Commit 8f8d7464 authored by Tom Lane's avatar Tom Lane

Code review for inline-list patch.

Make foreach macros less syntactically dangerous, and fix some typos in
evidently-never-tested ones.  Add missing slist_next_node and
slist_head_node functions.  Fix broken dlist_check code.  Assorted comment
improvements.
parent 2f2be747
......@@ -24,9 +24,11 @@
#include "lib/ilist.h"
/*
* removes a node from a list
* Delete 'node' from list.
*
* Attention: O(n)
* It is not allowed to delete a 'node' which is is not in the list 'head'
*
* Caution: this is O(n)
*/
void
slist_delete(slist_head *head, slist_node *node)
......@@ -47,9 +49,9 @@ slist_delete(slist_head *head, slist_node *node)
}
last = cur;
}
Assert(found);
slist_check(head);
Assert(found);
}
#ifdef ILIST_DEBUG
......@@ -61,8 +63,11 @@ dlist_check(dlist_head *head)
{
dlist_node *cur;
if (head == NULL || !(&head->head))
elog(ERROR, "doubly linked list head is not properly initialized");
if (head == NULL)
elog(ERROR, "doubly linked list head address is NULL");
if (head->head.next == NULL && head->head.prev == NULL)
return; /* OK, initialized as zeroes */
/* iterate in forward direction */
for (cur = head->head.next; cur != &head->head; cur = cur->next)
......@@ -96,10 +101,10 @@ slist_check(slist_head *head)
slist_node *cur;
if (head == NULL)
elog(ERROR, "singly linked is NULL");
elog(ERROR, "singly linked list head address is NULL");
/*
* there isn't much we can test in a singly linked list other that it
* there isn't much we can test in a singly linked list except that it
* actually ends sometime, i.e. hasn't introduced a cycle or similar
*/
for (cur = head->head.next; cur != NULL; cur = cur->next)
......
......@@ -3,34 +3,37 @@
* ilist.h
* integrated/inline doubly- and singly-linked lists
*
* This implementation is as efficient as possible: the lists don't have
* any memory management overhead, because the list pointers are embedded
* within some larger structure.
*
* These list types are useful when there are only a predetermined set of
* lists that an object could be in. List links are embedded directly into
* the objects, and thus no extra memory management overhead is required.
* (Of course, if only a small proportion of existing objects are in a list,
* the link fields in the remainder would be wasted space. But usually,
* it saves space to not have separately-allocated list nodes.)
*
* None of the functions here allocate any memory; they just manipulate
* externally managed memory. The APIs for singly and doubly linked lists
* are identical as far as capabilities of both allow.
*
* Each list has a list header, which exists even when the list is empty.
* An empty singly-linked list has a NULL pointer in its header.
* There are two kinds of empty doubly linked lists: those that have been
* initialized to NULL, and those that have been initialized to circularity.
* The second kind is useful for tight optimization, because there are some
* operations that can be done without branches (and thus faster) on lists that
* have been initialized to circularity. Most users don't care all that much,
* and so can skip the initialization step until really required.
*
* NOTES
* This is intended to be used in situations where memory for a struct and
* its contents already needs to be allocated and the overhead of
* allocating extra list cells for every list element is noticeable. Thus,
* none of the functions here allocate any memory; they just manipulate
* externally managed memory. The API for singly/doubly linked lists is
* identical as far as capabilities of both allow.
* (If a dlist is modified and then all its elements are deleted, it will be
* in the circular state.) We prefer circular dlists because there are some
* operations that can be done without branches (and thus faster) on lists
* that use circular representation. However, it is often convenient to
* initialize list headers to zeroes rather than setting them up with an
* explicit initialization function, so we also allow the other case.
*
* EXAMPLES
*
* Here's a simple example demonstrating how this can be used. Let's assume we
* want to store information about the tables contained in a database.
* Here's a simple example demonstrating how this can be used. Let's assume
* we want to store information about the tables contained in a database.
*
* #include "lib/ilist.h"
*
* // Define struct for the databases including a list header that will be used
* // to access the nodes in the list later on.
* // Define struct for the databases including a list header that will be
* // used to access the nodes in the table list later on.
* typedef struct my_database
* {
* char *datname;
......@@ -38,8 +41,8 @@
* // ...
* } my_database;
*
* // Define struct for the tables. Note the list_node element which stores
* // information about prev/next list nodes.
* // Define struct for the tables. Note the list_node element which stores
* // prev/next list links. The list_node element need not be first.
* typedef struct my_table
* {
* char *tablename;
......@@ -57,10 +60,10 @@
* dlist_push_head(&db->tables, &create_table(db, "b")->list_node);
*
*
* To iterate over the table list, we allocate an iterator element and use
* To iterate over the table list, we allocate an iterator variable and use
* a specialized looping construct. Inside a dlist_foreach, the iterator's
* 'cur' field can be used to access the current element. iter.cur points to a
* 'dlist_node', but most of the time what we want is the actual table
* 'cur' field can be used to access the current element. iter.cur points to
* a 'dlist_node', but most of the time what we want is the actual table
* information; dlist_container() gives us that, like so:
*
* dlist_iter iter;
......@@ -87,11 +90,12 @@
*
* // unlink the current table from the linked list
* dlist_delete(&db->tables, miter.cur);
* // as these lists never manage memory, we can freely access the table
* // after it's been deleted
* // as these lists never manage memory, we can still access the table
* // after it's been unlinked
* drop_table(db, tbl);
* }
*
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
......@@ -131,10 +135,10 @@ struct dlist_node
typedef struct dlist_head
{
/*
* head->next either points to the first element of the list; to &head if
* head.next either points to the first element of the list; to &head if
* it's a circular empty list; or to NULL if empty and not circular.
*
* head->prev either points to the last element of the list; to &head if
* head.prev either points to the last element of the list; to &head if
* it's a circular empty list; or to NULL if empty and not circular.
*/
dlist_node head;
......@@ -149,36 +153,33 @@ typedef struct dlist_head
*
* Iterations using this are *not* allowed to change the list while iterating!
*
* NB: We use an extra type for this to make it possible to avoid multiple
* evaluations of arguments in the dlist_foreach() macro.
* NB: We use an extra "end" field here to avoid multiple evaluations of
* arguments in the dlist_foreach() macro.
*/
typedef struct dlist_iter
{
dlist_node *end; /* last node we iterate to */
dlist_node *cur; /* current element */
dlist_node *end; /* last node we'll iterate to */
} dlist_iter;
/*
* Doubly linked list iterator allowing some modifications while iterating
* Doubly linked list iterator allowing some modifications while iterating.
*
* Used as state in dlist_foreach_modify(). To get the current element of the
* iteration use the 'cur' member.
*
* Iterations using this are only allowed to change the list at the current
* point of iteration. It is fine to delete the current node, but it is *not*
* fine to modify other nodes.
* fine to insert or delete adjacent nodes.
*
* NB: We need a separate type for mutable iterations to avoid having to pass
* in two iterators or some other state variable as we need to store the
* '->next' node of the current node so it can be deleted or modified by the
* user.
* NB: We need a separate type for mutable iterations so that we can store
* the 'next' node of the current node in case it gets deleted or modified.
*/
typedef struct dlist_mutable_iter
{
dlist_node *end; /* last node we iterate to */
dlist_node *cur; /* current element */
dlist_node *next; /* next node we iterate to, so we can delete
* cur */
dlist_node *next; /* next node we'll iterate to */
dlist_node *end; /* last node we'll iterate to */
} dlist_mutable_iter;
/*
......@@ -196,9 +197,8 @@ struct slist_node
* Head of a singly linked list.
*
* Singly linked lists are not circularly linked, in contrast to doubly linked
* lists. As no pointer to the last list element and to the previous node needs
* to be maintained this doesn't incur any additional branches in the usual
* manipulations.
* lists; we just set head.next to NULL if empty. This doesn't incur any
* additional branches in the usual manipulations.
*/
typedef struct slist_head
{
......@@ -206,15 +206,15 @@ typedef struct slist_head
} slist_head;
/*
* Singly linked list iterator
* Singly linked list iterator.
*
* Used in slist_foreach(). To get the current element of the iteration use the
* 'cur' member.
* Used as state in slist_foreach(). To get the current element of the
* iteration use the 'cur' member.
*
* Do *not* manipulate the list while iterating!
*
* NB: this wouldn't really need to be an extra struct, we could use a
* slist_node * directly. We still use a separate type for consistency.
* slist_node * directly. We prefer a separate type for consistency.
*/
typedef struct slist_iter
{
......@@ -222,23 +222,28 @@ typedef struct slist_iter
} slist_iter;
/*
* Singly linked list iterator allowing some modifications while iterating
* Singly linked list iterator allowing some modifications while iterating.
*
* Used in slist_foreach_modify.
* Used as state in slist_foreach_modify().
*
* Iterations using this are allowed to remove the current node and to add more
* nodes to the beginning of the list.
* Iterations using this are allowed to remove the current node and to add
* more nodes ahead of the current node.
*/
typedef struct slist_mutable_iter
{
slist_node *cur;
slist_node *next;
slist_node *cur; /* current element */
slist_node *next; /* next node we'll iterate to */
} slist_mutable_iter;
/* Static initializers */
#define DLIST_STATIC_INIT(name) {{&(name).head, &(name).head}}
#define SLIST_STATIC_INIT(name) {{NULL}}
/* Prototypes for functions too big to be inline */
/* Attention: O(n) */
/* Caution: this is O(n) */
extern void slist_delete(slist_head *head, slist_node *node);
#ifdef ILIST_DEBUG
......@@ -251,14 +256,10 @@ extern void slist_check(slist_head *head);
* in which functions the only point of passing the list head pointer is to be
* able to run these checks.
*/
#define dlist_check(head) (void) (head)
#define slist_check(head) (void) (head)
#define dlist_check(head) ((void) (head))
#define slist_check(head) ((void) (head))
#endif /* ILIST_DEBUG */
/* Static initializers */
#define DLIST_STATIC_INIT(name) {{&name.head, &name.head}}
#define SLIST_STATIC_INIT(name) {{NULL}}
/*
* We want the functions below to be inline; but if the compiler doesn't
......@@ -291,15 +292,26 @@ extern void *dlist_head_element_off(dlist_head *head, size_t off);
#if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS)
/*
* Initialize the head of a list. Previous state will be thrown away without
* any cleanup.
* Initialize a doubly linked list.
* Previous state will be thrown away without any cleanup.
*/
STATIC_IF_INLINE void
dlist_init(dlist_head *head)
{
head->head.next = head->head.prev = &head->head;
}
/*
* Is the list empty?
*
* An empty list has either its first 'next' pointer set to NULL, or to itself.
*/
STATIC_IF_INLINE bool
dlist_is_empty(dlist_head *head)
{
dlist_check(head);
return head->head.next == NULL || head->head.next == &(head->head);
}
/*
......@@ -308,7 +320,7 @@ dlist_init(dlist_head *head)
STATIC_IF_INLINE void
dlist_push_head(dlist_head *head, dlist_node *node)
{
if (head->head.next == NULL)
if (head->head.next == NULL) /* convert NULL header to circular */
dlist_init(head);
node->next = head->head.next;
......@@ -320,12 +332,12 @@ dlist_push_head(dlist_head *head, dlist_node *node)
}
/*
* Inserts a node at the end of the list.
* Insert a node at the end of the list.
*/
STATIC_IF_INLINE void
dlist_push_tail(dlist_head *head, dlist_node *node)
{
if (head->head.next == NULL)
if (head->head.next == NULL) /* convert NULL header to circular */
dlist_init(head);
node->next = &head->head;
......@@ -387,21 +399,17 @@ dlist_delete(dlist_head *head, dlist_node *node)
}
/*
* Delete and return the first node from a list.
*
* Undefined behaviour when the list is empty. Check with dlist_is_empty if
* necessary.
* Remove and return the first node from a list (there must be one).
*/
STATIC_IF_INLINE dlist_node *
dlist_pop_head_node(dlist_head *head)
{
dlist_node *ret;
Assert(&head->head != head->head.next);
dlist_node *node;
ret = head->head.next;
dlist_delete(head, head->head.next);
return ret;
Assert(!dlist_is_empty(head));
node = head->head.next;
dlist_delete(head, node);
return node;
}
/*
......@@ -424,7 +432,8 @@ dlist_move_head(dlist_head *head, dlist_node *node)
}
/*
* Check whether the passed node is the last element in the list.
* Check whether 'node' has a following node.
* Caution: unreliable if 'node' is not in the list.
*/
STATIC_IF_INLINE bool
dlist_has_next(dlist_head *head, dlist_node *node)
......@@ -433,7 +442,8 @@ dlist_has_next(dlist_head *head, dlist_node *node)
}
/*
* Check whether the passed node is the first element in the list.
* Check whether 'node' has a preceding node.
* Caution: unreliable if 'node' is not in the list.
*/
STATIC_IF_INLINE bool
dlist_has_prev(dlist_head *head, dlist_node *node)
......@@ -442,10 +452,7 @@ dlist_has_prev(dlist_head *head, dlist_node *node)
}
/*
* Return the next node in the list.
*
* Undefined behaviour when no next node exists. Use dlist_has_next to make
* sure.
* Return the next node in the list (there must be one).
*/
STATIC_IF_INLINE dlist_node *
dlist_next_node(dlist_head *head, dlist_node *node)
......@@ -455,10 +462,7 @@ dlist_next_node(dlist_head *head, dlist_node *node)
}
/*
* Return previous node in the list.
*
* Undefined behaviour when no prev node exists. Use dlist_has_prev to make
* sure.
* Return previous node in the list (there must be one).
*/
STATIC_IF_INLINE dlist_node *
dlist_prev_node(dlist_head *head, dlist_node *node)
......@@ -467,20 +471,7 @@ dlist_prev_node(dlist_head *head, dlist_node *node)
return node->prev;
}
/*
* Return whether the list is empty.
*
* An empty list has either its first 'next' pointer set to NULL, or to itself.
*/
STATIC_IF_INLINE bool
dlist_is_empty(dlist_head *head)
{
dlist_check(head);
return head->head.next == NULL || head->head.next == &(head->head);
}
/* internal support function */
/* internal support function to get address of head element's struct */
STATIC_IF_INLINE void *
dlist_head_element_off(dlist_head *head, size_t off)
{
......@@ -489,9 +480,7 @@ dlist_head_element_off(dlist_head *head, size_t off)
}
/*
* Return the first node in the list.
*
* Use dlist_is_empty to make sure the list is not empty if not sure.
* Return the first node in the list (there must be one).
*/
STATIC_IF_INLINE dlist_node *
dlist_head_node(dlist_head *head)
......@@ -499,7 +488,7 @@ dlist_head_node(dlist_head *head)
return dlist_head_element_off(head, 0);
}
/* internal support function */
/* internal support function to get address of tail element's struct */
STATIC_IF_INLINE void *
dlist_tail_element_off(dlist_head *head, size_t off)
{
......@@ -508,9 +497,7 @@ dlist_tail_element_off(dlist_head *head, size_t off)
}
/*
* Return the last node in the list.
*
* Use dlist_is_empty to make sure the list is not empty if not sure.
* Return the last node in the list (there must be one).
*/
STATIC_IF_INLINE dlist_node *
dlist_tail_node(dlist_head *head)
......@@ -524,83 +511,75 @@ dlist_tail_node(dlist_head *head)
* pointed at by 'ptr'.
*
* This is used to convert a dlist_node * back to its containing struct.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define dlist_container(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(ptr, dlist_node *), \
AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)((char *)(ptr) - offsetof(type, membername))))
((type *) ((char *) (ptr) - offsetof(type, membername))))
/*
* Return the value of first element in the list.
* Return the address of the first element in the list.
*
* The list must not be empty.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define dlist_head_element(type, membername, ptr) \
#define dlist_head_element(type, membername, lhead) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)dlist_head_element_off(ptr, offsetof(type, membername))))
(type *) dlist_head_element_off(lhead, offsetof(type, membername)))
/*
* Return the value of first element in the list.
* Return the address of the last element in the list.
*
* The list must not be empty.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define dlist_tail_element(type, membername, ptr) \
#define dlist_tail_element(type, membername, lhead) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \
((type *)dlist_tail_element_off(ptr, offsetof(type, membername))))
((type *) dlist_tail_element_off(lhead, offsetof(type, membername))))
/*
* Iterate through the list pointed at by 'ptr' storing the state in 'iter'.
* Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
*
* Access the current element with iter.cur.
*
* It is *not* allowed to manipulate the list during iteration.
*/
#define dlist_foreach(iter, ptr) \
AssertVariableIsOfType(iter, dlist_iter); \
AssertVariableIsOfType(ptr, dlist_head *); \
for (iter.end = &(ptr)->head, \
iter.cur = iter.end->next ? iter.end->next : iter.end; \
iter.cur != iter.end; \
iter.cur = iter.cur->next)
#define dlist_foreach(iter, lhead) \
for (AssertVariableIsOfTypeMacro(iter, dlist_iter), \
AssertVariableIsOfTypeMacro(lhead, dlist_head *), \
(iter).end = &(lhead)->head, \
(iter).cur = (iter).end->next ? (iter).end->next : (iter).end; \
(iter).cur != (iter).end; \
(iter).cur = (iter).cur->next)
/*
* Iterate through the list pointed at by 'ptr' storing the state in 'iter'.
* Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
*
* Access the current element with iter.cur.
*
* It is allowed to delete the current element from the list. Every other
* manipulation can lead to corruption.
* Iterations using this are only allowed to change the list at the current
* point of iteration. It is fine to delete the current node, but it is *not*
* fine to insert or delete adjacent nodes.
*/
#define dlist_foreach_modify(iter, ptr) \
AssertVariableIsOfType(iter, dlist_mutable_iter); \
AssertVariableIsOfType(ptr, dlist_head *); \
for (iter.end = &(ptr)->head, \
iter.cur = iter.end->next ? iter.end->next : iter.end, \
iter.next = iter.cur->next; \
iter.cur != iter.end; \
iter.cur = iter.next, iter.next = iter.cur->next)
#define dlist_foreach_modify(iter, lhead) \
for (AssertVariableIsOfTypeMacro(iter, dlist_mutable_iter), \
AssertVariableIsOfTypeMacro(lhead, dlist_head *), \
(iter).end = &(lhead)->head, \
(iter).cur = (iter).end->next ? (iter).end->next : (iter).end, \
(iter).next = (iter).cur->next; \
(iter).cur != (iter).end; \
(iter).cur = (iter).next, (iter).next = (iter).cur->next)
/*
* Iterate through the list in reverse order.
*
* It is *not* allowed to manipulate the list during iteration.
*/
#define dlist_reverse_foreach(iter, ptr) \
AssertVariableIsOfType(iter, dlist_iter); \
AssertVariableIsOfType(ptr, dlist_head *); \
for (iter.end = &(ptr)->head, \
iter.cur = iter.end->prev ? iter.end->prev : iter.end; \
iter.cur != iter.end; \
iter.cur = iter.cur->prev)
#define dlist_reverse_foreach(iter, lhead) \
for (AssertVariableIsOfTypeMacro(iter, dlist_iter), \
AssertVariableIsOfTypeMacro(lhead, dlist_head *), \
(iter).end = &(lhead)->head, \
(iter).cur = (iter).end->prev ? (iter).end->prev : (iter).end; \
(iter).cur != (iter).end; \
(iter).cur = (iter).cur->prev)
/*
......@@ -611,13 +590,13 @@ dlist_tail_node(dlist_head *head)
#ifndef PG_USE_INLINE
extern void slist_init(slist_head *head);
extern bool slist_is_empty(slist_head *head);
extern slist_node *slist_head_node(slist_head *head);
extern void slist_push_head(slist_head *head, slist_node *node);
extern slist_node *slist_pop_head_node(slist_head *head);
extern void slist_insert_after(slist_head *head,
slist_node *after, slist_node *node);
extern slist_node *slist_pop_head_node(slist_head *head);
extern bool slist_has_next(slist_head *head, slist_node *node);
extern slist_node *slist_next_node(slist_head *head, slist_node *node);
extern slist_node *slist_head_node(slist_head *head);
/* slist macro support function */
extern void *slist_head_element_off(slist_head *head, size_t off);
......@@ -626,13 +605,12 @@ extern void *slist_head_element_off(slist_head *head, size_t off);
#if defined(PG_USE_INLINE) || defined(ILIST_INCLUDE_DEFINITIONS)
/*
* Initialize a singly linked list.
* Previous state will be thrown away without any cleanup.
*/
STATIC_IF_INLINE void
slist_init(slist_head *head)
{
head->head.next = NULL;
slist_check(head);
}
/*
......@@ -646,17 +624,8 @@ slist_is_empty(slist_head *head)
return head->head.next == NULL;
}
/* internal support function */
STATIC_IF_INLINE void *
slist_head_element_off(slist_head *head, size_t off)
{
Assert(!slist_is_empty(head));
return (char *) head->head.next - off;
}
/*
* Push 'node' as the new first node in the list, pushing the original head to
* the second position.
* Insert a node at the beginning of the list.
*/
STATIC_IF_INLINE void
slist_push_head(slist_head *head, slist_node *node)
......@@ -668,9 +637,19 @@ slist_push_head(slist_head *head, slist_node *node)
}
/*
* Remove and return the first node in the list
*
* Undefined behaviour if the list is empty.
* Insert a node after another *in the same list*
*/
STATIC_IF_INLINE void
slist_insert_after(slist_head *head, slist_node *after, slist_node *node)
{
node->next = after->next;
after->next = node;
slist_check(head);
}
/*
* Remove and return the first node from a list (there must be one).
*/
STATIC_IF_INLINE slist_node *
slist_pop_head_node(slist_head *head)
......@@ -678,40 +657,48 @@ slist_pop_head_node(slist_head *head)
slist_node *node;
Assert(!slist_is_empty(head));
node = head->head.next;
head->head.next = head->head.next->next;
head->head.next = node->next;
slist_check(head);
return node;
}
/*
* Insert a new node after another one
*
* Undefined behaviour if 'after' is not part of the list already.
* Check whether 'node' has a following node.
*/
STATIC_IF_INLINE void
slist_insert_after(slist_head *head, slist_node *after,
slist_node *node)
STATIC_IF_INLINE bool
slist_has_next(slist_head *head, slist_node *node)
{
node->next = after->next;
after->next = node;
slist_check(head);
return node->next != NULL;
}
/*
* Return whether 'node' has a following node
* Return the next node in the list (there must be one).
*/
STATIC_IF_INLINE bool
slist_has_next(slist_head *head,
slist_node *node)
STATIC_IF_INLINE slist_node *
slist_next_node(slist_head *head, slist_node *node)
{
slist_check(head);
Assert(slist_has_next(head, node));
return node->next;
}
return node->next != NULL;
/* internal support function to get address of head element's struct */
STATIC_IF_INLINE void *
slist_head_element_off(slist_head *head, size_t off)
{
Assert(!slist_is_empty(head));
return (char *) head->head.next - off;
}
/*
* Return the first node in the list (there must be one).
*/
STATIC_IF_INLINE slist_node *
slist_head_node(slist_head *head)
{
return slist_head_element_off(head, 0);
}
#endif /* PG_USE_INLINE || ILIST_INCLUDE_DEFINITIONS */
......@@ -720,48 +707,50 @@ slist_has_next(slist_head *head,
* pointed at by 'ptr'.
*
* This is used to convert a slist_node * back to its containing struct.
*
* Note that AssertVariableIsOfTypeMacro is a compile-time only check, so we
* don't have multiple evaluation dangers here.
*/
#define slist_container(type, membername, ptr) \
(AssertVariableIsOfTypeMacro(ptr, slist_node *), \
AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \
((type *)((char *)(ptr) - offsetof(type, membername))))
((type *) ((char *) (ptr) - offsetof(type, membername))))
/*
* Return the value of first element in the list.
* Return the address of the first element in the list.
*
* The list must not be empty.
*/
#define slist_head_element(type, membername, ptr) \
#define slist_head_element(type, membername, lhead) \
(AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \
slist_head_element_off(ptr, offsetoff(type, membername)))
(type *) slist_head_element_off(lhead, offsetof(type, membername)))
/*
* Iterate through the list 'ptr' using the iterator 'iter'.
* Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
*
* Access the current element with iter.cur.
*
* It is *not* allowed to manipulate the list during iteration.
*/
#define slist_foreach(iter, ptr) \
AssertVariableIsOfType(iter, slist_iter); \
AssertVariableIsOfType(ptr, slist_head *); \
for (iter.cur = (ptr)->head.next; \
iter.cur != NULL; \
iter.cur = iter.cur->next)
#define slist_foreach(iter, lhead) \
for (AssertVariableIsOfTypeMacro(iter, slist_iter), \
AssertVariableIsOfTypeMacro(lhead, slist_head *), \
(iter).cur = (lhead)->head.next; \
(iter).cur != NULL; \
(iter).cur = (iter).cur->next)
/*
* Iterate through the list 'ptr' using the iterator 'iter' allowing some
* modifications.
* Iterate through the list pointed at by 'lhead' storing the state in 'iter'.
*
* It is allowed to delete the current element from the list and add new nodes
* before the current position. Other manipulations can lead to corruption.
*/
#define slist_foreach_modify(iter, ptr) \
AssertVariableIsOfType(iter, slist_mutable_iter); \
AssertVariableIsOfType(ptr, slist_head *); \
for (iter.cur = (ptr)->head.next, \
iter.next = iter.cur ? iter.cur->next : NULL; \
iter.cur != NULL; \
iter.cur = iter.next, \
iter.next = iter.next ? iter.next->next : NULL)
* Access the current element with iter.cur.
*
* Iterations using this are allowed to remove the current node and to add
* more nodes ahead of the current node.
*/
#define slist_foreach_modify(iter, lhead) \
for (AssertVariableIsOfTypeMacro(iter, slist_mutable_iter), \
AssertVariableIsOfTypeMacro(lhead, slist_head *), \
(iter).cur = (lhead)->head.next, \
(iter).next = (iter).cur ? (iter).cur->next : NULL; \
(iter).cur != NULL; \
(iter).cur = (iter).next, \
(iter).next = (iter).next ? (iter).next->next : NULL)
#endif /* ILIST_H */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment