvents & FD_CLOSE)
{
if (wakeEvents & WL_SOCKET_READABLE)
result |= WL_SOCKET_READABLE;
if (wakeEvents & WL_SOCKET_WRITEABLE)
result |= WL_SOCKET_WRITEABLE;
}
}
else if ((wakeEvents & WL_POSTMASTER_DEATH) &&
rc == WAIT_OBJECT_0 + pmdeath_eventno)
{
/*
* Postmaster apparently died. Since the consequences of falsely
* returning WL_POSTMASTER_DEATH could be pretty unpleasant, we
* take the trouble to positively verify this with
* PostmasterIsAlive(), even though there is no known reason to
* think that the event could be falsely set on Windows.
*/
if (!PostmasterIsAlive())
result |= WL_POSTMASTER_DEATH;
}
else
elog(ERROR, "unexpected return code from WaitForMultipleObjects(): %lu", rc);
/* If we're not done, update cur_timeout for next iteration */
if (result == 0 && (wakeEvents & WL_TIMEOUT))
{
INSTR_TIME_SET_CURRENT(cur_time);
INSTR_TIME_SUBTRACT(cur_time, start_time);
cur_timeout = timeout - (long) INSTR_TIME_GET_MILLISEC(cur_time);
if (cur_timeout <= 0)
{
/* Timeout has expired, no need to continue looping */
result |= WL_TIMEOUT;
}
}
} while (result == 0);
/* Clean up the event object we created for the socket */ if (rc == 0)
if (sockevent != WSA_INVALID_EVENT) ret |= WL_TIMEOUT;
else
{ {
WSAEventSelect(sock, NULL, 0); ret |= event.events & (WL_LATCH_SET |
WSACloseEvent(sockevent); WL_POSTMASTER_DEATH |
WL_SOCKET_READABLE |
WL_SOCKET_WRITEABLE);
} }
return result; FreeWaitEventSet(set);
return ret;
} }
#endif /* LATCH_USE_WIN32 */
/* /*
* Sets a latch and wakes up anyone waiting on it. * Sets a latch and wakes up anyone waiting on it.
...@@ -892,6 +472,1019 @@ ResetLatch(volatile Latch *latch) ...@@ -892,6 +472,1019 @@ ResetLatch(volatile Latch *latch)
pg_memory_barrier(); pg_memory_barrier();
} }
/*
* Create a WaitEventSet with space for nevents different events to wait for.
*
* These events can then efficiently waited upon together, using
* WaitEventSetWait().
*/
WaitEventSet *
CreateWaitEventSet(MemoryContext context, int nevents)
{
WaitEventSet *set;
char *data;
Size sz = 0;
sz += sizeof(WaitEventSet);
sz += sizeof(WaitEvent) * nevents;
#if defined(WAIT_USE_EPOLL)
sz += sizeof(struct epoll_event) * nevents;
#elif defined(WAIT_USE_POLL)
sz += sizeof(struct pollfd) * nevents;
#elif defined(WAIT_USE_WIN32)
/* need space for the pgwin32_signal_event */
sz += sizeof(HANDLE) * (nevents + 1);
#endif
data = (char *) MemoryContextAllocZero(context, sz);
set = (WaitEventSet *) data;
data += sizeof(WaitEventSet);
set->events = (WaitEvent *) data;
data += sizeof(WaitEvent) * nevents;
#if defined(WAIT_USE_EPOLL)
set->epoll_ret_events = (struct epoll_event *) data;
data += sizeof(struct epoll_event) * nevents;
#elif defined(WAIT_USE_POLL)
set->pollfds = (struct pollfd *) data;
data += sizeof(struct pollfd) * nevents;
#elif defined(WAIT_USE_WIN32)
set->handles = (HANDLE) data;
data += sizeof(HANDLE) * nevents;
#endif
set->latch = NULL;
set->nevents_space = nevents;
#if defined(WAIT_USE_EPOLL)
set->epoll_fd = epoll_create(nevents);
if (set->epoll_fd < 0)
elog(ERROR, "epoll_create failed: %m");
#elif defined(WAIT_USE_WIN32)
/*
* To handle signals while waiting, we need to add a win32 specific event.
* We accounted for the additional event at the top of this routine. See
* port/win32/signal.c for more details.
*
* Note: pgwin32_signal_event should be first to ensure that it will be
* reported when multiple events are set. We want to guarantee that
* pending signals are serviced.
*/
set->handles[0] = pgwin32_signal_event;
StaticAssertStmt(WSA_INVALID_EVENT == NULL, "");
#endif
return set;
}
/*
* Free a previously created WaitEventSet.
*/
void
FreeWaitEventSet(WaitEventSet *set)
{
#if defined(WAIT_USE_EPOLL)
close(set->epoll_fd);
#elif defined(WAIT_USE_WIN32)
WaitEvent *cur_event;
for (cur_event = set->events;
cur_event < (set->events + set->nevents);
cur_event++)
{
if (cur_event->events & WL_LATCH_SET)
{
/* uses the latch's HANDLE */
}
else if (cur_event->events & WL_POSTMASTER_DEATH)
{
/* uses PostmasterHandle */
}
else
{
/* Clean up the event object we created for the socket */
WSAEventSelect(cur_event->fd, NULL, 0);
WSACloseEvent(set->handles[cur_event->pos + 1]);
}
}
#endif
pfree(set);
}
/* ---
* Add an event to the set. Possible events are:
* - WL_LATCH_SET: Wait for the latch to be set
* - WL_POSTMASTER_DEATH: Wait for postmaster to die
* - WL_SOCKET_READABLE: Wait for socket to become readable
* can be combined in one event with WL_SOCKET_WRITEABLE
* - WL_SOCKET_WRITEABLE: Wait for socket to become writeable
* can be combined with WL_SOCKET_READABLE
*
* Returns the offset in WaitEventSet->events (starting from 0), which can be
* used to modify previously added wait events using ModifyWaitEvent().
*
* In the WL_LATCH_SET case the latch must be owned by the current process,
* i.e. it must be a backend-local latch initialized with InitLatch, or a
* shared latch associated with the current process by calling OwnLatch.
*
* In the WL_SOCKET_READABLE/WRITEABLE case, EOF and error conditions are
* reported by returning the socket as readable/writable or both, depending on
* WL_SOCKET_READABLE/WRITEABLE being specified.
*
* The user_data pointer specified here will be set for the events returned
* by WaitEventSetWait(), allowing to easily associate additional data with
* events.
*/
int
AddWaitEventToSet(WaitEventSet *set, uint32 events, pgsocket fd, Latch *latch,
void *user_data)
{
WaitEvent *event;
/* not enough space */
Assert(set->nevents < set->nevents_space);
if (latch)
{
if (latch->owner_pid != MyProcPid)
elog(ERROR, "cannot wait on a latch owned by another process");
if (set->latch)
elog(ERROR, "cannot wait on more than one latch");
if ((events & WL_LATCH_SET) != WL_LATCH_SET)
elog(ERROR, "latch events only spuport being set");
}
else
{
if (events & WL_LATCH_SET)
elog(ERROR, "cannot wait on latch without a specified latch");
}
/* waiting for socket readiness without a socket indicates a bug */
if (fd == PGINVALID_SOCKET &&
(events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE)))
elog(ERROR, "cannot wait on socket event without a socket");
event = &set->events[set->nevents];
event->pos = set->nevents++;
event->fd = fd;
event->events = events;
event->user_data = user_data;
if (events == WL_LATCH_SET)
{
set->latch = latch;
set->latch_pos = event->pos;
#ifndef WIN32
event->fd = selfpipe_readfd;
#endif
}
else if (events == WL_POSTMASTER_DEATH)
{
#ifndef WIN32
event->fd = postmaster_alive_fds[POSTMASTER_FD_WATCH];
#endif
}
/* perform wait primitive specific initialization, if needed */
#if defined(WAIT_USE_EPOLL)
WaitEventAdjustEpoll(set, event, EPOLL_CTL_ADD);
#elif defined(WAIT_USE_POLL)
WaitEventAdjustPoll(set, event);
#elif defined(WAIT_USE_SELECT)
/* nothing to do */
#elif defined(WAIT_USE_WIN32)
WaitEventAdjustWin32(set, event);
#endif
return event->pos;
}
/*
* Change the event mask and, in the WL_LATCH_SET case, the latch associated
* with the WaitEvent.
*
* 'pos' is the id returned by AddWaitEventToSet.
*/
void
ModifyWaitEvent(WaitEventSet *set, int pos, uint32 events, Latch *latch)
{
WaitEvent *event;
Assert(pos < set->nevents);
event = &set->events[pos];
/*
* If neither the event mask nor the associated latch changes, return
* early. That's an important optimization for some sockets, where
* ModifyWaitEvent is frequently used to switch from waiting for reads to
* waiting on writes.
*/
if (events == event->events &&
(!(event->events & WL_LATCH_SET) || set->latch == latch))
return;
if (event->events & WL_LATCH_SET &&
events != event->events)
{
/* we could allow to disable latch events for a while */
elog(ERROR, "cannot modify latch event");
}
if (event->events & WL_POSTMASTER_DEATH)
{
elog(ERROR, "cannot modify postmaster death event");
}
/* FIXME: validate event mask */
event->events = events;
if (events == WL_LATCH_SET)
{
set->latch = latch;
}
#if defined(WAIT_USE_EPOLL)
WaitEventAdjustEpoll(set, event, EPOLL_CTL_MOD);
#elif defined(WAIT_USE_POLL)
WaitEventAdjustPoll(set, event);
#elif defined(WAIT_USE_SELECT)
/* nothing to do */
#elif defined(WAIT_USE_WIN32)
WaitEventAdjustWin32(set, event);
#endif
}
#if defined(WAIT_USE_EPOLL)
/*
* action can be one of EPOLL_CTL_ADD | EPOLL_CTL_MOD | EPOLL_CTL_DEL
*/
static void
WaitEventAdjustEpoll(WaitEventSet *set, WaitEvent *event, int action)
{
struct epoll_event epoll_ev;
int rc;
/* pointer to our event, returned by epoll_wait */
epoll_ev.data.ptr = event;
/* always wait for errors */
epoll_ev.events = EPOLLERR | EPOLLHUP;
/* prepare pollfd entry once */
if (event->events == WL_LATCH_SET)
{
Assert(set->latch != NULL);
epoll_ev.events |= EPOLLIN;
}
else if (event->events == WL_POSTMASTER_DEATH)
{
epoll_ev.events |= EPOLLIN;
}
else
{
Assert(event->fd != PGINVALID_SOCKET);
Assert(event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE));
if (event->events & WL_SOCKET_READABLE)
epoll_ev.events |= EPOLLIN;
if (event->events & WL_SOCKET_WRITEABLE)
epoll_ev.events |= EPOLLOUT;
}
/*
* Even though unused, we also pass epoll_ev as the data argument if
* EPOLL_CTL_DEL is passed as action. There used to be an epoll bug
* requiring that, and actually it makes the code simpler...
*/
rc = epoll_ctl(set->epoll_fd, action, event->fd, &epoll_ev);
if (rc < 0)
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("epoll_ctl() failed: %m")));
}
#endif
#if defined(WAIT_USE_POLL)
static void
WaitEventAdjustPoll(WaitEventSet *set, WaitEvent *event)
{
struct pollfd *pollfd = &set->pollfds[event->pos];
pollfd->revents = 0;
pollfd->fd = event->fd;
/* prepare pollfd entry once */
if (event->events == WL_LATCH_SET)
{
Assert(set->latch != NULL);
pollfd->events = POLLIN;
}
else if (event->events == WL_POSTMASTER_DEATH)
{
pollfd->events = POLLIN;
}
else
{
Assert(event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE));
pollfd->events = 0;
if (event->events & WL_SOCKET_READABLE)
pollfd->events |= POLLIN;
if (event->events & WL_SOCKET_WRITEABLE)
pollfd->events |= POLLOUT;
}
Assert(event->fd != PGINVALID_SOCKET);
}
#endif
#if defined(WAIT_USE_WIN32)
static void
WaitEventAdjustWin32(WaitEventSet *set, WaitEvent *event)
{
HANDLE *handle = &set->handles[event->pos + 1];
if (event->events == WL_LATCH_SET)
{
Assert(set->latch != NULL);
*handle = set->latch->event;
}
else if (event->events == WL_POSTMASTER_DEATH)
{
*handle = PostmasterHandle;
}
else
{
int flags = FD_CLOSE; /* always check for errors/EOF */
if (event->events & WL_SOCKET_READABLE)
flags |= FD_READ;
if (event->events & WL_SOCKET_WRITEABLE)
flags |= FD_WRITE;
if (*handle == WSA_INVALID_EVENT)
{
*handle = WSACreateEvent();
if (*handle == WSA_INVALID_EVENT)
elog(ERROR, "failed to create event for socket: error code %u",
WSAGetLastError());
}
if (WSAEventSelect(event->fd, *handle, flags) != 0)
elog(ERROR, "failed to set up event for socket: error code %u",
WSAGetLastError());
Assert(event->fd != PGINVALID_SOCKET);
}
}
#endif
/*
* Wait for events added to the set to happen, or until the timeout is
* reached. At most nevents occurred events are returned.
*
* If timeout = -1, block until an event occurs; if 0, check sockets for
* readiness, but don't block; if > 0, block for at most timeout miliseconds.
*
* Returns the number of events occurred, or 0 if the timeout was reached.
*
* Returned events will have the fd, pos, user_data fields set to the
* values associated with the registered event.
*/
int
WaitEventSetWait(WaitEventSet *set, long timeout,
WaitEvent *occurred_events, int nevents)
{
int returned_events = 0;
instr_time start_time;
instr_time cur_time;
long cur_timeout = -1;
Assert(nevents > 0);
/*
* Initialize timeout if requested. We must record the current time so
* that we can determine the remaining timeout if interrupted.
*/
if (timeout >= 0)
{
INSTR_TIME_SET_CURRENT(start_time);
Assert(timeout >= 0 && timeout <= INT_MAX);
cur_timeout = timeout;
}
#ifndef WIN32
waiting = true;
#else
/* Ensure that signals are serviced even if latch is already set */
pgwin32_dispatch_queued_signals();
#endif
while (returned_events == 0)
{
int rc;
/*
* Check if the latch is set already. If so, leave the loop
* immediately, avoid blocking again. We don't attempt to report any
* other events that might also be satisfied.
*
* If someone sets the latch between this and the
* WaitEventSetWaitBlock() below, the setter will write a byte to the
* pipe (or signal us and the signal handler will do that), and the
* readiness routine will return immediately.
*
* On unix, If there's a pending byte in the self pipe, we'll notice
* whenever blocking. Only clearing the pipe in that case avoids
* having to drain it every time WaitLatchOrSocket() is used. Should
* the pipe-buffer fill up we're still ok, because the pipe is in
* nonblocking mode. It's unlikely for that to happen, because the
* self pipe isn't filled unless we're blocking (waiting = true), or
* from inside a signal handler in latch_sigusr1_handler().
*
* On windows, we'll also notice if there's a pending event for the
* latch when blocking, but there's no danger of anything filling up,
* as "Setting an event that is already set has no effect.".
*
* Note: we assume that the kernel calls involved in latch management
* will provide adequate synchronization on machines with weak memory
* ordering, so that we cannot miss seeing is_set if a notification
* has already been queued.
*/
if (set->latch && set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->pos = set->latch_pos;
occurred_events->user_data =
set->events[set->latch_pos].user_data;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
break;
}
/*
* Wait for events using the readiness primitive chosen at the top of
* this file. If -1 is returned, a timeout has occurred, if 0 we have
* to retry, everything >= 1 is the number of returned events.
*/
rc = WaitEventSetWaitBlock(set, cur_timeout,
occurred_events, nevents);
if (rc == -1)
break; /* timeout occurred */
else
returned_events = rc;
/* If we're not done, update cur_timeout for next iteration */
if (returned_events == 0 && timeout >= 0)
{
INSTR_TIME_SET_CURRENT(cur_time);
INSTR_TIME_SUBTRACT(cur_time, start_time);
cur_timeout = timeout - (long) INSTR_TIME_GET_MILLISEC(cur_time);
if (cur_timeout <= 0)
break;
}
}
#ifndef WIN32
waiting = false;
#endif
return returned_events;
}
#if defined(WAIT_USE_EPOLL)
/*
* Wait using linux's epoll_wait(2).
*
* This is the preferrable wait method, as several readiness notifications are
* delivered, without having to iterate through all of set->events. The return
* epoll_event struct contain a pointer to our events, making association
* easy.
*/
static int
WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents)
{
int returned_events = 0;
int rc;
WaitEvent *cur_event;
struct epoll_event *cur_epoll_event;
/* Sleep */
rc = epoll_wait(set->epoll_fd, set->epoll_ret_events,
nevents, cur_timeout);
/* Check return code */
if (rc < 0)
{
/* EINTR is okay, otherwise complain */
if (errno != EINTR)
{
waiting = false;
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("epoll_wait() failed: %m")));
}
return 0;
}
else if (rc == 0)
{
/* timeout exceeded */
return -1;
}
/*
* At least one event occurred, iterate over the returned epoll events
* until they're either all processed, or we've returned all the events
* the caller desired.
*/
for (cur_epoll_event = set->epoll_ret_events;
cur_epoll_event < (set->epoll_ret_events + rc) &&
returned_events < nevents;
cur_epoll_event++)
{
/* epoll's data pointer is set to the associated WaitEvent */
cur_event = (WaitEvent *) cur_epoll_event->data.ptr;
occurred_events->pos = cur_event->pos;
occurred_events->user_data = cur_event->user_data;
occurred_events->events = 0;
if (cur_event->events == WL_LATCH_SET &&
cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP))
{
/* There's data in the self-pipe, clear it. */
drainSelfPipe();
if (set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events == WL_POSTMASTER_DEATH &&
cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP))
{
/*
* We expect an EPOLLHUP when the remote end is closed, but
* because we don't expect the pipe to become readable or to have
* any errors either, treat those cases as postmaster death, too.
*
* As explained in the WAIT_USE_SELECT implementation, select(2)
* may spuriously return. Be paranoid about that here too, a
* spurious WL_POSTMASTER_DEATH would be painful.
*/
if (!PostmasterIsAlive())
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_POSTMASTER_DEATH;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
{
Assert(cur_event->fd != PGINVALID_SOCKET);
if ((cur_event->events & WL_SOCKET_READABLE) &&
(cur_epoll_event->events & (EPOLLIN | EPOLLERR | EPOLLHUP)))
{
/* data available in socket, or EOF */
occurred_events->events |= WL_SOCKET_READABLE;
}
if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
(cur_epoll_event->events & (EPOLLOUT | EPOLLERR | EPOLLHUP)))
{
/* writable, or EOF */
occurred_events->events |= WL_SOCKET_WRITEABLE;
}
if (occurred_events->events != 0)
{
occurred_events->fd = cur_event->fd;
occurred_events++;
returned_events++;
}
}
}
return returned_events;
}
#elif defined(WAIT_USE_POLL)
/*
* Wait using poll(2).
*
* This allows to receive readiness notifications for several events at once,
* but requires iterating through all of set->pollfds.
*/
static inline int
WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents)
{
int returned_events = 0;
int rc;
WaitEvent *cur_event;
struct pollfd *cur_pollfd;
/* Sleep */
rc = poll(set->pollfds, set->nevents, (int) cur_timeout);
/* Check return code */
if (rc < 0)
{
/* EINTR is okay, otherwise complain */
if (errno != EINTR)
{
waiting = false;
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("poll() failed: %m")));
}
return 0;
}
else if (rc == 0)
{
/* timeout exceeded */
return -1;
}
for (cur_event = set->events, cur_pollfd = set->pollfds;
cur_event < (set->events + set->nevents) &&
returned_events < nevents;
cur_event++, cur_pollfd++)
{
/* no activity on this FD, skip */
if (cur_pollfd->revents == 0)
continue;
occurred_events->pos = cur_event->pos;
occurred_events->user_data = cur_event->user_data;
occurred_events->events = 0;
if (cur_event->events == WL_LATCH_SET &&
(cur_pollfd->revents & (POLLIN | POLLHUP | POLLERR | POLLNVAL)))
{
/* There's data in the self-pipe, clear it. */
drainSelfPipe();
if (set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events == WL_POSTMASTER_DEATH &&
(cur_pollfd->revents & (POLLIN | POLLHUP | POLLERR | POLLNVAL)))
{
/*
* We expect an POLLHUP when the remote end is closed, but because
* we don't expect the pipe to become readable or to have any
* errors either, treat those cases as postmaster death, too.
*
* As explained in the WAIT_USE_SELECT implementation, select(2)
* may spuriously return. Be paranoid about that here too, a
* spurious WL_POSTMASTER_DEATH would be painful.
*/
if (!PostmasterIsAlive())
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_POSTMASTER_DEATH;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
{
int errflags = POLLHUP | POLLERR | POLLNVAL;
Assert(cur_event->fd >= PGINVALID_SOCKET);
if ((cur_event->events & WL_SOCKET_READABLE) &&
(cur_pollfd->revents & (POLLIN | errflags)))
{
/* data available in socket, or EOF */
occurred_events->events |= WL_SOCKET_READABLE;
}
if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
(cur_pollfd->revents & (POLLOUT | errflags)))
{
/* writeable, or EOF */
occurred_events->events |= WL_SOCKET_WRITEABLE;
}
if (occurred_events->events != 0)
{
occurred_events->fd = cur_event->fd;
occurred_events++;
returned_events++;
}
}
}
return returned_events;
}
#elif defined(WAIT_USE_SELECT)
/*
* Wait using select(2).
*
* XXX: On at least older linux kernels select(), in violation of POSIX,
* doesn't reliably return a socket as writable if closed - but we rely on
* that. So far all the known cases of this problem are on platforms that also
* provide a poll() implementation without that bug. If we find one where
* that's not the case, we'll need to add a workaround.
*/
static inline int
WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents)
{
int returned_events = 0;
int rc;
WaitEvent *cur_event;
fd_set input_mask;
fd_set output_mask;
int hifd;
struct timeval tv;
struct timeval *tvp = NULL;
FD_ZERO(&input_mask);
FD_ZERO(&output_mask);
/*
* Prepare input/output masks. We do so every loop iteration as there's no
* entirely portable way to copy fd_sets.
*/
for (cur_event = set->events;
cur_event < (set->events + set->nevents);
cur_event++)
{
if (cur_event->events == WL_LATCH_SET)
FD_SET(cur_event->fd, &input_mask);
else if (cur_event->events == WL_POSTMASTER_DEATH)
FD_SET(cur_event->fd, &input_mask);
else
{
Assert(cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE));
if (cur_event->events == WL_SOCKET_READABLE)
FD_SET(cur_event->fd, &input_mask);
else if (cur_event->events == WL_SOCKET_WRITEABLE)
FD_SET(cur_event->fd, &output_mask);
}
if (cur_event->fd > hifd)
hifd = cur_event->fd;
}
/* Sleep */
if (cur_timeout >= 0)
{
tv.tv_sec = cur_timeout / 1000L;
tv.tv_usec = (cur_timeout % 1000L) * 1000L;
tvp = &tv;
}
rc = select(hifd + 1, &input_mask, &output_mask, NULL, tvp);
/* Check return code */
if (rc < 0)
{
/* EINTR is okay, otherwise complain */
if (errno != EINTR)
{
waiting = false;
ereport(ERROR,
(errcode_for_socket_access(),
errmsg("select() failed: %m")));
}
return 0; /* retry */
}
else if (rc == 0)
{
/* timeout exceeded */
return -1;
}
/*
* To associate events with select's masks, we have to check the status of
* the file descriptors associated with an event; by looping through all
* events.
*/
for (cur_event = set->events;
cur_event < (set->events + set->nevents)
&& returned_events < nevents;
cur_event++)
{
occurred_events->pos = cur_event->pos;
occurred_events->user_data = cur_event->user_data;
occurred_events->events = 0;
if (cur_event->events == WL_LATCH_SET &&
FD_ISSET(cur_event->fd, &input_mask))
{
/* There's data in the self-pipe, clear it. */
drainSelfPipe();
if (set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events == WL_POSTMASTER_DEATH &&
FD_ISSET(cur_event->fd, &input_mask))
{
/*
* According to the select(2) man page on Linux, select(2) may
* spuriously return and report a file descriptor as readable,
* when it's not; and presumably so can poll(2). It's not clear
* that the relevant cases would ever apply to the postmaster
* pipe, but since the consequences of falsely returning
* WL_POSTMASTER_DEATH could be pretty unpleasant, we take the
* trouble to positively verify EOF with PostmasterIsAlive().
*/
if (!PostmasterIsAlive())
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_POSTMASTER_DEATH;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
{
Assert(cur_event->fd != PGINVALID_SOCKET);
if ((cur_event->events & WL_SOCKET_READABLE) &&
FD_ISSET(cur_event->fd, &input_mask))
{
/* data available in socket, or EOF */
occurred_events->events |= WL_SOCKET_READABLE;
}
if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
FD_ISSET(cur_event->fd, &output_mask))
{
/* socket is writeable, or EOF */
occurred_events->events |= WL_SOCKET_WRITEABLE;
}
if (occurred_events->events != 0)
{
occurred_events->fd = cur_event->fd;
occurred_events++;
returned_events++;
}
}
}
return returned_events;
}
#elif defined(WAIT_USE_WIN32)
/*
* Wait using Windows' WaitForMultipleObjects().
*
* Unfortunately this will only ever return a single readiness notification at
* a time. Note that while the official documentation for
* WaitForMultipleObjects is ambiguous about multiple events being "consumed"
* with a single bWaitAll = FALSE call,
* https://blogs.msdn.microsoft.com/oldnewthing/20150409-00/?p=44273 confirms
* that only one event is "consumed".
*/
static inline int
WaitEventSetWaitBlock(WaitEventSet *set, int cur_timeout,
WaitEvent *occurred_events, int nevents)
{
int returned_events = 0;
DWORD rc;
WaitEvent *cur_event;
/*
* Sleep.
*
* Need to wait for ->nevents + 1, because signal handle is in [0].
*/
rc = WaitForMultipleObjects(set->nevents + 1, set->handles, FALSE,
cur_timeout);
/* Check return code */
if (rc == WAIT_FAILED)
elog(ERROR, "WaitForMultipleObjects() failed: error code %lu",
GetLastError());
else if (rc == WAIT_TIMEOUT)
{
/* timeout exceeded */
return -1;
}
if (rc == WAIT_OBJECT_0)
{
/* Service newly-arrived signals */
pgwin32_dispatch_queued_signals();
return 0; /* retry */
}
/*
* With an offset of one, due to the always present pgwin32_signal_event,
* the handle offset directly corresponds to a wait event.
*/
cur_event = (WaitEvent *) &set->events[rc - WAIT_OBJECT_0 - 1];
occurred_events->pos = cur_event->pos;
occurred_events->user_data = cur_event->user_data;
occurred_events->events = 0;
if (cur_event->events == WL_LATCH_SET)
{
if (!ResetEvent(set->latch->event))
elog(ERROR, "ResetEvent failed: error code %lu", GetLastError());
if (set->latch->is_set)
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_LATCH_SET;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events == WL_POSTMASTER_DEATH)
{
/*
* Postmaster apparently died. Since the consequences of falsely
* returning WL_POSTMASTER_DEATH could be pretty unpleasant, we take
* the trouble to positively verify this with PostmasterIsAlive(),
* even though there is no known reason to think that the event could
* be falsely set on Windows.
*/
if (!PostmasterIsAlive())
{
occurred_events->fd = PGINVALID_SOCKET;
occurred_events->events = WL_POSTMASTER_DEATH;
occurred_events++;
returned_events++;
}
}
else if (cur_event->events & (WL_SOCKET_READABLE | WL_SOCKET_WRITEABLE))
{
WSANETWORKEVENTS resEvents;
HANDLE handle = set->handles[cur_event->pos + 1];
Assert(cur_event->fd);
occurred_events->fd = cur_event->fd;
ZeroMemory(&resEvents, sizeof(resEvents));
if (WSAEnumNetworkEvents(cur_event->fd, handle, &resEvents) != 0)
elog(ERROR, "failed to enumerate network events: error code %u",
WSAGetLastError());
if ((cur_event->events & WL_SOCKET_READABLE) &&
(resEvents.lNetworkEvents & FD_READ))
{
/* data available in socket */
occurred_events->events |= WL_SOCKET_READABLE;
}
if ((cur_event->events & WL_SOCKET_WRITEABLE) &&
(resEvents.lNetworkEvents & FD_WRITE))
{
/* writeable */
occurred_events->events |= WL_SOCKET_WRITEABLE;
}
if (resEvents.lNetworkEvents & FD_CLOSE)
{
/* EOF */
if (cur_event->events & WL_SOCKET_READABLE)
occurred_events->events |= WL_SOCKET_READABLE;
if (cur_event->events & WL_SOCKET_WRITEABLE)
occurred_events->events |= WL_SOCKET_WRITEABLE;
}
if (occurred_events->events != 0)
{
occurred_events++;
returned_events++;
}
}
return returned_events;
}
#endif
/* /*
* SetLatch uses SIGUSR1 to wake up the process waiting on the latch. * SetLatch uses SIGUSR1 to wake up the process waiting on the latch.
* *
......
...@@ -33,6 +33,7 @@ ...@@ -33,6 +33,7 @@
#include "access/htup_details.h" #include "access/htup_details.h"
#include "catalog/pg_authid.h" #include "catalog/pg_authid.h"
#include "libpq/libpq.h"
#include "mb/pg_wchar.h" #include "mb/pg_wchar.h"
#include "miscadmin.h" #include "miscadmin.h"
#include "postmaster/autovacuum.h" #include "postmaster/autovacuum.h"
...@@ -247,6 +248,9 @@ SwitchToSharedLatch(void) ...@@ -247,6 +248,9 @@ SwitchToSharedLatch(void)
MyLatch = &MyProc->procLatch; MyLatch = &MyProc->procLatch;
if (FeBeWaitSet)
ModifyWaitEvent(FeBeWaitSet, 1, WL_LATCH_SET, MyLatch);
/* /*
* Set the shared latch as the local one might have been set. This * Set the shared latch as the local one might have been set. This
* shouldn't normally be necessary as code is supposed to check the * shouldn't normally be necessary as code is supposed to check the
...@@ -262,6 +266,10 @@ SwitchBackToLocalLatch(void) ...@@ -262,6 +266,10 @@ SwitchBackToLocalLatch(void)
Assert(MyProc != NULL && MyLatch == &MyProc->procLatch); Assert(MyProc != NULL && MyLatch == &MyProc->procLatch);
MyLatch = &LocalLatchData; MyLatch = &LocalLatchData;
if (FeBeWaitSet)
ModifyWaitEvent(FeBeWaitSet, 1, WL_LATCH_SET, MyLatch);
SetLatch(MyLatch); SetLatch(MyLatch);
} }
......
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
#include "lib/stringinfo.h" #include "lib/stringinfo.h"
#include "libpq/libpq-be.h" #include "libpq/libpq-be.h"
#include "storage/latch.h"
typedef struct typedef struct
...@@ -95,6 +96,8 @@ extern ssize_t secure_raw_write(Port *port, const void *ptr, size_t len); ...@@ -95,6 +96,8 @@ extern ssize_t secure_raw_write(Port *port, const void *ptr, size_t len);
extern bool ssl_loaded_verify_locations; extern bool ssl_loaded_verify_locations;
WaitEventSet *FeBeWaitSet;
/* GUCs */ /* GUCs */
extern char *SSLCipherSuites; extern char *SSLCipherSuites;
extern char *SSLECDHCurve; extern char *SSLECDHCurve;
......
...@@ -530,6 +530,9 @@ ...@@ -530,6 +530,9 @@
/* Define to 1 if you have the syslog interface. */ /* Define to 1 if you have the syslog interface. */
#undef HAVE_SYSLOG #undef HAVE_SYSLOG
/* Define to 1 if you have the <sys/epoll.h> header file. */
#undef HAVE_SYS_EPOLL_H
/* Define to 1 if you have the <sys/ioctl.h> header file. */ /* Define to 1 if you have the <sys/ioctl.h> header file. */
#undef HAVE_SYS_IOCTL_H #undef HAVE_SYS_IOCTL_H
......
...@@ -68,6 +68,12 @@ ...@@ -68,6 +68,12 @@
* use of any generic handler. * use of any generic handler.
* *
* *
* WaitEventSets allow to wait for latches being set and additional events -
* postmaster dying and socket readiness of several sockets currently - at the
* same time. On many platforms using a long lived event set is more
* efficient than using WaitLatch or WaitLatchOrSocket.
*
*
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California * Portions Copyright (c) 1994, Regents of the University of California
* *
...@@ -95,13 +101,27 @@ typedef struct Latch ...@@ -95,13 +101,27 @@ typedef struct Latch
#endif #endif
} Latch; } Latch;
/* Bitmasks for events that may wake-up WaitLatch() clients */ /*
* Bitmasks for events that may wake-up WaitLatch(), WaitLatchOrSocket(), or
* WaitEventSetWait().
*/
#define WL_LATCH_SET (1 << 0) #define WL_LATCH_SET (1 << 0)
#define WL_SOCKET_READABLE (1 << 1) #define WL_SOCKET_READABLE (1 << 1)
#define WL_SOCKET_WRITEABLE (1 << 2) #define WL_SOCKET_WRITEABLE (1 << 2)
#define WL_TIMEOUT (1 << 3) #define WL_TIMEOUT (1 << 3) /* not for WaitEventSetWait() */
#define WL_POSTMASTER_DEATH (1 << 4) #define WL_POSTMASTER_DEATH (1 << 4)
typedef struct WaitEvent
{
int pos; /* position in the event data structure */
uint32 events; /* triggered events */
pgsocket fd; /* socket fd associated with event */
void *user_data; /* pointer provided in AddWaitEventToSet */
} WaitEvent;
/* forward declaration to avoid exposing latch.c implementation details */
typedef struct WaitEventSet WaitEventSet;
/* /*
* prototypes for functions in latch.c * prototypes for functions in latch.c
*/ */
...@@ -110,12 +130,19 @@ extern void InitLatch(volatile Latch *latch); ...@@ -110,12 +130,19 @@ extern void InitLatch(volatile Latch *latch);
extern void InitSharedLatch(volatile Latch *latch); extern void InitSharedLatch(volatile Latch *latch);
extern void OwnLatch(volatile Latch *latch); extern void OwnLatch(volatile Latch *latch);
extern void DisownLatch(volatile Latch *latch); extern void DisownLatch(volatile Latch *latch);
extern int WaitLatch(volatile Latch *latch, int wakeEvents, long timeout);
extern int WaitLatchOrSocket(volatile Latch *latch, int wakeEvents,
pgsocket sock, long timeout);
extern void SetLatch(volatile Latch *latch); extern void SetLatch(volatile Latch *latch);
extern void ResetLatch(volatile Latch *latch); extern void ResetLatch(volatile Latch *latch);
extern WaitEventSet *CreateWaitEventSet(MemoryContext context, int nevents);
extern void FreeWaitEventSet(WaitEventSet *set);
extern int AddWaitEventToSet(WaitEventSet *set, uint32 events, pgsocket fd,
Latch *latch, void *user_data);
extern void ModifyWaitEvent(WaitEventSet *set, int pos, uint32 events, Latch *latch);
extern int WaitEventSetWait(WaitEventSet *set, long timeout, WaitEvent *occurred_events, int nevents);
extern int WaitLatch(volatile Latch *latch, int wakeEvents, long timeout);
extern int WaitLatchOrSocket(volatile Latch *latch, int wakeEvents,
pgsocket sock, long timeout);
/* /*
* Unix implementation uses SIGUSR1 for inter-process signaling. * Unix implementation uses SIGUSR1 for inter-process signaling.
......
...@@ -2113,6 +2113,8 @@ WalSnd ...@@ -2113,6 +2113,8 @@ WalSnd
WalSndCtlData WalSndCtlData
WalSndSendDataCallback WalSndSendDataCallback
WalSndState WalSndState
WaitEvent
WaitEventSet
WholeRowVarExprState WholeRowVarExprState
WindowAgg WindowAgg
WindowAggState WindowAggState
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment