Commit 8f8d7464 authored by Tom Lane's avatar Tom Lane

Code review for inline-list patch.

Make foreach macros less syntactically dangerous, and fix some typos in
evidently-never-tested ones.  Add missing slist_next_node and
slist_head_node functions.  Fix broken dlist_check code.  Assorted comment
improvements.
parent 2f2be747
...@@ -24,9 +24,11 @@ ...@@ -24,9 +24,11 @@
#include "lib/ilist.h" #include "lib/ilist.h"
/* /*
* removes a node from a list * Delete 'node' from list.
* *
* Attention: O(n) * It is not allowed to delete a 'node' which is is not in the list 'head'
*
* Caution: this is O(n)
*/ */
void void
slist_delete(slist_head *head, slist_node *node) slist_delete(slist_head *head, slist_node *node)
...@@ -47,9 +49,9 @@ slist_delete(slist_head *head, slist_node *node) ...@@ -47,9 +49,9 @@ slist_delete(slist_head *head, slist_node *node)
} }
last = cur; last = cur;
} }
Assert(found);
slist_check(head); slist_check(head);
Assert(found);
} }
#ifdef ILIST_DEBUG #ifdef ILIST_DEBUG
...@@ -61,8 +63,11 @@ dlist_check(dlist_head *head) ...@@ -61,8 +63,11 @@ dlist_check(dlist_head *head)
{ {
dlist_node *cur; dlist_node *cur;
if (head == NULL || !(&head->head)) if (head == NULL)
elog(ERROR, "doubly linked list head is not properly initialized"); elog(ERROR, "doubly linked list head address is NULL");
if (head->head.next == NULL && head->head.prev == NULL)
return; /* OK, initialized as zeroes */
/* iterate in forward direction */ /* iterate in forward direction */
for (cur = head->head.next; cur != &head->head; cur = cur->next) for (cur = head->head.next; cur != &head->head; cur = cur->next)
...@@ -96,10 +101,10 @@ slist_check(slist_head *head) ...@@ -96,10 +101,10 @@ slist_check(slist_head *head)
slist_node *cur; slist_node *cur;
if (head == NULL) if (head == NULL)
elog(ERROR, "singly linked is NULL"); elog(ERROR, "singly linked list head address is NULL");
/* /*
* there isn't much we can test in a singly linked list other that it * there isn't much we can test in a singly linked list except that it
* actually ends sometime, i.e. hasn't introduced a cycle or similar * actually ends sometime, i.e. hasn't introduced a cycle or similar
*/ */
for (cur = head->head.next; cur != NULL; cur = cur->next) for (cur = head->head.next; cur != NULL; cur = cur->next)
......
...@@ -3,34 +3,37 @@ ...@@ -3,34 +3,37 @@
* ilist.h * ilist.h
* integrated/inline doubly- and singly-linked lists * integrated/inline doubly- and singly-linked lists
* *
* This implementation is as efficient as possible: the lists don't have * These list types are useful when there are only a predetermined set of
* any memory management overhead, because the list pointers are embedded * lists that an object could be in. List links are embedded directly into
* within some larger structure. * the objects, and thus no extra memory management overhead is required.
* * (Of course, if only a small proportion of existing objects are in a list,
* the link fields in the remainder would be wasted space. But usually,
* it saves space to not have separately-allocated list nodes.)
*
* None of the functions here allocate any memory; they just manipulate
* externally managed memory. The APIs for singly and doubly linked lists
* are identical as far as capabilities of both allow.
*
* Each list has a list header, which exists even when the list is empty.
* An empty singly-linked list has a NULL pointer in its header.
* There are two kinds of empty doubly linked lists: those that have been * There are two kinds of empty doubly linked lists: those that have been
* initialized to NULL, and those that have been initialized to circularity. * initialized to NULL, and those that have been initialized to circularity.
* The second kind is useful for tight optimization, because there are some * (If a dlist is modified and then all its elements are deleted, it will be
* operations that can be done without branches (and thus faster) on lists that * in the circular state.) We prefer circular dlists because there are some
* have been initialized to circularity. Most users don't care all that much, * operations that can be done without branches (and thus faster) on lists
* and so can skip the initialization step until really required. * that use circular representation. However, it is often convenient to
* * initialize list headers to zeroes rather than setting them up with an
* NOTES * explicit initialization function, so we also allow the other case.
* This is intended to be used in situations where memory for a struct and
* its contents already needs to be allocated and the overhead of
* allocating extra list cells for every list element is noticeable. Thus,
* none of the functions here allocate any memory; they just manipulate
* externally managed memory. The API for singly/doubly linked lists is
* identical as far as capabilities of both allow.
* *
* EXAMPLES * EXAMPLES
* *
* Here's a simple example demonstrating how this can be used. Let's assume we * Here's a simple example demonstrating how this can be used. Let's assume
* want to store information about the tables contained in a database. * we want to store information about the tables contained in a database.
* *
* #include "lib/ilist.h" * #include "lib/ilist.h"
* *
* // Define struct for the databases including a list header that will be used * // Define struct for the databases including a list header that will be
* // to access the nodes in the list later on. * // used to access the nodes in the table list later on.
* typedef struct my_database * typedef struct my_database
* { * {
* char *datname; * char *datname;
...@@ -38,8 +41,8 @@ ...@@ -38,8 +41,8 @@
* // ... * // ...
* } my_database; * } my_database;
* *
* // Define struct for the tables. Note the list_node element which stores * // Define struct for the tables. Note the list_node element which stores
* // information about prev/next list nodes. * // prev/next list links. The list_node element need not be first.
* typedef struct my_table * typedef struct my_table
* { * {
* char *tablename; * char *tablename;
...@@ -57,10 +60,10 @@ ...@@ -57,10 +60,10 @@
* dlist_push_head(&db->tables, &create_table(db, "b")->list_node); * dlist_push_head(&db->tables, &create_table(db, "b")->list_node);
* *
* *
* To iterate over the table list, we allocate an iterator element and use * To iterate over the table list, we allocate an iterator variable and use
* a specialized looping construct. Inside a dlist_foreach, the iterator's * a specialized looping construct. Inside a dlist_foreach, the iterator's
* 'cur' field can be used to access the current element. iter.cur points to a * 'cur' field can be used to access the current element. iter.cur points to
* 'dlist_node', but most of the time what we want is the actual table * a 'dlist_node', but most of the time what we want is the actual table
* information; dlist_container() gives us that, like so: * information; dlist_container() gives us that, like so:
* *
* dlist_iter iter; * dlist_iter iter;
...@@ -87,11 +90,12 @@ ...@@ -87,11 +90,12 @@
* *
* // unlink the current table from the linked list * // unlink the current table from the linked list
* dlist_delete(&db->tables, miter.cur); * dlist_delete(&db->tables, miter.cur);
* // as these lists never manage memory, we can freely access the table * // as these lists never manage memory, we can still access the table
* // after it's been deleted * // after it's been unlinked
* drop_table(db, tbl); * drop_table(db, tbl);
* } * }
* *
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California * Portions Copyright (c) 1994, Regents of the University of California
* *
...@@ -131,10 +135,10 @@ struct dlist_node ...@@ -131,10 +135,10 @@ struct dlist_node
typedef struct dlist_head typedef struct dlist_head
{ {
/* /*
* head->next either points to the first element of the list; to &head if * head.next either points to the first element of the list; to &head if
* it's a circular empty list; or to NULL if empty and not circular. * it's a circular empty list; or to NULL if empty and not circular.
* *
* head->prev either points to the last element of the list; to &head if * head.prev either points to the last element of the list; to &head if
* it's a circular empty list; or to NULL if empty and not circular. * it's a circular empty list; or to NULL if empty and not circular.
*/ */
dlist_node head; dlist_node head;
...@@ -149,36 +153,33 @@ typedef struct dlist_head ...@@ -149,36 +153,33 @@ typedef struct dlist_head
* *
* Iterations using this are *not* allowed to change the list while iterating! * Iterations using this are *not* allowed to change the list while iterating!
* *
* NB: We use an extra type for this to make it possible to avoid multiple * NB: We use an extra "end" field here to avoid multiple evaluations of
* evaluations of arguments in the dlist_foreach() macro. * arguments in the dlist_foreach() macro.
*/ */
typedef struct dlist_iter typedef struct dlist_iter
{ {
dlist_node *end; /* last node we iterate to */
dlist_node *cur; /* current element */ dlist_node *cur; /* current element */
dlist_node *end; /* last node we'll iterate to */
} dlist_iter; } dlist_iter;
/* /*
* Doubly linked list iterator allowing some modifications while iterating * Doubly linked list iterator allowing some modifications while iterating.
* *
* Used as state in dlist_foreach_modify(). To get the current element of the * Used as state in dlist_foreach_modify(). To get the current element of the
* iteration use the 'cur' member. * iteration use the 'cur' member.
* *
* Iterations using this are only allowed to change the list at the current * Iterations using this are only allowed to change the list at the current
* point of iteration. It is fine to delete the current node, but it is *not* * point of iteration. It is fine to delete the current node, but it is *not*
* fine to modify other nodes. * fine to insert or delete adjacent nodes.
* *
* NB: We need a separate type for mutable iterations to avoid having to pass * NB: We need a separate type for mutable iterations so that we can store
* in two iterators or some other state variable as we need to store the * the 'next' node of the current node in case it gets deleted or modified.
* '->next' node of the current node so it can be deleted or modified by the
* user.
*/ */
typedef struct dlist_mutable_iter typedef struct dlist_mutable_iter
{ {
dlist_node *end; /* last node we iterate to */
dlist_node *cur; /* current element */ dlist_node *cur; /* current element */
dlist_node *next; /* next node we iterate to, so we can delete dlist_node *next; /* next node we'll iterate to */
* cur */ dlist_node *end; /* last node we'll iterate to */
} dlist_mutable_iter; } dlist_mutable_iter;
/* /*
...@@ -196,9 +197,8 @@ struct slist_node ...@@ -196,9 +197,8 @@ struct slist_node
* Head of a singly linked list. * Head of a singly linked list.
* *
* Singly linked lists are not circularly linked, in contrast to doubly linked * Singly linked lists are not circularly linked, in contrast to doubly linked
* lists. As no pointer to the last list element and to the previous node needs * lists; we just set head.next to NULL if empty. This doesn't incur any
* to be maintained this doesn't incur any additional branches in the usual * additional branches in the usual manipulations.
* manipulations.
*/ */
typedef struct slist_head typedef struct slist_head
{ {
...@@ -206,15 +206,15 @@ typedef struct slist_head ...@@ -206,15 +206,15 @@ typedef struct slist_head
} slist_head; } slist_head;
/* /*
* Singly linked list iterator * Singly linked list iterator.
* *
* Used in slist_foreach(). To get the current element of the iteration use the * Used as state in slist_foreach(). To get the current element of the
* 'cur' member. * iteration use the 'cur' member.
* *
* Do *not* manipulate the list while iterating! * Do *not* manipulate the list while iterating!
* *
* NB: this wouldn't really need to be an extra struct, we could use a * NB: this wouldn't really need to be an extra struct, we could use a
* slist_node * directly. We still use a separate type for consistency. * slist_node * directly. We prefer a separate type for consistency.
*/ */
typedef struct slist_iter typedef struct slist_iter
{ {
...@@ -222,23 +222,28 @@ typedef struct slist_iter ...@@ -222,23 +222,28 @@ typedef struct slist_iter
} slist_iter; } slist_iter;
/* /*
* Singly linked list iterator allowing some modifications while iterating * Singly linked list iterator allowing some modifications while iterating.
* *
* Used in slist_foreach_modify. * Used as state in slist_foreach_modify().
* *
* Iterations using this are allowed to remove the current node and to add more * Iterations using this are allowed to remove the current node and to add
* nodes to the beginning of the list. * more nodes ahead of the current node.
*/ */
typedef struct slist_mutable_iter typedef struct slist_mutable_iter
{ {
slist_node *cur; slist_node *cur; /* current element */
slist_node *next; slist_node *next; /* next node we'll iterate to */
} slist_mutable_iter; } slist_mutable_iter;
/* Static initializers */
#define DLIST_STATIC_INIT(name) {{&(name).head, &(name).head}}
#define SLIST_STATIC_INIT(name) {{NULL}}
/* Prototypes for functions too big to be inline */ /* Prototypes for functions too big to be inline */
/* Attention: O(n) */ /* Caution: this is O(n) */
extern void slist_delete(slist_head *head, slist_node *node); extern void slist_delete(slist_head *head, slist_node *node);
#ifdef ILIST_DEBUG #ifdef ILIST_DEBUG
...@@ -251,14 +256,10 @@ extern void slist_check(slist_head *head); ...@@ -251,14 +256,10 @@ extern void slist_check(slist_head *head);
* in which functions the only point of passing the list head pointer is to be * in which functions the only point of passing the list head pointer is to be
* able to run these checks. * able to run these checks.
*/ */
#define dlist_check(head) (void) (head) #define dlist_check(head) ((void) (head))
#define slist_check(head) (void) (head) #define slist_check(head) ((void) (head))
#endif /* ILIST_DEBUG */ #endif /* ILIST_DEBUG */
/* Static initializers */
#define DLIST_STATIC_INIT(name) {{&name.head, &name.head}}
#define SLIST_STATIC_INIT(name) {{NULL}}
/* /*
* We want the functions below to be inline; but if the compiler doesn't * We want the functions below to be inline; but if the compiler doesn't
...@@ -291,15 +292,26 @@ extern void *dlist_head_element_off(dlist_head *head, size_t off); ...@@ -291,15 +292,26 @@ extern void *dlist_head_element_off(dlist_head *head, size_t off);
#if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS) #if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS)
/* /*
* Initialize the head of a list. Previous state will be thrown away without * Initialize a doubly linked list.
* any cleanup. * Previous state will be thrown away without any cleanup.
*/ */
STATIC_IF_INLINE void STATIC_IF_INLINE void
dlist_init(dlist_head *head) dlist_init(dlist_head *head)
{ {
head->head.next = head->head.prev = &head->head; head->head.next = head->head.prev = &head->head;
}
/*
* Is the list empty?
*
* An empty list has either its first 'next' pointer set to NULL, or to itself.
*/
STATIC_IF_INLINE bool
dlist_is_empty(dlist_head *head)
{
dlist_check(head); dlist_check(head);
return head->head.next == NULL || head->head.next == &(head->head);
} }
/* /*
...@@ -308,7 +320,7 @@ dlist_init(dlist_head *head) ...@@ -308,7 +320,7 @@ dlist_init(dlist_head *head)
STATIC_IF_INLINE void STATIC_IF_INLINE void
dlist_push_head(dlist_head *head, dlist_node *node) dlist_push_head(dlist_head *head, dlist_node *node)
{ {
if (head->head.next == NULL) if (head->head.next == NULL) /* convert NULL header to circular */
dlist_init(head); dlist_init(head);
node->next = head->head.next; node->next = head->head.next;
...@@ -320,12 +332,12 @@ dlist_push_head(dlist_head *head, dlist_node *node) ...@@ -320,12 +332,12 @@ dlist_push_head(dlist_head *head, dlist_node *node)
} }
/* /*
* Inserts a node at the end of the list. * Insert a node at the end of the list.
*/ */
STATIC_IF_INLINE void STATIC_IF_INLINE void
dlist_push_tail(dlist_head *head, dlist_node *node) dlist_push_tail(dlist_head *head, dlist_node *node)
{ {
if (head->head.next == NULL) if (head->head.next == NULL) /* convert NULL header to circular */
dlist_init(head); dlist_init(head);
node->next = &head->head; node->next = &head->head;
...@@ -387,21 +399,17 @@ dlist_delete(dlist_head *head, dlist_node *node) ...@@ -387,21 +399,17 @@ dlist_delete(dlist_head *head, dlist_node *node)
} }
/* /*
* Delete and return the first node from a list. * Remove and return the first node from a list (there must be one).
*
* Undefined behaviour when the list is empty. Check with dlist_is_empty if
* necessary.
*/ */
STATIC_IF_INLINE dlist_node * STATIC_IF_INLINE dlist_node *
dlist_pop_head_node(dlist_head *head) dlist_pop_head_node(dlist_head *head)
{ {
dlist_node *ret; dlist_node *node;
Assert(&head->head != head->head.next);
ret = head->head.next; Assert(!dlist_is_empty(head));
dlist_delete(head, head->head.next); node = head->head.next;
return ret; dlist_delete(head, node);
return node;
} }
/* /*
...@@ -424,7 +432,8 @@ dlist_move_head(dlist_head *head, dlist_node *node) ...@@ -424,7 +432,8 @@ dlist_move_head(dlist_head *head, dlist_node *node)
} }
/* /*
* Check whether the passed node is the last element in the list. * Check whether 'node' has a following node.
* Caution: unreliable if 'node' is not in the list.
*/ */
STATIC_IF_INLINE bool STATIC_IF_INLINE bool
dlist_has_next(dlist_head *head, dlist_node *node) dlist_has_next(dlist_head *head, dlist_node *node)
...@@ -433,7 +442,8 @@ dlist_has_next(dlist_head *head, dlist_node *node) ...@@ -433,7 +442,8 @@ dlist_has_next(dlist_head *head, dlist_node *node)
} }
/* /*
* Check whether the passed node is the first element in the list. * Check whether 'node' has a preceding node.
* Caution: unreliable if 'node' is not in the list.
*/ */
STATIC_IF_INLINE bool STATIC_IF_INLINE bool
dlist_has_prev(dlist_head *head, dlist_node *node) dlist_has_prev(dlist_head *head, dlist_node *node)
...@@ -442,10 +452,7 @@ dlist_has_prev(dlist_head *head, dlist_node *node) ...@@ -442,10 +452,7 @@ dlist_has_prev(dlist_head *head, dlist_node *node)
} }
/* /*
* Return the next node in the list. * Return the next node in the list (there must be one).
*
* Undefined behaviour when no next node exists. Use dlist_has_next to make
* sure.
*/ */
STATIC_IF_INLINE dlist_node * STATIC_IF_INLINE dlist_node *
dlist_next_node(dlist_head *head, dlist_node *node) dlist_next_node(dlist_head *head, dlist_node *node)
...@@ -455,10 +462,7 @@ dlist_next_node(dlist_head *head, dlist_node *node) ...@@ -455,10 +462,7 @@ dlist_next_node(dlist_head *head, dlist_node *node)
} }
/* /*
* Return previous node in the list. * Return previous node in the list (there must be one).
*
* Undefined behaviour when no prev node exists. Use dlist_has_prev to make
* sure.
*/ */
STATIC_IF_INLINE dlist_node * STATIC_IF_INLINE dlist_node *
dlist_prev_node(dlist_head *head, dlist_node *node) dlist_prev_node(dlist_head *head, dlist_node *node)
...@@ -467,20 +471,7 @@ dlist_prev_node(dlist_head *head, dlist_node *node) ...@@ -467,20 +471,7 @@ dlist_prev_node(dlist_head *head, dlist_node *node)
return node->prev; return node->prev;
} }
/* /* internal support function to get address of head element's struct */
* Return whether the list is empty.
*
* An empty list has either its first 'next' pointer set to NULL, or to itself.
*/
STATIC_IF_INLINE bool
dlist_is_empty(dlist_head *head)
{
dlist_check(head);
return head->head.next == NULL || head->head.next == &(head->head);
}
/* internal support function */
STATIC_IF_INLINE void * STATIC_IF_INLINE void *
dlist_head_element_off(dlist_head *head, size_t off) dlist_head_element_off(dlist_head *head, size_t off)
{ {
...@@ -489,9 +480,7 @@ dlist_head_element_off(dlist_head *head, size_t off) ...@@ -489,9 +480,7 @@ dlist_head_element_off(dlist_head *head, size_t off)
} }
/* /*
* Return the first node in the list. * Return the first node in the list (there must be one).
*
* Use dlist_is_empty to make sure the list is not empty if not sure.
*/ */
STATIC_IF_INLINE dlist_node * STATIC_IF_INLINE dlist_node *
dlist_head_node(dlist_head *head) dlist_head_node(dlist_head *head)
...@@ -499,7 +488,7 @@ dlist_head_node(dlist_head *head) ...@@ -499,7 +488,7 @@ dlist_head_node(dlist_head *head)
return dlist_head_element_off(head, 0); return dlist_head_element_off(head, 0);
} }
/* internal support function */ /* internal support function to get address of tail element's struct */
STATIC_IF_INLINE void * STATIC_IF_INLINE void *
dlist_tail_element_off(dlist_head *head, size_t off) dlist_tail_element_off(dlist_head *head, size_t off)
{ {
...@@ -508,9 +497,7 @@ dlist_tail_element_off(dlist_head *head, size_t off) ...@@ -508,9 +497,7 @@ dlist_tail_element_off(dlist_head *head, size_t off)
} }
/* /*
* Return the last node in the list. * Return the last node in the list (there must be one).
*
* Use dlist_is_empty to make sure the list is not empty if not sure.
*/ */
STATIC_IF_INLINE dlist_node * STATIC_IF_INLINE dlist_node *
dlist_tail_node(dlist_head *head) dlist_tail_node(dlist_head *head)
...@@ -524,83 +511,75 @@ dlist_tail_node(dlist_head *head) ...@@ -524,83 +511,75 @@ dlist_tail_node(dlist_head *head)
* pointed at by 'ptr'. * pointed at by 'ptr'.
* *
* This is used to convert a dlist_node * back to its containing struct. * This is used to convert a dlist_node * back to its containing struct.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/ */
#define dlist_container(type, membername, ptr) \ #define dlist_container(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(ptr, dlist_node *), \ (AssertVariableIsOfTypeMacro(ptr, dlist_node *), \
AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \ AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)((char *)(ptr) - offsetof(type, membername)))) ((type *) ((char *) (ptr) - offsetof(type, membername))))
/* /*
* Return the value of first element in the list. * Return the address of the first element in the list.
* *
* The list must not be empty. * The list must not be empty.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/ */
#define dlist_head_element(type, membername, ptr) \ #define dlist_head_element(type, membername, lhead) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \ (AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)dlist_head_element_off(ptr, offsetof(type, membername)))) (type *) dlist_head_element_off(lhead, offsetof(type, membername)))
/* /*
* Return the value of first element in the list. * Return the address of the last element in the list.
* *
* The list must not be empty. * The list must not be empty.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/ */
#define dlist_tail_element(type, membername, ptr) \ #define dlist_tail_element(type, membername, lhead) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \ (AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)dlist_tail_element_off(ptr, offsetof(type, membername)))) ((type *) dlist_tail_element_off(lhead, offsetof(type, membername))))
/* /*
* Iterate through the list pointed at by 'ptr' storing the state in 'iter'. * Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
* *
* Access the current element with iter.cur. * Access the current element with iter.cur.
* *
* It is *not* allowed to manipulate the list during iteration. * It is *not* allowed to manipulate the list during iteration.
*/ */
#define dlist_foreach(iter, ptr) \ #define dlist_foreach(iter, lhead) \
AssertVariableIsOfType(iter, dlist_iter); \ for (AssertVariableIsOfTypeMacro(iter, dlist_iter), \
AssertVariableIsOfType(ptr, dlist_head *); \ AssertVariableIsOfTypeMacro(lhead, dlist_head *), \
for (iter.end = &(ptr)->head, \ (iter).end = &(lhead)->head, \
iter.cur = iter.end->next ? iter.end->next : iter.end; \ (iter).cur = (iter).end->next ? (iter).end->next : (iter).end; \
iter.cur != iter.end; \ (iter).cur != (iter).end; \
iter.cur = iter.cur->next) (iter).cur = (iter).cur->next)
/* /*
* Iterate through the list pointed at by 'ptr' storing the state in 'iter'. * Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
* *
* Access the current element with iter.cur. * Access the current element with iter.cur.
* *
* It is allowed to delete the current element from the list. Every other * Iterations using this are only allowed to change the list at the current
* manipulation can lead to corruption. * point of iteration. It is fine to delete the current node, but it is *not*
* fine to insert or delete adjacent nodes.
*/ */
#define dlist_foreach_modify(iter, ptr) \ #define dlist_foreach_modify(iter, lhead) \
AssertVariableIsOfType(iter, dlist_mutable_iter); \ for (AssertVariableIsOfTypeMacro(iter, dlist_mutable_iter), \
AssertVariableIsOfType(ptr, dlist_head *); \ AssertVariableIsOfTypeMacro(lhead, dlist_head *), \
for (iter.end = &(ptr)->head, \ (iter).end = &(lhead)->head, \
iter.cur = iter.end->next ? iter.end->next : iter.end, \ (iter).cur = (iter).end->next ? (iter).end->next : (iter).end, \
iter.next = iter.cur->next; \ (iter).next = (iter).cur->next; \
iter.cur != iter.end; \ (iter).cur != (iter).end; \
iter.cur = iter.next, iter.next = iter.cur->next) (iter).cur = (iter).next, (iter).next = (iter).cur->next)
/* /*
* Iterate through the list in reverse order. * Iterate through the list in reverse order.
* *
* It is *not* allowed to manipulate the list during iteration. * It is *not* allowed to manipulate the list during iteration.
*/ */
#define dlist_reverse_foreach(iter, ptr) \ #define dlist_reverse_foreach(iter, lhead) \
AssertVariableIsOfType(iter, dlist_iter); \ for (AssertVariableIsOfTypeMacro(iter, dlist_iter), \
AssertVariableIsOfType(ptr, dlist_head *); \ AssertVariableIsOfTypeMacro(lhead, dlist_head *), \
for (iter.end = &(ptr)->head, \ (iter).end = &(lhead)->head, \
iter.cur = iter.end->prev ? iter.end->prev : iter.end; \ (iter).cur = (iter).end->prev ? (iter).end->prev : (iter).end; \
iter.cur != iter.end; \ (iter).cur != (iter).end; \
iter.cur = iter.cur->prev) (iter).cur = (iter).cur->prev)
/* /*
...@@ -611,13 +590,13 @@ dlist_tail_node(dlist_head *head) ...@@ -611,13 +590,13 @@ dlist_tail_node(dlist_head *head)
#ifndef PG_USE_INLINE #ifndef PG_USE_INLINE
extern void slist_init(slist_head *head); extern void slist_init(slist_head *head);
extern bool slist_is_empty(slist_head *head); extern bool slist_is_empty(slist_head *head);
extern slist_node *slist_head_node(slist_head *head);
extern void slist_push_head(slist_head *head, slist_node *node); extern void slist_push_head(slist_head *head, slist_node *node);
extern slist_node *slist_pop_head_node(slist_head *head);
extern void slist_insert_after(slist_head *head, extern void slist_insert_after(slist_head *head,
slist_node *after, slist_node *node); slist_node *after, slist_node *node);
extern slist_node *slist_pop_head_node(slist_head *head);
extern bool slist_has_next(slist_head *head, slist_node *node); extern bool slist_has_next(slist_head *head, slist_node *node);
extern slist_node *slist_next_node(slist_head *head, slist_node *node); extern slist_node *slist_next_node(slist_head *head, slist_node *node);
extern slist_node *slist_head_node(slist_head *head);
/* slist macro support function */ /* slist macro support function */
extern void *slist_head_element_off(slist_head *head, size_t off); extern void *slist_head_element_off(slist_head *head, size_t off);
...@@ -626,13 +605,12 @@ extern void *slist_head_element_off(slist_head *head, size_t off); ...@@ -626,13 +605,12 @@ extern void *slist_head_element_off(slist_head *head, size_t off);
#if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS) #if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS)
/* /*
* Initialize a singly linked list. * Initialize a singly linked list.
* Previous state will be thrown away without any cleanup.
*/ */
STATIC_IF_INLINE void STATIC_IF_INLINE void
slist_init(slist_head *head) slist_init(slist_head *head)
{ {
head->head.next = NULL; head->head.next = NULL;
slist_check(head);
} }
/* /*
...@@ -646,17 +624,8 @@ slist_is_empty(slist_head *head) ...@@ -646,17 +624,8 @@ slist_is_empty(slist_head *head)
return head->head.next == NULL; return head->head.next == NULL;
} }
/* internal support function */
STATIC_IF_INLINE void *
slist_head_element_off(slist_head *head, size_t off)
{
Assert(!slist_is_empty(head));
return (char *) head->head.next - off;
}
/* /*
* Push 'node' as the new first node in the list, pushing the original head to * Insert a node at the beginning of the list.
* the second position.
*/ */
STATIC_IF_INLINE void STATIC_IF_INLINE void
slist_push_head(slist_head *head, slist_node *node) slist_push_head(slist_head *head, slist_node *node)
...@@ -668,9 +637,19 @@ slist_push_head(slist_head *head, slist_node *node) ...@@ -668,9 +637,19 @@ slist_push_head(slist_head *head, slist_node *node)
} }
/* /*
* Remove and return the first node in the list * Insert a node after another *in the same list*
* */
* Undefined behaviour if the list is empty. STATIC_IF_INLINE void
slist_insert_after(slist_head *head, slist_node *after, slist_node *node)
{
node->next = after->next;
after->next = node;
slist_check(head);
}
/*
* Remove and return the first node from a list (there must be one).
*/ */
STATIC_IF_INLINE slist_node * STATIC_IF_INLINE slist_node *
slist_pop_head_node(slist_head *head) slist_pop_head_node(slist_head *head)
...@@ -678,40 +657,48 @@ slist_pop_head_node(slist_head *head) ...@@ -678,40 +657,48 @@ slist_pop_head_node(slist_head *head)
slist_node *node; slist_node *node;
Assert(!slist_is_empty(head)); Assert(!slist_is_empty(head));
node = head->head.next; node = head->head.next;
head->head.next = head->head.next->next; head->head.next = node->next;
slist_check(head); slist_check(head);
return node; return node;
} }
/* /*
* Insert a new node after another one * Check whether 'node' has a following node.
*
* Undefined behaviour if 'after' is not part of the list already.
*/ */
STATIC_IF_INLINE void STATIC_IF_INLINE bool
slist_insert_after(slist_head *head, slist_node *after, slist_has_next(slist_head *head, slist_node *node)
slist_node *node)
{ {
node->next = after->next;
after->next = node;
slist_check(head); slist_check(head);
return node->next != NULL;
} }
/* /*
* Return whether 'node' has a following node * Return the next node in the list (there must be one).
*/ */
STATIC_IF_INLINE bool STATIC_IF_INLINE slist_node *
slist_has_next(slist_head *head, slist_next_node(slist_head *head, slist_node *node)
slist_node *node)
{ {
slist_check(head); Assert(slist_has_next(head, node));
return node->next;
}
return node->next != NULL; /* internal support function to get address of head element's struct */
STATIC_IF_INLINE void *
slist_head_element_off(slist_head *head, size_t off)
{
Assert(!slist_is_empty(head));
return (char *) head->head.next - off;
}
/*
* Return the first node in the list (there must be one).
*/
STATIC_IF_INLINE slist_node *
slist_head_node(slist_head *head)
{
return slist_head_element_off(head, 0);
} }
#endif /* PG_USE_INLINE || ILIST_INCLUDE_DEFINITIONS */ #endif /* PG_USE_INLINE || ILIST_INCLUDE_DEFINITIONS */
...@@ -720,48 +707,50 @@ slist_has_next(slist_head *head, ...@@ -720,48 +707,50 @@ slist_has_next(slist_head *head,
* pointed at by 'ptr'. * pointed at by 'ptr'.
* *
* This is used to convert a slist_node * back to its containing struct. * This is used to convert a slist_node * back to its containing struct.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/ */
#define slist_container(type, membername, ptr) \ #define slist_container(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(ptr, slist_node *), \ (AssertVariableIsOfTypeMacro(ptr, slist_node *), \
AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \ AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \
((type *)((char *)(ptr) - offsetof(type, membername)))) ((type *) ((char *) (ptr) - offsetof(type, membername))))
/* /*
* Return the value of first element in the list. * Return the address of the first element in the list.
*
* The list must not be empty.
*/ */
#define slist_head_element(type, membername, ptr) \ #define slist_head_element(type, membername, lhead) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \ (AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \
slist_head_element_off(ptr, offsetoff(type, membername))) (type *) slist_head_element_off(lhead, offsetof(type, membername)))
/* /*
* Iterate through the list 'ptr' using the iterator 'iter'. * Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
*
* Access the current element with iter.cur.
* *
* It is *not* allowed to manipulate the list during iteration. * It is *not* allowed to manipulate the list during iteration.
*/ */
#define slist_foreach(iter, ptr) \ #define slist_foreach(iter, lhead) \
AssertVariableIsOfType(iter, slist_iter); \ for (AssertVariableIsOfTypeMacro(iter, slist_iter), \
AssertVariableIsOfType(ptr, slist_head *); \ AssertVariableIsOfTypeMacro(lhead, slist_head *), \
for (iter.cur = (ptr)->head.next; \ (iter).cur = (lhead)->head.next; \
iter.cur != NULL; \ (iter).cur != NULL; \
iter.cur = iter.cur->next) (iter).cur = (iter).cur->next)
/* /*
* Iterate through the list 'ptr' using the iterator 'iter' allowing some * Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
* modifications.
* *
* It is allowed to delete the current element from the list and add new nodes * Access the current element with iter.cur.
* before the current position. Other manipulations can lead to corruption. *
*/ * Iterations using this are allowed to remove the current node and to add
#define slist_foreach_modify(iter, ptr) \ * more nodes ahead of the current node.
AssertVariableIsOfType(iter, slist_mutable_iter); \ */
AssertVariableIsOfType(ptr, slist_head *); \ #define slist_foreach_modify(iter, lhead) \
for (iter.cur = (ptr)->head.next, \ for (AssertVariableIsOfTypeMacro(iter, slist_mutable_iter), \
iter.next = iter.cur ? iter.cur->next : NULL; \ AssertVariableIsOfTypeMacro(lhead, slist_head *), \
iter.cur != NULL; \ (iter).cur = (lhead)->head.next, \
iter.cur = iter.next, \ (iter).next = (iter).cur ? (iter).cur->next : NULL; \
iter.next = iter.next ? iter.next->next : NULL) (iter).cur != NULL; \
(iter).cur = (iter).next, \
(iter).next = (iter).next ? (iter).next->next : NULL)
#endif /* ILIST_H */ #endif /* ILIST_H */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment