Commit 604ab081 authored by Robert Haas's avatar Robert Haas

Add levenshtein_less_equal, optimized version for small distances.

Alexander Korotkov, heavily revised by me.
parent 262c1a42
...@@ -9,15 +9,6 @@ ...@@ -9,15 +9,6 @@
* Copyright (c) 2001-2010, PostgreSQL Global Development Group * Copyright (c) 2001-2010, PostgreSQL Global Development Group
* ALL RIGHTS RESERVED; * ALL RIGHTS RESERVED;
* *
* levenshtein()
* -------------
* Written based on a description of the algorithm by Michael Gilleland
* found at http://www.merriampark.com/ld.htm
* Also looked at levenshtein.c in the PHP 4.0.6 distribution for
* inspiration.
* Configurable penalty costs extension is introduced by Volkan
* YAZICI <volkan.yazici@gmail.com>.
*
* metaphone() * metaphone()
* ----------- * -----------
* Modified for PostgreSQL by Joe Conway. * Modified for PostgreSQL by Joe Conway.
...@@ -61,6 +52,8 @@ PG_MODULE_MAGIC; ...@@ -61,6 +52,8 @@ PG_MODULE_MAGIC;
*/ */
extern Datum levenshtein_with_costs(PG_FUNCTION_ARGS); extern Datum levenshtein_with_costs(PG_FUNCTION_ARGS);
extern Datum levenshtein(PG_FUNCTION_ARGS); extern Datum levenshtein(PG_FUNCTION_ARGS);
extern Datum levenshtein_less_equal_with_costs(PG_FUNCTION_ARGS);
extern Datum levenshtein_less_equal(PG_FUNCTION_ARGS);
extern Datum metaphone(PG_FUNCTION_ARGS); extern Datum metaphone(PG_FUNCTION_ARGS);
extern Datum soundex(PG_FUNCTION_ARGS); extern Datum soundex(PG_FUNCTION_ARGS);
extern Datum difference(PG_FUNCTION_ARGS); extern Datum difference(PG_FUNCTION_ARGS);
...@@ -85,16 +78,6 @@ soundex_code(char letter) ...@@ -85,16 +78,6 @@ soundex_code(char letter)
return letter; return letter;
} }
/*
* Levenshtein
*/
#define MAX_LEVENSHTEIN_STRLEN 255
static int levenshtein_internal(text *s, text *t,
int ins_c, int del_c, int sub_c);
/* /*
* Metaphone * Metaphone
*/ */
...@@ -197,224 +180,59 @@ rest_of_char_same(const char *s1, const char *s2, int len) ...@@ -197,224 +180,59 @@ rest_of_char_same(const char *s1, const char *s2, int len)
return true; return true;
} }
/* #include "levenshtein.c"
* levenshtein_internal - Calculates Levenshtein distance metric #define LEVENSHTEIN_LESS_EQUAL
* between supplied strings. Generally #include "levenshtein.c"
* (1, 1, 1) penalty costs suffices common
* cases, but your mileage may vary.
*/
static int
levenshtein_internal(text *s, text *t,
int ins_c, int del_c, int sub_c)
{
int m,
n,
s_bytes,
t_bytes;
int *prev;
int *curr;
int *s_char_len = NULL;
int i,
j;
const char *s_data;
const char *t_data;
const char *y;
/* Extract a pointer to the actual character data. */
s_data = VARDATA_ANY(s);
t_data = VARDATA_ANY(t);
/* Determine length of each string in bytes and characters. */
s_bytes = VARSIZE_ANY_EXHDR(s);
t_bytes = VARSIZE_ANY_EXHDR(t);
m = pg_mbstrlen_with_len(s_data, s_bytes);
n = pg_mbstrlen_with_len(t_data, t_bytes);
/*
* We can transform an empty s into t with n insertions, or a non-empty t
* into an empty s with m deletions.
*/
if (!m)
return n * ins_c;
if (!n)
return m * del_c;
/*
* For security concerns, restrict excessive CPU+RAM usage. (This
* implementation uses O(m) memory and has O(mn) complexity.)
*/
if (m > MAX_LEVENSHTEIN_STRLEN ||
n > MAX_LEVENSHTEIN_STRLEN)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("argument exceeds the maximum length of %d bytes",
MAX_LEVENSHTEIN_STRLEN)));
/*
* In order to avoid calling pg_mblen() repeatedly on each character in s,
* we cache all the lengths before starting the main loop -- but if all the
* characters in both strings are single byte, then we skip this and use
* a fast-path in the main loop. If only one string contains multi-byte
* characters, we still build the array, so that the fast-path needn't
* deal with the case where the array hasn't been initialized.
*/
if (m != s_bytes || n != t_bytes)
{
int i;
const char *cp = s_data;
s_char_len = (int *) palloc((m + 1) * sizeof(int));
for (i = 0; i < m; ++i)
{
s_char_len[i] = pg_mblen(cp);
cp += s_char_len[i];
}
s_char_len[i] = 0;
}
/* One more cell for initialization column and row. */
++m;
++n;
/* PG_FUNCTION_INFO_V1(levenshtein_with_costs);
* One way to compute Levenshtein distance is to incrementally construct Datum
* an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number levenshtein_with_costs(PG_FUNCTION_ARGS)
* of operations required to transform the first i characters of s into {
* the first j characters of t. The last column of the final row is the text *src = PG_GETARG_TEXT_PP(0);
* answer. text *dst = PG_GETARG_TEXT_PP(1);
* int ins_c = PG_GETARG_INT32(2);
* We use that algorithm here with some modification. In lieu of holding int del_c = PG_GETARG_INT32(3);
* the entire array in memory at once, we'll just use two arrays of size int sub_c = PG_GETARG_INT32(4);
* m+1 for storing accumulated values. At each step one array represents
* the "previous" row and one is the "current" row of the notional large
* array.
*/
prev = (int *) palloc(2 * m * sizeof(int));
curr = prev + m;
/*
* To transform the first i characters of s into the first 0 characters
* of t, we must perform i deletions.
*/
for (i = 0; i < m; i++)
prev[i] = i * del_c;
/* Loop through rows of the notional array */
for (y = t_data, j = 1; j < n; j++)
{
int *temp;
const char *x = s_data;
int y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1;
/*
* To transform the first 0 characters of s into the first j
* characters of t, we must perform j insertions.
*/
curr[0] = j * ins_c;
/*
* This inner loop is critical to performance, so we include a
* fast-path to handle the (fairly common) case where no multibyte
* characters are in the mix. The fast-path is entitled to assume
* that if s_char_len is not initialized then BOTH strings contain
* only single-byte characters.
*/
if (s_char_len != NULL)
{
for (i = 1; i < m; i++)
{
int ins;
int del;
int sub;
int x_char_len = s_char_len[i - 1];
/*
* Calculate costs for insertion, deletion, and substitution.
*
* When calculating cost for substitution, we compare the last
* character of each possibly-multibyte character first,
* because that's enough to rule out most mis-matches. If we
* get past that test, then we compare the lengths and the
* remaining bytes.
*/
ins = prev[i] + ins_c;
del = curr[i - 1] + del_c;
if (x[x_char_len-1] == y[y_char_len-1]
&& x_char_len == y_char_len &&
(x_char_len == 1 || rest_of_char_same(x, y, x_char_len)))
sub = prev[i - 1];
else
sub = prev[i - 1] + sub_c;
/* Take the one with minimum cost. */
curr[i] = Min(ins, del);
curr[i] = Min(curr[i], sub);
/* Point to next character. */
x += x_char_len;
}
}
else
{
for (i = 1; i < m; i++)
{
int ins;
int del;
int sub;
/* Calculate costs for insertion, deletion, and substitution. */
ins = prev[i] + ins_c;
del = curr[i - 1] + del_c;
sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
/* Take the one with minimum cost. */
curr[i] = Min(ins, del);
curr[i] = Min(curr[i], sub);
/* Point to next character. */ PG_RETURN_INT32(levenshtein_internal(src, dst, ins_c, del_c, sub_c));
x++; }
}
}
/* Swap current row with previous row. */
temp = curr;
curr = prev;
prev = temp;
/* Point to next character. */ PG_FUNCTION_INFO_V1(levenshtein);
y += y_char_len; Datum
} levenshtein(PG_FUNCTION_ARGS)
{
text *src = PG_GETARG_TEXT_PP(0);
text *dst = PG_GETARG_TEXT_PP(1);
/* PG_RETURN_INT32(levenshtein_internal(src, dst, 1, 1, 1));
* Because the final value was swapped from the previous row to the
* current row, that's where we'll find it.
*/
return prev[m - 1];
} }
PG_FUNCTION_INFO_V1(levenshtein_with_costs); PG_FUNCTION_INFO_V1(levenshtein_less_equal_with_costs);
Datum Datum
levenshtein_with_costs(PG_FUNCTION_ARGS) levenshtein_less_equal_with_costs(PG_FUNCTION_ARGS)
{ {
text *src = PG_GETARG_TEXT_PP(0); text *src = PG_GETARG_TEXT_PP(0);
text *dst = PG_GETARG_TEXT_PP(1); text *dst = PG_GETARG_TEXT_PP(1);
int ins_c = PG_GETARG_INT32(2); int ins_c = PG_GETARG_INT32(2);
int del_c = PG_GETARG_INT32(3); int del_c = PG_GETARG_INT32(3);
int sub_c = PG_GETARG_INT32(4); int sub_c = PG_GETARG_INT32(4);
int max_d = PG_GETARG_INT32(5);
PG_RETURN_INT32(levenshtein_internal(src, dst, ins_c, del_c, sub_c)); PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, ins_c, del_c, sub_c, max_d));
} }
PG_FUNCTION_INFO_V1(levenshtein); PG_FUNCTION_INFO_V1(levenshtein_less_equal);
Datum Datum
levenshtein(PG_FUNCTION_ARGS) levenshtein_less_equal(PG_FUNCTION_ARGS)
{ {
text *src = PG_GETARG_TEXT_PP(0); text *src = PG_GETARG_TEXT_PP(0);
text *dst = PG_GETARG_TEXT_PP(1); text *dst = PG_GETARG_TEXT_PP(1);
int max_d = PG_GETARG_INT32(2);
PG_RETURN_INT32(levenshtein_internal(src, dst, 1, 1, 1)); PG_RETURN_INT32(levenshtein_less_equal_internal(src, dst, 1, 1, 1, max_d));
} }
......
...@@ -11,6 +11,14 @@ CREATE OR REPLACE FUNCTION levenshtein (text,text,int,int,int) RETURNS int ...@@ -11,6 +11,14 @@ CREATE OR REPLACE FUNCTION levenshtein (text,text,int,int,int) RETURNS int
AS 'MODULE_PATHNAME','levenshtein_with_costs' AS 'MODULE_PATHNAME','levenshtein_with_costs'
LANGUAGE C IMMUTABLE STRICT; LANGUAGE C IMMUTABLE STRICT;
CREATE OR REPLACE FUNCTION levenshtein_less_equal (text,text,int) RETURNS int
AS 'MODULE_PATHNAME','levenshtein_less_equal'
LANGUAGE C IMMUTABLE STRICT;
CREATE OR REPLACE FUNCTION levenshtein_less_equal (text,text,int,int,int,int) RETURNS int
AS 'MODULE_PATHNAME','levenshtein_less_equal_with_costs'
LANGUAGE C IMMUTABLE STRICT;
CREATE OR REPLACE FUNCTION metaphone (text,int) RETURNS text CREATE OR REPLACE FUNCTION metaphone (text,int) RETURNS text
AS 'MODULE_PATHNAME','metaphone' AS 'MODULE_PATHNAME','metaphone'
LANGUAGE C IMMUTABLE STRICT; LANGUAGE C IMMUTABLE STRICT;
......
/*
* levenshtein.c
*
* Functions for "fuzzy" comparison of strings
*
* Joe Conway <mail@joeconway.com>
*
* contrib/fuzzystrmatch/fuzzystrmatch.c
* Copyright (c) 2001-2010, PostgreSQL Global Development Group
* ALL RIGHTS RESERVED;
*
* levenshtein()
* -------------
* Written based on a description of the algorithm by Michael Gilleland
* found at http://www.merriampark.com/ld.htm
* Also looked at levenshtein.c in the PHP 4.0.6 distribution for
* inspiration.
* Configurable penalty costs extension is introduced by Volkan
* YAZICI <volkan.yazici@gmail.com>.
*/
/*
* External declarations for exported functions
*/
#ifdef LEVENSHTEIN_LESS_EQUAL
static int levenshtein_less_equal_internal(text *s, text *t,
int ins_c, int del_c, int sub_c, int max_d);
#else
static int levenshtein_internal(text *s, text *t,
int ins_c, int del_c, int sub_c);
#endif
#define MAX_LEVENSHTEIN_STRLEN 255
/*
* Calculates Levenshtein distance metric between supplied strings. Generally
* (1, 1, 1) penalty costs suffices for common cases, but your mileage may
* vary.
*
* One way to compute Levenshtein distance is to incrementally construct
* an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number
* of operations required to transform the first i characters of s into
* the first j characters of t. The last column of the final row is the
* answer.
*
* We use that algorithm here with some modification. In lieu of holding
* the entire array in memory at once, we'll just use two arrays of size
* m+1 for storing accumulated values. At each step one array represents
* the "previous" row and one is the "current" row of the notional large
* array.
*
* If max_d >= 0, we only need to provide an accurate answer when that answer
* is less than or equal to the bound. From any cell in the matrix, there is
* theoretical "minimum residual distance" from that cell to the last column
* of the final row. This minimum residual distance is zero when the
* untransformed portions of the strings are of equal length (because we might
* get lucky and find all the remaining characters matching) and is otherwise
* based on the minimum number of insertions or deletions needed to make them
* equal length. The residual distance grows as we move toward the upper
* right or lower left corners of the matrix. When the max_d bound is
* usefully tight, we can use this property to avoid computing the entirety
* of each row; instead, we maintain a start_column and stop_column that
* identify the portion of the matrix close to the diagonal which can still
* affect the final answer.
*/
static int
#ifdef LEVENSHTEIN_LESS_EQUAL
levenshtein_less_equal_internal(text *s, text *t,
int ins_c, int del_c, int sub_c, int max_d)
#else
levenshtein_internal(text *s, text *t,
int ins_c, int del_c, int sub_c)
#endif
{
int m,
n,
s_bytes,
t_bytes;
int *prev;
int *curr;
int *s_char_len = NULL;
int i,
j;
const char *s_data;
const char *t_data;
const char *y;
/*
* For levenshtein_less_equal_internal, we have real variables called
* start_column and stop_column; otherwise it's just short-hand for 0
* and m.
*/
#ifdef LEVENSHTEIN_LESS_EQUAL
int start_column, stop_column;
#undef START_COLUMN
#undef STOP_COLUMN
#define START_COLUMN start_column
#define STOP_COLUMN stop_column
#else
#undef START_COLUMN
#undef STOP_COLUMN
#define START_COLUMN 0
#define STOP_COLUMN m
#endif
/* Extract a pointer to the actual character data. */
s_data = VARDATA_ANY(s);
t_data = VARDATA_ANY(t);
/* Determine length of each string in bytes and characters. */
s_bytes = VARSIZE_ANY_EXHDR(s);
t_bytes = VARSIZE_ANY_EXHDR(t);
m = pg_mbstrlen_with_len(s_data, s_bytes);
n = pg_mbstrlen_with_len(t_data, t_bytes);
/*
* We can transform an empty s into t with n insertions, or a non-empty t
* into an empty s with m deletions.
*/
if (!m)
return n * ins_c;
if (!n)
return m * del_c;
/*
* For security concerns, restrict excessive CPU+RAM usage. (This
* implementation uses O(m) memory and has O(mn) complexity.)
*/
if (m > MAX_LEVENSHTEIN_STRLEN ||
n > MAX_LEVENSHTEIN_STRLEN)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("argument exceeds the maximum length of %d bytes",
MAX_LEVENSHTEIN_STRLEN)));
#ifdef LEVENSHTEIN_LESS_EQUAL
/* Initialize start and stop columns. */
start_column = 0;
stop_column = m + 1;
/*
* If max_d >= 0, determine whether the bound is impossibly tight. If so,
* return max_d + 1 immediately. Otherwise, determine whether it's tight
* enough to limit the computation we must perform. If so, figure out
* initial stop column.
*/
if (max_d >= 0)
{
int min_theo_d; /* Theoretical minimum distance. */
int max_theo_d; /* Theoretical maximum distance. */
int net_inserts = n - m;
min_theo_d = net_inserts < 0 ?
-net_inserts * del_c : net_inserts * ins_c;
if (min_theo_d > max_d)
return max_d + 1;
if (ins_c + del_c < sub_c)
sub_c = ins_c + del_c;
max_theo_d = min_theo_d + sub_c * Min(m, n);
if (max_d >= max_theo_d)
max_d = -1;
else if (ins_c + del_c > 0)
{
/*
* Figure out how much of the first row of the notional matrix
* we need to fill in. If the string is growing, the theoretical
* minimum distance already incorporates the cost of deleting the
* number of characters necessary to make the two strings equal
* in length. Each additional deletion forces another insertion,
* so the best-case total cost increases by ins_c + del_c.
* If the string is shrinking, the minimum theoretical cost
* assumes no excess deletions; that is, we're starting no futher
* right than column n - m. If we do start further right, the
* best-case total cost increases by ins_c + del_c for each move
* right.
*/
int slack_d = max_d - min_theo_d;
int best_column = net_inserts < 0 ? -net_inserts : 0;
stop_column = best_column + (slack_d / (ins_c + del_c)) + 1;
if (stop_column > m)
stop_column = m + 1;
}
}
#endif
/*
* In order to avoid calling pg_mblen() repeatedly on each character in s,
* we cache all the lengths before starting the main loop -- but if all the
* characters in both strings are single byte, then we skip this and use
* a fast-path in the main loop. If only one string contains multi-byte
* characters, we still build the array, so that the fast-path needn't
* deal with the case where the array hasn't been initialized.
*/
if (m != s_bytes || n != t_bytes)
{
int i;
const char *cp = s_data;
s_char_len = (int *) palloc((m + 1) * sizeof(int));
for (i = 0; i < m; ++i)
{
s_char_len[i] = pg_mblen(cp);
cp += s_char_len[i];
}
s_char_len[i] = 0;
}
/* One more cell for initialization column and row. */
++m;
++n;
/* Previous and current rows of notional array. */
prev = (int *) palloc(2 * m * sizeof(int));
curr = prev + m;
/*
* To transform the first i characters of s into the first 0 characters
* of t, we must perform i deletions.
*/
for (i = START_COLUMN; i < STOP_COLUMN; i++)
prev[i] = i * del_c;
/* Loop through rows of the notional array */
for (y = t_data, j = 1; j < n; j++)
{
int *temp;
const char *x = s_data;
int y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1;
#ifdef LEVENSHTEIN_LESS_EQUAL
/*
* In the best case, values percolate down the diagonal unchanged, so
* we must increment stop_column unless it's already on the right end
* of the array. The inner loop will read prev[stop_column], so we
* have to initialize it even though it shouldn't affect the result.
*/
if (stop_column < m)
{
prev[stop_column] = max_d + 1;
++stop_column;
}
/*
* The main loop fills in curr, but curr[0] needs a special case:
* to transform the first 0 characters of s into the first j
* characters of t, we must perform j insertions. However, if
* start_column > 0, this special case does not apply.
*/
if (start_column == 0)
{
curr[0] = j * ins_c;
i = 1;
}
else
i = start_column;
#else
curr[0] = j * ins_c;
i = 1;
#endif
/*
* This inner loop is critical to performance, so we include a
* fast-path to handle the (fairly common) case where no multibyte
* characters are in the mix. The fast-path is entitled to assume
* that if s_char_len is not initialized then BOTH strings contain
* only single-byte characters.
*/
if (s_char_len != NULL)
{
for (; i < STOP_COLUMN; i++)
{
int ins;
int del;
int sub;
int x_char_len = s_char_len[i - 1];
/*
* Calculate costs for insertion, deletion, and substitution.
*
* When calculating cost for substitution, we compare the last
* character of each possibly-multibyte character first,
* because that's enough to rule out most mis-matches. If we
* get past that test, then we compare the lengths and the
* remaining bytes.
*/
ins = prev[i] + ins_c;
del = curr[i - 1] + del_c;
if (x[x_char_len-1] == y[y_char_len-1]
&& x_char_len == y_char_len &&
(x_char_len == 1 || rest_of_char_same(x, y, x_char_len)))
sub = prev[i - 1];
else
sub = prev[i - 1] + sub_c;
/* Take the one with minimum cost. */
curr[i] = Min(ins, del);
curr[i] = Min(curr[i], sub);
/* Point to next character. */
x += x_char_len;
}
}
else
{
for (; i < STOP_COLUMN; i++)
{
int ins;
int del;
int sub;
/* Calculate costs for insertion, deletion, and substitution. */
ins = prev[i] + ins_c;
del = curr[i - 1] + del_c;
sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
/* Take the one with minimum cost. */
curr[i] = Min(ins, del);
curr[i] = Min(curr[i], sub);
/* Point to next character. */
x++;
}
}
/* Swap current row with previous row. */
temp = curr;
curr = prev;
prev = temp;
/* Point to next character. */
y += y_char_len;
#ifdef LEVENSHTEIN_LESS_EQUAL
/*
* This chunk of code represents a significant performance hit if used
* in the case where there is no max_d bound. This is probably not
* because the max_d >= 0 test itself is expensive, but rather because
* the possibility of needing to execute this code prevents tight
* optimization of the loop as a whole.
*/
if (max_d >= 0)
{
/*
* The "zero point" is the column of the current row where the
* remaining portions of the strings are of equal length. There
* are (n - 1) characters in the target string, of which j have
* been transformed. There are (m - 1) characters in the source
* string, so we want to find the value for zp where where (n - 1)
* - j = (m - 1) - zp.
*/
int zp = j - (n - m);
/* Check whether the stop column can slide left. */
while (stop_column > 0)
{
int ii = stop_column - 1;
int net_inserts = ii - zp;
if (prev[ii] + (net_inserts > 0 ? net_inserts * ins_c :
-net_inserts * del_c) <= max_d)
break;
stop_column--;
}
/* Check whether the start column can slide right. */
while (start_column < stop_column)
{
int net_inserts = start_column - zp;
if (prev[start_column] +
(net_inserts > 0 ? net_inserts * ins_c :
-net_inserts * del_c) <= max_d)
break;
/*
* We'll never again update these values, so we must make
* sure there's nothing here that could confuse any future
* iteration of the outer loop.
*/
prev[start_column] = max_d + 1;
curr[start_column] = max_d + 1;
if (start_column != 0)
s_data += n != t_bytes + 1 ? pg_mblen(s_data) : 1;
start_column++;
}
/* If they cross, we're going to exceed the bound. */
if (start_column >= stop_column)
return max_d + 1;
}
#endif
}
/*
* Because the final value was swapped from the previous row to the
* current row, that's where we'll find it.
*/
return prev[m - 1];
}
...@@ -18,3 +18,7 @@ DROP FUNCTION metaphone (text,int); ...@@ -18,3 +18,7 @@ DROP FUNCTION metaphone (text,int);
DROP FUNCTION levenshtein (text,text,int,int,int); DROP FUNCTION levenshtein (text,text,int,int,int);
DROP FUNCTION levenshtein (text,text); DROP FUNCTION levenshtein (text,text);
DROP FUNCTION levenshtein_less_equal (text,text,int);
DROP FUNCTION levenshtein_less_equal (text,text,int,int,int,int);
...@@ -84,6 +84,8 @@ SELECT * FROM s WHERE difference(s.nm, 'john') &gt; 2; ...@@ -84,6 +84,8 @@ SELECT * FROM s WHERE difference(s.nm, 'john') &gt; 2;
<synopsis> <synopsis>
levenshtein(text source, text target, int ins_cost, int del_cost, int sub_cost) returns int levenshtein(text source, text target, int ins_cost, int del_cost, int sub_cost) returns int
levenshtein(text source, text target) returns int levenshtein(text source, text target) returns int
levenshtein_less_equal(text source, text target, int ins_cost, int del_cost, int sub_cost, int max_d) returns int
levenshtein_less_equal(text source, text target, int max_d) returns int
</synopsis> </synopsis>
<para> <para>
...@@ -92,6 +94,11 @@ levenshtein(text source, text target) returns int ...@@ -92,6 +94,11 @@ levenshtein(text source, text target) returns int
specify how much to charge for a character insertion, deletion, or specify how much to charge for a character insertion, deletion, or
substitution, respectively. You can omit the cost parameters, as in substitution, respectively. You can omit the cost parameters, as in
the second version of the function; in that case they all default to 1. the second version of the function; in that case they all default to 1.
<literal>levenshtein_less_equal</literal> is accelerated version of
levenshtein functon for low values of distance. If actual distance
is less or equal then max_d, then <literal>levenshtein_less_equal</literal>
returns accurate value of it. Otherwise this function returns value
which is greater than max_d.
</para> </para>
<para> <para>
...@@ -110,6 +117,18 @@ test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2,1,1); ...@@ -110,6 +117,18 @@ test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2,1,1);
------------- -------------
3 3
(1 row) (1 row)
test=# SELECT levenshtein_less_equal('extensive', 'exhaustive',2);
levenshtein_less_equal
------------------------
3
(1 row)
test=# SELECT levenshtein_less_equal('extensive', 'exhaustive',4);
levenshtein_less_equal
------------------------
4
(1 row)
</screen> </screen>
</sect2> </sect2>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment