Commit 77e29068 authored by Tom Lane's avatar Tom Lane

Create an SP-GiST opclass for inet/cidr.

This seems to offer significantly better search performance than the
existing GiST opclass for inet/cidr, at least on data with a wide mix
of network mask lengths.  (That may suggest that the data splitting
heuristics in the GiST opclass could be improved.)

Emre Hasegeli, with mostly-cosmetic adjustments by me

Discussion: <CAE2gYzxtth9qatW_OAqdOjykS0bxq7AYHLuyAQLPgT7H9ZU0Cw@mail.gmail.com>
parent 0fda682e
...@@ -145,6 +145,23 @@ ...@@ -145,6 +145,23 @@
<literal>~&gt;~</> <literal>~&gt;~</>
</entry> </entry>
</row> </row>
<row>
<entry><literal>inet_ops</></entry>
<entry><type>inet</>, <type>cidr</></entry>
<entry>
<literal>&amp;&amp;</>
<literal>&gt;&gt;</>
<literal>&gt;&gt;=</>
<literal>&gt;</>
<literal>&gt;=</>
<literal>&lt;&gt;</>
<literal>&lt;&lt;</>
<literal>&lt;&lt;=</>
<literal>&lt;</>
<literal>&lt;=</>
<literal>=</>
</entry>
</row>
</tbody> </tbody>
</tgroup> </tgroup>
</table> </table>
......
...@@ -17,7 +17,7 @@ OBJS = acl.o amutils.o arrayfuncs.o array_expanded.o array_selfuncs.o \ ...@@ -17,7 +17,7 @@ OBJS = acl.o amutils.o arrayfuncs.o array_expanded.o array_selfuncs.o \
geo_ops.o geo_selfuncs.o geo_spgist.o inet_cidr_ntop.o inet_net_pton.o \ geo_ops.o geo_selfuncs.o geo_spgist.o inet_cidr_ntop.o inet_net_pton.o \
int.o int8.o json.o jsonb.o jsonb_gin.o jsonb_op.o jsonb_util.o \ int.o int8.o json.o jsonb.o jsonb_gin.o jsonb_op.o jsonb_util.o \
jsonfuncs.o like.o lockfuncs.o mac.o misc.o nabstime.o name.o \ jsonfuncs.o like.o lockfuncs.o mac.o misc.o nabstime.o name.o \
network.o network_gist.o network_selfuncs.o \ network.o network_gist.o network_selfuncs.o network_spgist.o \
numeric.o numutils.o oid.o oracle_compat.o \ numeric.o numutils.o oid.o oracle_compat.o \
orderedsetaggs.o pg_locale.o pg_lsn.o pg_upgrade_support.o \ orderedsetaggs.o pg_locale.o pg_lsn.o pg_upgrade_support.o \
pgstatfuncs.o \ pgstatfuncs.o \
......
/*-------------------------------------------------------------------------
*
* network_spgist.c
* SP-GiST support for network types.
*
* We split inet index entries first by address family (IPv4 or IPv6).
* If the entries below a given inner tuple are all of the same family,
* we identify their common prefix and split by the next bit of the address,
* and by whether their masklens exceed the length of the common prefix.
*
* An inner tuple that has both IPv4 and IPv6 children has a null prefix
* and exactly two nodes, the first being for IPv4 and the second for IPv6.
*
* Otherwise, the prefix is a CIDR value representing the common prefix,
* and there are exactly four nodes. Node numbers 0 and 1 are for addresses
* with the same masklen as the prefix, while node numbers 2 and 3 are for
* addresses with larger masklen. (We do not allow a tuple to contain
* entries with masklen smaller than its prefix's.) Node numbers 0 and 1
* are distinguished by the next bit of the address after the common prefix,
* and likewise for node numbers 2 and 3. If there are no more bits in
* the address family, everything goes into node 0 (which will probably
* lead to creating an allTheSame tuple).
*
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/utils/adt/network_spgist.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/spgist.h"
#include "catalog/pg_type.h"
#include "utils/inet.h"
static int inet_spg_node_number(const inet *val, int commonbits);
static int inet_spg_consistent_bitmap(const inet *prefix, int nkeys,
ScanKey scankeys, bool leaf);
/*
* The SP-GiST configuration function
*/
Datum
inet_spg_config(PG_FUNCTION_ARGS)
{
/* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */
spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
cfg->prefixType = CIDROID;
cfg->labelType = VOIDOID;
cfg->canReturnData = true;
cfg->longValuesOK = false;
PG_RETURN_VOID();
}
/*
* The SP-GiST choose function
*/
Datum
inet_spg_choose(PG_FUNCTION_ARGS)
{
spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
inet *val = DatumGetInetPP(in->datum),
*prefix;
int commonbits;
/*
* If we're looking at a tuple that splits by address family, choose the
* appropriate subnode.
*/
if (!in->hasPrefix)
{
/* allTheSame isn't possible for such a tuple */
Assert(!in->allTheSame);
Assert(in->nNodes == 2);
out->resultType = spgMatchNode;
out->result.matchNode.nodeN = (ip_family(val) == PGSQL_AF_INET) ? 0 : 1;
out->result.matchNode.restDatum = InetPGetDatum(val);
PG_RETURN_VOID();
}
/* Else it must split by prefix */
Assert(in->nNodes == 4 || in->allTheSame);
prefix = DatumGetInetPP(in->prefixDatum);
commonbits = ip_bits(prefix);
/*
* We cannot put addresses from different families under the same inner
* node, so we have to split if the new value's family is different.
*/
if (ip_family(val) != ip_family(prefix))
{
/* Set up 2-node tuple */
out->resultType = spgSplitTuple;
out->result.splitTuple.prefixHasPrefix = false;
out->result.splitTuple.prefixNNodes = 2;
out->result.splitTuple.prefixNodeLabels = NULL;
/* Identify which node the existing data goes into */
out->result.splitTuple.childNodeN =
(ip_family(prefix) == PGSQL_AF_INET) ? 0 : 1;
out->result.splitTuple.postfixHasPrefix = true;
out->result.splitTuple.postfixPrefixDatum = InetPGetDatum(prefix);
PG_RETURN_VOID();
}
/*
* If the new value does not match the existing prefix, we have to split.
*/
if (ip_bits(val) < commonbits ||
bitncmp(ip_addr(prefix), ip_addr(val), commonbits) != 0)
{
/* Determine new prefix length for the split tuple */
commonbits = bitncommon(ip_addr(prefix), ip_addr(val),
Min(ip_bits(val), commonbits));
/* Set up 4-node tuple */
out->resultType = spgSplitTuple;
out->result.splitTuple.prefixHasPrefix = true;
out->result.splitTuple.prefixPrefixDatum =
InetPGetDatum(cidr_set_masklen_internal(val, commonbits));
out->result.splitTuple.prefixNNodes = 4;
out->result.splitTuple.prefixNodeLabels = NULL;
/* Identify which node the existing data goes into */
out->result.splitTuple.childNodeN =
inet_spg_node_number(prefix, commonbits);
out->result.splitTuple.postfixHasPrefix = true;
out->result.splitTuple.postfixPrefixDatum = InetPGetDatum(prefix);
PG_RETURN_VOID();
}
/*
* All OK, choose the node to descend into. (If this tuple is marked
* allTheSame, the core code will ignore our choice of nodeN; but we need
* not account for that case explicitly here.)
*/
out->resultType = spgMatchNode;
out->result.matchNode.nodeN = inet_spg_node_number(val, commonbits);
out->result.matchNode.restDatum = InetPGetDatum(val);
PG_RETURN_VOID();
}
/*
* The GiST PickSplit method
*/
Datum
inet_spg_picksplit(PG_FUNCTION_ARGS)
{
spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
inet *prefix,
*tmp;
int i,
commonbits;
bool differentFamilies = false;
/* Initialize the prefix with the first item */
prefix = DatumGetInetPP(in->datums[0]);
commonbits = ip_bits(prefix);
/* Examine remaining items to discover minimum common prefix length */
for (i = 1; i < in->nTuples; i++)
{
tmp = DatumGetInetPP(in->datums[i]);
if (ip_family(tmp) != ip_family(prefix))
{
differentFamilies = true;
break;
}
if (ip_bits(tmp) < commonbits)
commonbits = ip_bits(tmp);
commonbits = bitncommon(ip_addr(prefix), ip_addr(tmp), commonbits);
if (commonbits == 0)
break;
}
/* Don't need labels; allocate output arrays */
out->nodeLabels = NULL;
out->mapTuplesToNodes = (int *) palloc(sizeof(int) * in->nTuples);
out->leafTupleDatums = (Datum *) palloc(sizeof(Datum) * in->nTuples);
if (differentFamilies)
{
/* Set up 2-node tuple */
out->hasPrefix = false;
out->nNodes = 2;
for (i = 0; i < in->nTuples; i++)
{
tmp = DatumGetInetPP(in->datums[i]);
out->mapTuplesToNodes[i] =
(ip_family(tmp) == PGSQL_AF_INET) ? 0 : 1;
out->leafTupleDatums[i] = InetPGetDatum(tmp);
}
}
else
{
/* Set up 4-node tuple */
out->hasPrefix = true;
out->prefixDatum =
InetPGetDatum(cidr_set_masklen_internal(prefix, commonbits));
out->nNodes = 4;
for (i = 0; i < in->nTuples; i++)
{
tmp = DatumGetInetPP(in->datums[i]);
out->mapTuplesToNodes[i] = inet_spg_node_number(tmp, commonbits);
out->leafTupleDatums[i] = InetPGetDatum(tmp);
}
}
PG_RETURN_VOID();
}
/*
* The SP-GiST query consistency check for inner tuples
*/
Datum
inet_spg_inner_consistent(PG_FUNCTION_ARGS)
{
spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
int i;
int which;
if (!in->hasPrefix)
{
Assert(!in->allTheSame);
Assert(in->nNodes == 2);
/* Identify which child nodes need to be visited */
which = 1 | (1 << 1);
for (i = 0; i < in->nkeys; i++)
{
StrategyNumber strategy = in->scankeys[i].sk_strategy;
inet *argument = DatumGetInetPP(in->scankeys[i].sk_argument);
switch (strategy)
{
case RTLessStrategyNumber:
case RTLessEqualStrategyNumber:
if (ip_family(argument) == PGSQL_AF_INET)
which &= 1;
break;
case RTGreaterEqualStrategyNumber:
case RTGreaterStrategyNumber:
if (ip_family(argument) == PGSQL_AF_INET6)
which &= (1 << 1);
break;
case RTNotEqualStrategyNumber:
break;
default:
/* all other ops can only match addrs of same family */
if (ip_family(argument) == PGSQL_AF_INET)
which &= 1;
else
which &= (1 << 1);
break;
}
}
}
else if (!in->allTheSame)
{
Assert(in->nNodes == 4);
/* Identify which child nodes need to be visited */
which = inet_spg_consistent_bitmap(DatumGetInetPP(in->prefixDatum),
in->nkeys, in->scankeys, false);
}
else
{
/* Must visit all nodes; we assume there are less than 32 of 'em */
which = ~0;
}
out->nNodes = 0;
if (which)
{
out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
for (i = 0; i < in->nNodes; i++)
{
if (which & (1 << i))
{
out->nodeNumbers[out->nNodes] = i;
out->nNodes++;
}
}
}
PG_RETURN_VOID();
}
/*
* The SP-GiST query consistency check for leaf tuples
*/
Datum
inet_spg_leaf_consistent(PG_FUNCTION_ARGS)
{
spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0);
spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1);
inet *leaf = DatumGetInetPP(in->leafDatum);
/* All tests are exact. */
out->recheck = false;
/* Leaf is what it is... */
out->leafValue = InetPGetDatum(leaf);
/* Use common code to apply the tests. */
PG_RETURN_BOOL(inet_spg_consistent_bitmap(leaf, in->nkeys, in->scankeys,
true));
}
/*
* Calculate node number (within a 4-node, single-family inner index tuple)
*
* The value must have the same family as the node's prefix, and
* commonbits is the mask length of the prefix. We use even or odd
* nodes according to the next address bit after the commonbits,
* and low or high nodes according to whether the value's mask length
* is larger than commonbits.
*/
static int
inet_spg_node_number(const inet *val, int commonbits)
{
int nodeN = 0;
if (commonbits < ip_maxbits(val) &&
ip_addr(val)[commonbits / 8] & (1 << (7 - commonbits % 8)))
nodeN |= 1;
if (commonbits < ip_bits(val))
nodeN |= 2;
return nodeN;
}
/*
* Calculate bitmap of node numbers that are consistent with the query
*
* This can be used either at a 4-way inner tuple, or at a leaf tuple.
* In the latter case, we should return a boolean result (0 or 1)
* not a bitmap.
*
* This definition is pretty odd, but the inner and leaf consistency checks
* are mostly common and it seems best to keep them in one function.
*/
static int
inet_spg_consistent_bitmap(const inet *prefix, int nkeys, ScanKey scankeys,
bool leaf)
{
int bitmap;
int commonbits,
i;
/* Initialize result to allow visiting all children */
if (leaf)
bitmap = 1;
else
bitmap = 1 | (1 << 1) | (1 << 2) | (1 << 3);
commonbits = ip_bits(prefix);
for (i = 0; i < nkeys; i++)
{
inet *argument = DatumGetInetPP(scankeys[i].sk_argument);
StrategyNumber strategy = scankeys[i].sk_strategy;
int order;
/*
* Check 0: different families
*
* Matching families do not help any of the strategies.
*/
if (ip_family(argument) != ip_family(prefix))
{
switch (strategy)
{
case RTLessStrategyNumber:
case RTLessEqualStrategyNumber:
if (ip_family(argument) < ip_family(prefix))
bitmap = 0;
break;
case RTGreaterEqualStrategyNumber:
case RTGreaterStrategyNumber:
if (ip_family(argument) > ip_family(prefix))
bitmap = 0;
break;
case RTNotEqualStrategyNumber:
break;
default:
/* For all other cases, we can be sure there is no match */
bitmap = 0;
break;
}
if (!bitmap)
break;
/* Other checks make no sense with different families. */
continue;
}
/*
* Check 1: network bit count
*
* Network bit count (ip_bits) helps to check leaves for sub network
* and sup network operators. At non-leaf nodes, we know every child
* value has greater ip_bits, so we can avoid descending in some cases
* too.
*
* This check is less expensive than checking the address bits, so we
* are doing this before, but it has to be done after for the basic
* comparison strategies, because ip_bits only affect their results
* when the common network bits are the same.
*/
switch (strategy)
{
case RTSubStrategyNumber:
if (commonbits <= ip_bits(argument))
bitmap &= (1 << 2) | (1 << 3);
break;
case RTSubEqualStrategyNumber:
if (commonbits < ip_bits(argument))
bitmap &= (1 << 2) | (1 << 3);
break;
case RTSuperStrategyNumber:
if (commonbits == ip_bits(argument) - 1)
bitmap &= 1 | (1 << 1);
else if (commonbits >= ip_bits(argument))
bitmap = 0;
break;
case RTSuperEqualStrategyNumber:
if (commonbits == ip_bits(argument))
bitmap &= 1 | (1 << 1);
else if (commonbits > ip_bits(argument))
bitmap = 0;
break;
case RTEqualStrategyNumber:
if (commonbits < ip_bits(argument))
bitmap &= (1 << 2) | (1 << 3);
else if (commonbits == ip_bits(argument))
bitmap &= 1 | (1 << 1);
else
bitmap = 0;
break;
}
if (!bitmap)
break;
/*
* Check 2: common network bits
*
* Compare available common prefix bits to the query, but not beyond
* either the query's netmask or the minimum netmask among the
* represented values. If these bits don't match the query, we can
* eliminate some cases.
*/
order = bitncmp(ip_addr(prefix), ip_addr(argument),
Min(commonbits, ip_bits(argument)));
if (order != 0)
{
switch (strategy)
{
case RTLessStrategyNumber:
case RTLessEqualStrategyNumber:
if (order > 0)
bitmap = 0;
break;
case RTGreaterEqualStrategyNumber:
case RTGreaterStrategyNumber:
if (order < 0)
bitmap = 0;
break;
case RTNotEqualStrategyNumber:
break;
default:
/* For all other cases, we can be sure there is no match */
bitmap = 0;
break;
}
if (!bitmap)
break;
/*
* Remaining checks make no sense when common bits don't match.
*/
continue;
}
/*
* Check 3: next network bit
*
* We can filter out branch 2 or 3 using the next network bit of the
* argument, if it is available.
*
* This check matters for the performance of the search. The results
* would be correct without it.
*/
if (bitmap & ((1 << 2) | (1 << 3)) &&
commonbits < ip_bits(argument))
{
int nextbit;
nextbit = ip_addr(argument)[commonbits / 8] &
(1 << (7 - commonbits % 8));
switch (strategy)
{
case RTLessStrategyNumber:
case RTLessEqualStrategyNumber:
if (!nextbit)
bitmap &= 1 | (1 << 1) | (1 << 2);
break;
case RTGreaterEqualStrategyNumber:
case RTGreaterStrategyNumber:
if (nextbit)
bitmap &= 1 | (1 << 1) | (1 << 3);
break;
case RTNotEqualStrategyNumber:
break;
default:
if (!nextbit)
bitmap &= 1 | (1 << 1) | (1 << 2);
else
bitmap &= 1 | (1 << 1) | (1 << 3);
break;
}
if (!bitmap)
break;
}
/*
* Remaining checks are only for the basic comparison strategies. This
* test relies on the strategy number ordering defined in stratnum.h.
*/
if (strategy < RTEqualStrategyNumber ||
strategy > RTGreaterEqualStrategyNumber)
continue;
/*
* Check 4: network bit count
*
* At this point, we know that the common network bits of the prefix
* and the argument are the same, so we can go forward and check the
* ip_bits.
*/
switch (strategy)
{
case RTLessStrategyNumber:
case RTLessEqualStrategyNumber:
if (commonbits == ip_bits(argument))
bitmap &= 1 | (1 << 1);
else if (commonbits > ip_bits(argument))
bitmap = 0;
break;
case RTGreaterEqualStrategyNumber:
case RTGreaterStrategyNumber:
if (commonbits < ip_bits(argument))
bitmap &= (1 << 2) | (1 << 3);
break;
}
if (!bitmap)
break;
/* Remaining checks don't make sense with different ip_bits. */
if (commonbits != ip_bits(argument))
continue;
/*
* Check 5: next host bit
*
* We can filter out branch 0 or 1 using the next host bit of the
* argument, if it is available.
*
* This check matters for the performance of the search. The results
* would be correct without it. There is no point in running it for
* leafs as we have to check the whole address on the next step.
*/
if (!leaf && bitmap & (1 | (1 << 1)) &&
commonbits < ip_maxbits(argument))
{
int nextbit;
nextbit = ip_addr(argument)[commonbits / 8] &
(1 << (7 - commonbits % 8));
switch (strategy)
{
case RTLessStrategyNumber:
case RTLessEqualStrategyNumber:
if (!nextbit)
bitmap &= 1 | (1 << 2) | (1 << 3);
break;
case RTGreaterEqualStrategyNumber:
case RTGreaterStrategyNumber:
if (nextbit)
bitmap &= (1 << 1) | (1 << 2) | (1 << 3);
break;
case RTNotEqualStrategyNumber:
break;
default:
if (!nextbit)
bitmap &= 1 | (1 << 2) | (1 << 3);
else
bitmap &= (1 << 1) | (1 << 2) | (1 << 3);
break;
}
if (!bitmap)
break;
}
/*
* Check 6: whole address
*
* This is the last check for correctness of the basic comparison
* strategies. It's only appropriate at leaf entries.
*/
if (leaf)
{
/* Redo ordering comparison using all address bits */
order = bitncmp(ip_addr(prefix), ip_addr(argument),
ip_maxbits(prefix));
switch (strategy)
{
case RTLessStrategyNumber:
if (order >= 0)
bitmap = 0;
break;
case RTLessEqualStrategyNumber:
if (order > 0)
bitmap = 0;
break;
case RTEqualStrategyNumber:
if (order != 0)
bitmap = 0;
break;
case RTGreaterEqualStrategyNumber:
if (order < 0)
bitmap = 0;
break;
case RTGreaterStrategyNumber:
if (order <= 0)
bitmap = 0;
break;
case RTNotEqualStrategyNumber:
if (order == 0)
bitmap = 0;
break;
}
if (!bitmap)
break;
}
}
return bitmap;
}
...@@ -53,6 +53,6 @@ ...@@ -53,6 +53,6 @@
*/ */
/* yyyymmddN */ /* yyyymmddN */
#define CATALOG_VERSION_NO 201608191 #define CATALOG_VERSION_NO 201608231
#endif #endif
...@@ -863,6 +863,21 @@ DATA(insert ( 3550 869 869 25 s 932 783 0 )); ...@@ -863,6 +863,21 @@ DATA(insert ( 3550 869 869 25 s 932 783 0 ));
DATA(insert ( 3550 869 869 26 s 933 783 0 )); DATA(insert ( 3550 869 869 26 s 933 783 0 ));
DATA(insert ( 3550 869 869 27 s 934 783 0 )); DATA(insert ( 3550 869 869 27 s 934 783 0 ));
/*
* SP-GiST inet_ops
*/
DATA(insert ( 3794 869 869 3 s 3552 4000 0 ));
DATA(insert ( 3794 869 869 18 s 1201 4000 0 ));
DATA(insert ( 3794 869 869 19 s 1202 4000 0 ));
DATA(insert ( 3794 869 869 20 s 1203 4000 0 ));
DATA(insert ( 3794 869 869 21 s 1204 4000 0 ));
DATA(insert ( 3794 869 869 22 s 1205 4000 0 ));
DATA(insert ( 3794 869 869 23 s 1206 4000 0 ));
DATA(insert ( 3794 869 869 24 s 931 4000 0 ));
DATA(insert ( 3794 869 869 25 s 932 4000 0 ));
DATA(insert ( 3794 869 869 26 s 933 4000 0 ));
DATA(insert ( 3794 869 869 27 s 934 4000 0 ));
/* BRIN opclasses */ /* BRIN opclasses */
/* minmax bytea */ /* minmax bytea */
DATA(insert ( 4064 17 17 1 s 1957 3580 0 )); DATA(insert ( 4064 17 17 1 s 1957 3580 0 ));
......
...@@ -428,6 +428,11 @@ DATA(insert ( 3474 3831 3831 2 3470 )); ...@@ -428,6 +428,11 @@ DATA(insert ( 3474 3831 3831 2 3470 ));
DATA(insert ( 3474 3831 3831 3 3471 )); DATA(insert ( 3474 3831 3831 3 3471 ));
DATA(insert ( 3474 3831 3831 4 3472 )); DATA(insert ( 3474 3831 3831 4 3472 ));
DATA(insert ( 3474 3831 3831 5 3473 )); DATA(insert ( 3474 3831 3831 5 3473 ));
DATA(insert ( 3794 869 869 1 3795 ));
DATA(insert ( 3794 869 869 2 3796 ));
DATA(insert ( 3794 869 869 3 3797 ));
DATA(insert ( 3794 869 869 4 3798 ));
DATA(insert ( 3794 869 869 5 3799 ));
DATA(insert ( 4015 600 600 1 4018 )); DATA(insert ( 4015 600 600 1 4018 ));
DATA(insert ( 4015 600 600 2 4019 )); DATA(insert ( 4015 600 600 2 4019 ));
DATA(insert ( 4015 600 600 3 4020 )); DATA(insert ( 4015 600 600 3 4020 ));
......
...@@ -113,6 +113,7 @@ DATA(insert ( 405 float8_ops PGNSP PGUID 1971 701 t 0 )); ...@@ -113,6 +113,7 @@ DATA(insert ( 405 float8_ops PGNSP PGUID 1971 701 t 0 ));
DATA(insert ( 403 inet_ops PGNSP PGUID 1974 869 t 0 )); DATA(insert ( 403 inet_ops PGNSP PGUID 1974 869 t 0 ));
DATA(insert ( 405 inet_ops PGNSP PGUID 1975 869 t 0 )); DATA(insert ( 405 inet_ops PGNSP PGUID 1975 869 t 0 ));
DATA(insert ( 783 inet_ops PGNSP PGUID 3550 869 f 0 )); DATA(insert ( 783 inet_ops PGNSP PGUID 3550 869 f 0 ));
DATA(insert ( 4000 inet_ops PGNSP PGUID 3794 869 t 0 ));
DATA(insert OID = 1979 ( 403 int2_ops PGNSP PGUID 1976 21 t 0 )); DATA(insert OID = 1979 ( 403 int2_ops PGNSP PGUID 1976 21 t 0 ));
#define INT2_BTREE_OPS_OID 1979 #define INT2_BTREE_OPS_OID 1979
DATA(insert ( 405 int2_ops PGNSP PGUID 1977 21 t 0 )); DATA(insert ( 405 int2_ops PGNSP PGUID 1977 21 t 0 ));
......
...@@ -79,6 +79,7 @@ DATA(insert OID = 1974 ( 403 network_ops PGNSP PGUID )); ...@@ -79,6 +79,7 @@ DATA(insert OID = 1974 ( 403 network_ops PGNSP PGUID ));
#define NETWORK_BTREE_FAM_OID 1974 #define NETWORK_BTREE_FAM_OID 1974
DATA(insert OID = 1975 ( 405 network_ops PGNSP PGUID )); DATA(insert OID = 1975 ( 405 network_ops PGNSP PGUID ));
DATA(insert OID = 3550 ( 783 network_ops PGNSP PGUID )); DATA(insert OID = 3550 ( 783 network_ops PGNSP PGUID ));
DATA(insert OID = 3794 ( 4000 network_ops PGNSP PGUID ));
DATA(insert OID = 1976 ( 403 integer_ops PGNSP PGUID )); DATA(insert OID = 1976 ( 403 integer_ops PGNSP PGUID ));
#define INTEGER_BTREE_FAM_OID 1976 #define INTEGER_BTREE_FAM_OID 1976
DATA(insert OID = 1977 ( 405 integer_ops PGNSP PGUID )); DATA(insert OID = 1977 ( 405 integer_ops PGNSP PGUID ));
......
...@@ -2212,6 +2212,18 @@ DESCR("GiST support"); ...@@ -2212,6 +2212,18 @@ DESCR("GiST support");
DATA(insert OID = 3559 ( inet_gist_same PGNSP PGUID 12 1 0 0 0 f f f f t f i s 3 0 2281 "869 869 2281" _null_ _null_ _null_ _null_ _null_ inet_gist_same _null_ _null_ _null_ )); DATA(insert OID = 3559 ( inet_gist_same PGNSP PGUID 12 1 0 0 0 f f f f t f i s 3 0 2281 "869 869 2281" _null_ _null_ _null_ _null_ _null_ inet_gist_same _null_ _null_ _null_ ));
DESCR("GiST support"); DESCR("GiST support");
/* SP-GiST support for inet and cidr */
DATA(insert OID = 3795 ( inet_spg_config PGNSP PGUID 12 1 0 0 0 f f f f t f i s 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ _null_ inet_spg_config _null_ _null_ _null_ ));
DESCR("SP-GiST support");
DATA(insert OID = 3796 ( inet_spg_choose PGNSP PGUID 12 1 0 0 0 f f f f t f i s 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ _null_ inet_spg_choose _null_ _null_ _null_ ));
DESCR("SP-GiST support");
DATA(insert OID = 3797 ( inet_spg_picksplit PGNSP PGUID 12 1 0 0 0 f f f f t f i s 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ _null_ inet_spg_picksplit _null_ _null_ _null_ ));
DESCR("SP-GiST support");
DATA(insert OID = 3798 ( inet_spg_inner_consistent PGNSP PGUID 12 1 0 0 0 f f f f t f i s 2 0 2278 "2281 2281" _null_ _null_ _null_ _null_ _null_ inet_spg_inner_consistent _null_ _null_ _null_ ));
DESCR("SP-GiST support");
DATA(insert OID = 3799 ( inet_spg_leaf_consistent PGNSP PGUID 12 1 0 0 0 f f f f t f i s 2 0 16 "2281 2281" _null_ _null_ _null_ _null_ _null_ inet_spg_leaf_consistent _null_ _null_ _null_ ));
DESCR("SP-GiST support");
/* Selectivity estimation for inet and cidr */ /* Selectivity estimation for inet and cidr */
DATA(insert OID = 3560 ( networksel PGNSP PGUID 12 1 0 0 0 f f f f t f s s 4 0 701 "2281 26 2281 23" _null_ _null_ _null_ _null_ _null_ networksel _null_ _null_ _null_ )); DATA(insert OID = 3560 ( networksel PGNSP PGUID 12 1 0 0 0 f f f f t f s s 4 0 701 "2281 26 2281 23" _null_ _null_ _null_ _null_ _null_ networksel _null_ _null_ _null_ ));
DESCR("restriction selectivity for network operators"); DESCR("restriction selectivity for network operators");
......
...@@ -135,6 +135,15 @@ extern Datum inet_gist_penalty(PG_FUNCTION_ARGS); ...@@ -135,6 +135,15 @@ extern Datum inet_gist_penalty(PG_FUNCTION_ARGS);
extern Datum inet_gist_picksplit(PG_FUNCTION_ARGS); extern Datum inet_gist_picksplit(PG_FUNCTION_ARGS);
extern Datum inet_gist_same(PG_FUNCTION_ARGS); extern Datum inet_gist_same(PG_FUNCTION_ARGS);
/*
* SP-GiST support functions in network_spgist.c
*/
extern Datum inet_spg_config(PG_FUNCTION_ARGS);
extern Datum inet_spg_choose(PG_FUNCTION_ARGS);
extern Datum inet_spg_picksplit(PG_FUNCTION_ARGS);
extern Datum inet_spg_inner_consistent(PG_FUNCTION_ARGS);
extern Datum inet_spg_leaf_consistent(PG_FUNCTION_ARGS);
/* /*
* Estimation functions in network_selfuncs.c * Estimation functions in network_selfuncs.c
*/ */
......
...@@ -411,6 +411,154 @@ SELECT i FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i; ...@@ -411,6 +411,154 @@ SELECT i FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i;
SET enable_seqscan TO on; SET enable_seqscan TO on;
DROP INDEX inet_idx2; DROP INDEX inet_idx2;
-- check that spgist index works correctly
CREATE INDEX inet_idx3 ON inet_tbl using spgist (i);
SET enable_seqscan TO off;
SELECT * FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i;
c | i
----------------+------------------
192.168.1.0/24 | 192.168.1.0/25
192.168.1.0/24 | 192.168.1.255/25
192.168.1.0/26 | 192.168.1.226
(3 rows)
SELECT * FROM inet_tbl WHERE i <<= '192.168.1.0/24'::cidr ORDER BY i;
c | i
----------------+------------------
192.168.1.0/24 | 192.168.1.0/24
192.168.1.0/24 | 192.168.1.226/24
192.168.1.0/24 | 192.168.1.255/24
192.168.1.0/24 | 192.168.1.0/25
192.168.1.0/24 | 192.168.1.255/25
192.168.1.0/26 | 192.168.1.226
(6 rows)
SELECT * FROM inet_tbl WHERE i && '192.168.1.0/24'::cidr ORDER BY i;
c | i
----------------+------------------
192.168.1.0/24 | 192.168.1.0/24
192.168.1.0/24 | 192.168.1.226/24
192.168.1.0/24 | 192.168.1.255/24
192.168.1.0/24 | 192.168.1.0/25
192.168.1.0/24 | 192.168.1.255/25
192.168.1.0/26 | 192.168.1.226
(6 rows)
SELECT * FROM inet_tbl WHERE i >>= '192.168.1.0/24'::cidr ORDER BY i;
c | i
----------------+------------------
192.168.1.0/24 | 192.168.1.0/24
192.168.1.0/24 | 192.168.1.226/24
192.168.1.0/24 | 192.168.1.255/24
(3 rows)
SELECT * FROM inet_tbl WHERE i >> '192.168.1.0/24'::cidr ORDER BY i;
c | i
---+---
(0 rows)
SELECT * FROM inet_tbl WHERE i < '192.168.1.0/24'::cidr ORDER BY i;
c | i
-------------+-------------
10.0.0.0/8 | 9.1.2.3/8
10.0.0.0/32 | 10.1.2.3/8
10.0.0.0/8 | 10.1.2.3/8
10.0.0.0/8 | 10.1.2.3/8
10.1.0.0/16 | 10.1.2.3/16
10.1.2.0/24 | 10.1.2.3/24
10.1.2.3/32 | 10.1.2.3
10.0.0.0/8 | 11.1.2.3/8
(8 rows)
SELECT * FROM inet_tbl WHERE i <= '192.168.1.0/24'::cidr ORDER BY i;
c | i
----------------+----------------
10.0.0.0/8 | 9.1.2.3/8
10.0.0.0/8 | 10.1.2.3/8
10.0.0.0/32 | 10.1.2.3/8
10.0.0.0/8 | 10.1.2.3/8
10.1.0.0/16 | 10.1.2.3/16
10.1.2.0/24 | 10.1.2.3/24
10.1.2.3/32 | 10.1.2.3
10.0.0.0/8 | 11.1.2.3/8
192.168.1.0/24 | 192.168.1.0/24
(9 rows)
SELECT * FROM inet_tbl WHERE i = '192.168.1.0/24'::cidr ORDER BY i;
c | i
----------------+----------------
192.168.1.0/24 | 192.168.1.0/24
(1 row)
SELECT * FROM inet_tbl WHERE i >= '192.168.1.0/24'::cidr ORDER BY i;
c | i
--------------------+------------------
192.168.1.0/24 | 192.168.1.0/24
192.168.1.0/24 | 192.168.1.226/24
192.168.1.0/24 | 192.168.1.255/24
192.168.1.0/24 | 192.168.1.0/25
192.168.1.0/24 | 192.168.1.255/25
192.168.1.0/26 | 192.168.1.226
::ffff:1.2.3.4/128 | ::4.3.2.1/24
10:23::f1/128 | 10:23::f1/64
10:23::8000/113 | 10:23::ffff
(9 rows)
SELECT * FROM inet_tbl WHERE i > '192.168.1.0/24'::cidr ORDER BY i;
c | i
--------------------+------------------
192.168.1.0/24 | 192.168.1.226/24
192.168.1.0/24 | 192.168.1.255/24
192.168.1.0/24 | 192.168.1.0/25
192.168.1.0/24 | 192.168.1.255/25
192.168.1.0/26 | 192.168.1.226
::ffff:1.2.3.4/128 | ::4.3.2.1/24
10:23::f1/128 | 10:23::f1/64
10:23::8000/113 | 10:23::ffff
(8 rows)
SELECT * FROM inet_tbl WHERE i <> '192.168.1.0/24'::cidr ORDER BY i;
c | i
--------------------+------------------
10.0.0.0/8 | 9.1.2.3/8
10.0.0.0/8 | 10.1.2.3/8
10.0.0.0/32 | 10.1.2.3/8
10.0.0.0/8 | 10.1.2.3/8
10.1.0.0/16 | 10.1.2.3/16
10.1.2.0/24 | 10.1.2.3/24
10.1.2.3/32 | 10.1.2.3
10.0.0.0/8 | 11.1.2.3/8
192.168.1.0/24 | 192.168.1.226/24
192.168.1.0/24 | 192.168.1.255/24
192.168.1.0/24 | 192.168.1.0/25
192.168.1.0/24 | 192.168.1.255/25
192.168.1.0/26 | 192.168.1.226
::ffff:1.2.3.4/128 | ::4.3.2.1/24
10:23::f1/128 | 10:23::f1/64
10:23::8000/113 | 10:23::ffff
(16 rows)
-- test index-only scans
EXPLAIN (COSTS OFF)
SELECT i FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i;
QUERY PLAN
---------------------------------------------------
Sort
Sort Key: i
-> Index Only Scan using inet_idx3 on inet_tbl
Index Cond: (i << '192.168.1.0/24'::inet)
(4 rows)
SELECT i FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i;
i
------------------
192.168.1.0/25
192.168.1.255/25
192.168.1.226
(3 rows)
SET enable_seqscan TO on;
DROP INDEX inet_idx3;
-- simple tests of inet boolean and arithmetic operators -- simple tests of inet boolean and arithmetic operators
SELECT i, ~i AS "~i" FROM inet_tbl; SELECT i, ~i AS "~i" FROM inet_tbl;
i | ~i i | ~i
......
...@@ -1819,7 +1819,16 @@ ORDER BY 1, 2, 3; ...@@ -1819,7 +1819,16 @@ ORDER BY 1, 2, 3;
4000 | 15 | > 4000 | 15 | >
4000 | 16 | @> 4000 | 16 | @>
4000 | 18 | = 4000 | 18 | =
(112 rows) 4000 | 19 | <>
4000 | 20 | <
4000 | 21 | <=
4000 | 22 | >
4000 | 23 | >=
4000 | 24 | <<
4000 | 25 | <<=
4000 | 26 | >>
4000 | 27 | >>=
(121 rows)
-- Check that all opclass search operators have selectivity estimators. -- Check that all opclass search operators have selectivity estimators.
-- This is not absolutely required, but it seems a reasonable thing -- This is not absolutely required, but it seems a reasonable thing
......
...@@ -93,6 +93,29 @@ SELECT i FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i; ...@@ -93,6 +93,29 @@ SELECT i FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i;
SET enable_seqscan TO on; SET enable_seqscan TO on;
DROP INDEX inet_idx2; DROP INDEX inet_idx2;
-- check that spgist index works correctly
CREATE INDEX inet_idx3 ON inet_tbl using spgist (i);
SET enable_seqscan TO off;
SELECT * FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i <<= '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i && '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i >>= '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i >> '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i < '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i <= '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i = '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i >= '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i > '192.168.1.0/24'::cidr ORDER BY i;
SELECT * FROM inet_tbl WHERE i <> '192.168.1.0/24'::cidr ORDER BY i;
-- test index-only scans
EXPLAIN (COSTS OFF)
SELECT i FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i;
SELECT i FROM inet_tbl WHERE i << '192.168.1.0/24'::cidr ORDER BY i;
SET enable_seqscan TO on;
DROP INDEX inet_idx3;
-- simple tests of inet boolean and arithmetic operators -- simple tests of inet boolean and arithmetic operators
SELECT i, ~i AS "~i" FROM inet_tbl; SELECT i, ~i AS "~i" FROM inet_tbl;
SELECT i, c, i & c AS "and" FROM inet_tbl; SELECT i, c, i & c AS "and" FROM inet_tbl;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment