Commit 32af96b2 authored by Andres Freund's avatar Andres Freund

JIT tuple deforming in LLVM JIT provider.

Performing JIT compilation for deforming gains performance benefits
over unJITed deforming from compile-time knowledge of the tuple
descriptor. Fixed column widths, NOT NULLness, etc can be taken
advantage of.

Right now the JITed deforming is only used when deforming tuples as
part of expression evaluation (and obviously only if the descriptor is
known). It's likely to be beneficial in other cases, too.

By default tuple deforming is JITed whenever an expression is JIT
compiled. There's a separate boolean GUC controlling it, but that's
expected to be primarily useful for development and benchmarking.

Docs will follow in a later commit containing docs for the whole JIT
feature.

Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
parent 64f85894
......@@ -1556,3 +1556,13 @@ minimal_tuple_from_heap_tuple(HeapTuple htup)
result->t_len = len;
return result;
}
/*
* This mainly exists so JIT can inline the definition, but it's also
* sometimes useful in debugging sessions.
*/
size_t
varsize_any(void *p)
{
return VARSIZE_ANY(p);
}
......@@ -2287,18 +2287,21 @@ ExecPushExprSlots(ExprState *state, LastAttnumInfo *info)
{
scratch.opcode = EEOP_INNER_FETCHSOME;
scratch.d.fetch.last_var = info->last_inner;
scratch.d.fetch.known_desc = NULL;
ExprEvalPushStep(state, &scratch);
}
if (info->last_outer > 0)
{
scratch.opcode = EEOP_OUTER_FETCHSOME;
scratch.d.fetch.last_var = info->last_outer;
scratch.d.fetch.known_desc = NULL;
ExprEvalPushStep(state, &scratch);
}
if (info->last_scan > 0)
{
scratch.opcode = EEOP_SCAN_FETCHSOME;
scratch.d.fetch.last_var = info->last_scan;
scratch.d.fetch.known_desc = NULL;
ExprEvalPushStep(state, &scratch);
}
}
......@@ -3250,10 +3253,12 @@ ExecBuildGroupingEqual(TupleDesc ldesc, TupleDesc rdesc,
/* push deform steps */
scratch.opcode = EEOP_INNER_FETCHSOME;
scratch.d.fetch.last_var = maxatt;
scratch.d.fetch.known_desc = ldesc;
ExprEvalPushStep(state, &scratch);
scratch.opcode = EEOP_OUTER_FETCHSOME;
scratch.d.fetch.last_var = maxatt;
scratch.d.fetch.known_desc = rdesc;
ExprEvalPushStep(state, &scratch);
/*
......
......@@ -896,6 +896,7 @@ ExecInitScanTupleSlot(EState *estate, ScanState *scanstate, TupleDesc tupledesc)
{
scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable,
tupledesc);
scanstate->ps.scandesc = tupledesc;
}
/* ----------------
......
......@@ -186,7 +186,11 @@ ExecInitForeignScan(ForeignScan *node, EState *estate, int eflags)
}
else
{
ExecInitScanTupleSlot(estate, &scanstate->ss, RelationGetDescr(currentRelation));
TupleDesc scan_tupdesc;
/* don't trust FDWs to return tuples fulfilling NOT NULL constraints */
scan_tupdesc = CreateTupleDescCopy(RelationGetDescr(currentRelation));
ExecInitScanTupleSlot(estate, &scanstate->ss, scan_tupdesc);
/* Node's targetlist will contain Vars with varno = scanrelid */
tlistvarno = scanrelid;
}
......
......@@ -38,6 +38,7 @@ bool jit_debugging_support = false;
bool jit_dump_bitcode = false;
bool jit_expressions = true;
bool jit_profiling_support = false;
bool jit_tuple_deforming = true;
double jit_above_cost = 100000;
double jit_optimize_above_cost = 500000;
......
......@@ -39,7 +39,7 @@ OBJS=$(WIN32RES)
# Infrastructure
OBJS += llvmjit.o llvmjit_error.o llvmjit_wrap.o
# Code generation
OBJS += llvmjit_expr.o
OBJS += llvmjit_expr.o llvmjit_deform.o
all: all-shared-lib llvmjit_types.bc
......
......@@ -74,6 +74,7 @@ LLVMTypeRef StructAggStatePerTransData;
LLVMValueRef AttributeTemplate;
LLVMValueRef FuncStrlen;
LLVMValueRef FuncVarsizeAny;
LLVMValueRef FuncSlotGetsomeattrs;
LLVMValueRef FuncHeapGetsysattr;
LLVMValueRef FuncMakeExpandedObjectReadOnlyInternal;
......@@ -784,6 +785,7 @@ llvm_create_types(void)
AttributeTemplate = LLVMGetNamedFunction(mod, "AttributeTemplate");
FuncStrlen = LLVMGetNamedFunction(mod, "strlen");
FuncVarsizeAny = LLVMGetNamedFunction(mod, "varsize_any");
FuncSlotGetsomeattrs = LLVMGetNamedFunction(mod, "slot_getsomeattrs");
FuncHeapGetsysattr = LLVMGetNamedFunction(mod, "heap_getsysattr");
FuncMakeExpandedObjectReadOnlyInternal = LLVMGetNamedFunction(mod, "MakeExpandedObjectReadOnlyInternal");
......
/*-------------------------------------------------------------------------
*
* llvmjit_deform.c
* Generate code for deforming a heap tuple.
*
* This gains performance benefits over unJITed deforming from compile-time
* knowledge of the tuple descriptor. Fixed column widths, NOT NULLness, etc
* can be taken advantage of.
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/jit/llvm/llvmjit_deform.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <llvm-c/Core.h>
#include "access/htup_details.h"
#include "executor/tuptable.h"
#include "jit/llvmjit.h"
#include "jit/llvmjit_emit.h"
static LLVMValueRef get_memset(LLVMModuleRef mod);
/*
* Create a function that deforms a tuple of type desc up to natts columns.
*/
LLVMValueRef
slot_compile_deform(LLVMJitContext *context, TupleDesc desc, int natts)
{
char *funcname;
LLVMModuleRef mod;
LLVMBuilderRef b;
LLVMTypeRef deform_sig;
LLVMValueRef v_deform_fn;
LLVMBasicBlockRef b_entry;
LLVMBasicBlockRef b_adjust_unavail_cols;
LLVMBasicBlockRef b_find_start;
LLVMBasicBlockRef b_out;
LLVMBasicBlockRef b_dead;
LLVMBasicBlockRef *attcheckattnoblocks;
LLVMBasicBlockRef *attstartblocks;
LLVMBasicBlockRef *attisnullblocks;
LLVMBasicBlockRef *attcheckalignblocks;
LLVMBasicBlockRef *attalignblocks;
LLVMBasicBlockRef *attstoreblocks;
LLVMValueRef v_offp;
LLVMValueRef v_tupdata_base;
LLVMValueRef v_tts_values;
LLVMValueRef v_tts_nulls;
LLVMValueRef v_slotoffp;
LLVMValueRef v_slowp;
LLVMValueRef v_nvalidp;
LLVMValueRef v_nvalid;
LLVMValueRef v_maxatt;
LLVMValueRef v_slot;
LLVMValueRef v_tupleheaderp;
LLVMValueRef v_tuplep;
LLVMValueRef v_infomask1;
LLVMValueRef v_infomask2;
LLVMValueRef v_bits;
LLVMValueRef v_hoff;
LLVMValueRef v_hasnulls;
/* last column (0 indexed) guaranteed to exist */
int guaranteed_column_number = -1;
/* current known alignment */
int known_alignment = 0;
/* if true, known_alignment describes definite offset of column */
bool attguaranteedalign = true;
int attnum;
mod = llvm_mutable_module(context);
funcname = llvm_expand_funcname(context, "deform");
/*
* Check which columns do have to exist, so we don't have to check the
* rows natts unnecessarily.
*/
for (attnum = 0; attnum < desc->natts; attnum++)
{
if (TupleDescAttr(desc, attnum)->attnotnull)
{
guaranteed_column_number = attnum;
}
}
/* Create the signature and function */
{
LLVMTypeRef param_types[1];
param_types[0] = l_ptr(StructTupleTableSlot);
deform_sig = LLVMFunctionType(LLVMVoidType(), param_types,
lengthof(param_types), 0);
}
v_deform_fn = LLVMAddFunction(mod, funcname, deform_sig);
LLVMSetLinkage(v_deform_fn, LLVMInternalLinkage);
LLVMSetParamAlignment(LLVMGetParam(v_deform_fn, 0), MAXIMUM_ALIGNOF);
llvm_copy_attributes(AttributeTemplate, v_deform_fn);
b_entry =
LLVMAppendBasicBlock(v_deform_fn, "entry");
b_adjust_unavail_cols =
LLVMAppendBasicBlock(v_deform_fn, "adjust_unavail_cols");
b_find_start =
LLVMAppendBasicBlock(v_deform_fn, "find_startblock");
b_out =
LLVMAppendBasicBlock(v_deform_fn, "outblock");
b_dead =
LLVMAppendBasicBlock(v_deform_fn, "deadblock");
b = LLVMCreateBuilder();
attcheckattnoblocks = palloc(sizeof(LLVMBasicBlockRef) * natts);
attstartblocks = palloc(sizeof(LLVMBasicBlockRef) * natts);
attisnullblocks = palloc(sizeof(LLVMBasicBlockRef) * natts);
attcheckalignblocks = palloc(sizeof(LLVMBasicBlockRef) * natts);
attalignblocks = palloc(sizeof(LLVMBasicBlockRef) * natts);
attstoreblocks = palloc(sizeof(LLVMBasicBlockRef) * natts);
known_alignment = 0;
LLVMPositionBuilderAtEnd(b, b_entry);
/* perform allocas first, llvm only converts those to registers */
v_offp = LLVMBuildAlloca(b, TypeSizeT, "v_offp");
v_slot = LLVMGetParam(v_deform_fn, 0);
v_tts_values =
l_load_struct_gep(b, v_slot, FIELDNO_TUPLETABLESLOT_VALUES,
"tts_values");
v_tts_nulls =
l_load_struct_gep(b, v_slot, FIELDNO_TUPLETABLESLOT_ISNULL,
"tts_ISNULL");
v_slotoffp = LLVMBuildStructGEP(b, v_slot, FIELDNO_TUPLETABLESLOT_OFF, "");
v_slowp = LLVMBuildStructGEP(b, v_slot, FIELDNO_TUPLETABLESLOT_SLOW, "");
v_nvalidp = LLVMBuildStructGEP(b, v_slot, FIELDNO_TUPLETABLESLOT_NVALID, "");
v_tupleheaderp =
l_load_struct_gep(b, v_slot, FIELDNO_TUPLETABLESLOT_TUPLE,
"tupleheader");
v_tuplep =
l_load_struct_gep(b, v_tupleheaderp, FIELDNO_HEAPTUPLEDATA_DATA,
"tuple");
v_bits =
LLVMBuildBitCast(b,
LLVMBuildStructGEP(b, v_tuplep,
FIELDNO_HEAPTUPLEHEADERDATA_BITS,
""),
l_ptr(LLVMInt8Type()),
"t_bits");
v_infomask1 =
l_load_struct_gep(b, v_tuplep,
FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK,
"infomask1");
v_infomask2 =
l_load_struct_gep(b,
v_tuplep, FIELDNO_HEAPTUPLEHEADERDATA_INFOMASK2,
"infomask2");
/* t_infomask & HEAP_HASNULL */
v_hasnulls =
LLVMBuildICmp(b, LLVMIntNE,
LLVMBuildAnd(b,
l_int16_const(HEAP_HASNULL),
v_infomask1, ""),
l_int16_const(0),
"hasnulls");
/* t_infomask2 & HEAP_NATTS_MASK */
v_maxatt = LLVMBuildAnd(b,
l_int16_const(HEAP_NATTS_MASK),
v_infomask2,
"maxatt");
v_hoff =
l_load_struct_gep(b, v_tuplep,
FIELDNO_HEAPTUPLEHEADERDATA_HOFF,
"t_hoff");
v_tupdata_base =
LLVMBuildGEP(b,
LLVMBuildBitCast(b,
v_tuplep,
l_ptr(LLVMInt8Type()),
""),
&v_hoff, 1,
"v_tupdata_base");
/*
* Load tuple start offset from slot. Will be reset below in case there's
* no existing deformed columns in slot.
*/
{
LLVMValueRef v_off_start;
v_off_start = LLVMBuildLoad(b, v_slotoffp, "v_slot_off");
v_off_start = LLVMBuildZExt(b, v_off_start, TypeSizeT, "");
LLVMBuildStore(b, v_off_start, v_offp);
}
/* build the basic block for each attribute, need them as jump target */
for (attnum = 0; attnum < natts; attnum++)
{
attcheckattnoblocks[attnum] =
l_bb_append_v(v_deform_fn, "block.attr.%d.attcheckattno", attnum);
attstartblocks[attnum] =
l_bb_append_v(v_deform_fn, "block.attr.%d.start", attnum);
attisnullblocks[attnum] =
l_bb_append_v(v_deform_fn, "block.attr.%d.attisnull", attnum);
attcheckalignblocks[attnum] =
l_bb_append_v(v_deform_fn, "block.attr.%d.attcheckalign", attnum);
attalignblocks[attnum] =
l_bb_append_v(v_deform_fn, "block.attr.%d.align", attnum);
attstoreblocks[attnum] =
l_bb_append_v(v_deform_fn, "block.attr.%d.store", attnum);
}
/*
* Check if's guaranteed the all the desired attributes are available in
* tuple. If so, we can start deforming. If not, need to make sure
* tts_values/isnull is set appropriately for columns not available in the
* tuple.
*/
if ((natts - 1) <= guaranteed_column_number)
{
/* just skip through unnecessary blocks */
LLVMBuildBr(b, b_adjust_unavail_cols);
LLVMPositionBuilderAtEnd(b, b_adjust_unavail_cols);
LLVMBuildBr(b, b_find_start);
}
else
{
LLVMValueRef v_set;
LLVMValueRef v_startset;
LLVMValueRef v_params[5];
/* branch if not all columns available */
LLVMBuildCondBr(b,
LLVMBuildICmp(b, LLVMIntULT,
v_maxatt,
l_int16_const(natts),
""),
b_adjust_unavail_cols,
b_find_start);
/* if not, memset tts_isnull of relevant cols to true */
LLVMPositionBuilderAtEnd(b, b_adjust_unavail_cols);
v_set = LLVMBuildSub(b,
l_int16_const(attnum),
v_maxatt, "");
v_startset = LLVMBuildGEP(b, v_tts_nulls, &v_maxatt, 1, "");
v_params[0] = v_startset;
v_params[1] = l_int8_const(1);
v_params[2] = LLVMBuildZExt(b, v_set, LLVMInt32Type(), "");
v_params[3] = l_int32_const(1);
v_params[4] = LLVMConstInt(LLVMInt1Type(), 0, false);
LLVMBuildCall(b, get_memset(mod),
v_params, lengthof(v_params), "");
LLVMBuildBr(b, b_find_start);
}
LLVMPositionBuilderAtEnd(b, b_find_start);
v_nvalid = LLVMBuildLoad(b, v_nvalidp, "");
/*
* Build switch to go from nvalid to the right startblock. Callers
* currently don't have the knowledge, but it'd be good for performance to
* avoid this check when it's known that the slot is empty (e.g. in scan
* nodes).
*/
if (true)
{
LLVMValueRef v_switch = LLVMBuildSwitch(b, v_nvalid,
b_dead, natts);
for (attnum = 0; attnum < natts; attnum++)
{
LLVMValueRef v_attno = l_int32_const(attnum);
LLVMAddCase(v_switch, v_attno, attcheckattnoblocks[attnum]);
}
}
else
{
/* jump from entry block to first block */
LLVMBuildBr(b, attcheckattnoblocks[0]);
}
LLVMPositionBuilderAtEnd(b, b_dead);
LLVMBuildUnreachable(b);
/*
* Iterate over each attribute that needs to be deformed, build code to
* deform it.
*/
for (attnum = 0; attnum < natts; attnum++)
{
Form_pg_attribute att = TupleDescAttr(desc, attnum);
LLVMValueRef v_incby;
int alignto;
LLVMValueRef l_attno = l_int16_const(attnum);
LLVMValueRef v_attdatap;
LLVMValueRef v_resultp;
/* build block checking whether we did all the necessary attributes */
LLVMPositionBuilderAtEnd(b, attcheckattnoblocks[attnum]);
/*
* If this is the first attribute, slot->tts_nvalid was 0. Therefore
* reset offset to 0 to, it be from a previous execution.
*/
if (attnum == 0)
{
LLVMBuildStore(b, l_sizet_const(0), v_offp);
}
/*
* Build check whether column is available (i.e. whether the tuple has
* that many columns stored). We can avoid the branch if we know
* there's a subsequent NOT NULL column.
*/
if (attnum <= guaranteed_column_number)
{
LLVMBuildBr(b, attstartblocks[attnum]);
}
else
{
LLVMValueRef v_islast;
v_islast = LLVMBuildICmp(b, LLVMIntEQ,
l_attno,
v_maxatt,
"heap_natts");
LLVMBuildCondBr(b, v_islast, b_out, attstartblocks[attnum]);
}
LLVMPositionBuilderAtEnd(b, attstartblocks[attnum]);
/* check for nulls if necessary */
if (!att->attnotnull)
{
LLVMBasicBlockRef b_ifnotnull;
LLVMBasicBlockRef b_ifnull;
LLVMBasicBlockRef b_next;
LLVMValueRef v_attisnull;
LLVMValueRef v_nullbyteno;
LLVMValueRef v_nullbytemask;
LLVMValueRef v_nullbyte;
LLVMValueRef v_nullbit;
b_ifnotnull = attcheckalignblocks[attnum];
b_ifnull = attisnullblocks[attnum];
if (attnum + 1 == natts)
b_next = b_out;
else
b_next = attcheckattnoblocks[attnum + 1];
v_nullbyteno = l_int32_const(attnum >> 3);
v_nullbytemask = l_int8_const(1 << ((attnum) & 0x07));
v_nullbyte = l_load_gep1(b, v_bits, v_nullbyteno, "attnullbyte");
v_nullbit = LLVMBuildICmp(b,
LLVMIntEQ,
LLVMBuildAnd(b, v_nullbyte, v_nullbytemask, ""),
l_int8_const(0),
"attisnull");
v_attisnull = LLVMBuildAnd(b, v_hasnulls, v_nullbit, "");
LLVMBuildCondBr(b, v_attisnull, b_ifnull, b_ifnotnull);
LLVMPositionBuilderAtEnd(b, b_ifnull);
/* store null-byte */
LLVMBuildStore(b,
l_int8_const(1),
LLVMBuildGEP(b, v_tts_nulls, &l_attno, 1, ""));
/* store zero datum */
LLVMBuildStore(b,
l_sizet_const(0),
LLVMBuildGEP(b, v_tts_values, &l_attno, 1, ""));
LLVMBuildBr(b, b_next);
attguaranteedalign = false;
}
else
{
/* nothing to do */
LLVMBuildBr(b, attcheckalignblocks[attnum]);
LLVMPositionBuilderAtEnd(b, attisnullblocks[attnum]);
LLVMBuildBr(b, attcheckalignblocks[attnum]);
}
LLVMPositionBuilderAtEnd(b, attcheckalignblocks[attnum]);
/* determine required alignment */
if (att->attalign == 'i')
alignto = ALIGNOF_INT;
else if (att->attalign == 'c')
alignto = 1;
else if (att->attalign == 'd')
alignto = ALIGNOF_DOUBLE;
else if (att->attalign == 's')
alignto = ALIGNOF_SHORT;
else
{
elog(ERROR, "unknown alignment");
alignto = 0;
}
/* ------
* Even if alignment is required, we can skip doing it if provably
* unnecessary:
* - first column is guaranteed to be aligned
* - columns following a NOT NULL fixed width datum have known
* alignment, can skip alignment computation if that known alignment
* is compatible with current column.
* ------
*/
if (alignto > 1 &&
(known_alignment < 0 || known_alignment != TYPEALIGN(alignto, known_alignment)))
{
/*
* When accessing a varlena field we have to "peek" to see if we
* are looking at a pad byte or the first byte of a 1-byte-header
* datum. A zero byte must be either a pad byte, or the first
* byte of a correctly aligned 4-byte length word; in either case
* we can align safely. A non-zero byte must be either a 1-byte
* length word, or the first byte of a correctly aligned 4-byte
* length word; in either case we need not align.
*/
if (att->attlen == -1)
{
LLVMValueRef v_possible_padbyte;
LLVMValueRef v_ispad;
LLVMValueRef v_off;
/* don't know if short varlena or not */
attguaranteedalign = false;
v_off = LLVMBuildLoad(b, v_offp, "");
v_possible_padbyte =
l_load_gep1(b, v_tupdata_base, v_off, "padbyte");
v_ispad =
LLVMBuildICmp(b, LLVMIntEQ,
v_possible_padbyte, l_int8_const(0),
"ispadbyte");
LLVMBuildCondBr(b, v_ispad,
attalignblocks[attnum],
attstoreblocks[attnum]);
}
else
{
LLVMBuildBr(b, attalignblocks[attnum]);
}
LLVMPositionBuilderAtEnd(b, attalignblocks[attnum]);
/* translation of alignment code (cf TYPEALIGN()) */
{
LLVMValueRef v_off_aligned;
LLVMValueRef v_off = LLVMBuildLoad(b, v_offp, "");
/* ((ALIGNVAL) - 1) */
LLVMValueRef v_alignval = l_sizet_const(alignto - 1);
/* ((uintptr_t) (LEN) + ((ALIGNVAL) - 1)) */
LLVMValueRef v_lh = LLVMBuildAdd(b, v_off, v_alignval, "");
/* ~((uintptr_t) ((ALIGNVAL) - 1)) */
LLVMValueRef v_rh = l_sizet_const(~(alignto - 1));
v_off_aligned = LLVMBuildAnd(b, v_lh, v_rh, "aligned_offset");
LLVMBuildStore(b, v_off_aligned, v_offp);
}
/*
* As alignment either was unnecessary or has been performed, we
* now know the current alignment. This is only safe because this
* value isn't used for varlena and nullable columns.
*/
if (known_alignment >= 0)
{
Assert(known_alignment != 0);
known_alignment = TYPEALIGN(alignto, known_alignment);
}
LLVMBuildBr(b, attstoreblocks[attnum]);
LLVMPositionBuilderAtEnd(b, attstoreblocks[attnum]);
}
else
{
LLVMPositionBuilderAtEnd(b, attcheckalignblocks[attnum]);
LLVMBuildBr(b, attalignblocks[attnum]);
LLVMPositionBuilderAtEnd(b, attalignblocks[attnum]);
LLVMBuildBr(b, attstoreblocks[attnum]);
}
LLVMPositionBuilderAtEnd(b, attstoreblocks[attnum]);
/*
* Store the current offset if known to be constant. That allows LLVM
* to generate better code. Without that LLVM can't figure out that
* the offset might be constant due to the jumps for previously
* decoded columns.
*/
if (attguaranteedalign)
{
Assert(known_alignment >= 0);
LLVMBuildStore(b, l_sizet_const(known_alignment), v_offp);
}
/* compute what following columns are aligned to */
if (att->attlen < 0)
{
/* can't guarantee any alignment after variable length field */
known_alignment = -1;
attguaranteedalign = false;
}
else if (att->attnotnull && attguaranteedalign && known_alignment >= 0)
{
/*
* If the offset to the column was previously known a NOT NULL &
* fixed width column guarantees that alignment is just the
* previous alignment plus column width.
*/
Assert(att->attlen > 0);
known_alignment += att->attlen;
}
else if (att->attnotnull && (att->attlen % alignto) == 0)
{
/*
* After a NOT NULL fixed-width column with a length that is a
* multiple of its alignment requirement, we know the following
* column is aligned to at least the current column's alignment.
*/
Assert(att->attlen > 0);
known_alignment = alignto;
Assert(known_alignment > 0);
attguaranteedalign = false;
}
else
{
known_alignment = -1;
attguaranteedalign = false;
}
/* compute address to load data from */
{
LLVMValueRef v_off = LLVMBuildLoad(b, v_offp, "");
v_attdatap =
LLVMBuildGEP(b, v_tupdata_base, &v_off, 1, "");
}
/* compute address to store value at */
v_resultp = LLVMBuildGEP(b, v_tts_values, &l_attno, 1, "");
/* store null-byte (false) */
LLVMBuildStore(b, l_int8_const(0),
LLVMBuildGEP(b, v_tts_nulls, &l_attno, 1, ""));
/*
* Store datum. For byval datums copy the value, extend to Datum's
* width, and store. For byref types, store pointer to data.
*/
if (att->attbyval)
{
LLVMValueRef v_tmp_loaddata;
LLVMTypeRef vartypep =
LLVMPointerType(LLVMIntType(att->attlen * 8), 0);
v_tmp_loaddata =
LLVMBuildPointerCast(b, v_attdatap, vartypep, "");
v_tmp_loaddata = LLVMBuildLoad(b, v_tmp_loaddata, "attr_byval");
v_tmp_loaddata = LLVMBuildZExt(b, v_tmp_loaddata, TypeSizeT, "");
LLVMBuildStore(b, v_tmp_loaddata, v_resultp);
}
else
{
LLVMValueRef v_tmp_loaddata;
/* store pointer */
v_tmp_loaddata =
LLVMBuildPtrToInt(b,
v_attdatap,
TypeSizeT,
"attr_ptr");
LLVMBuildStore(b, v_tmp_loaddata, v_resultp);
}
/* increment data pointer */
if (att->attlen > 0)
{
v_incby = l_sizet_const(att->attlen);
}
else if (att->attlen == -1)
{
v_incby = LLVMBuildCall(b,
llvm_get_decl(mod, FuncVarsizeAny),
&v_attdatap, 1,
"varsize_any");
l_callsite_ro(v_incby);
l_callsite_alwaysinline(v_incby);
}
else if (att->attlen == -2)
{
v_incby = LLVMBuildCall(b,
llvm_get_decl(mod, FuncStrlen),
&v_attdatap, 1, "strlen");
l_callsite_ro(v_incby);
/* add 1 for NUL byte */
v_incby = LLVMBuildAdd(b, v_incby, l_sizet_const(1), "");
}
else
{
Assert(false);
v_incby = NULL; /* silence compiler */
}
if (attguaranteedalign)
{
Assert(known_alignment >= 0);
LLVMBuildStore(b, l_sizet_const(known_alignment), v_offp);
}
else
{
LLVMValueRef v_off = LLVMBuildLoad(b, v_offp, "");
v_off = LLVMBuildAdd(b, v_off, v_incby, "increment_offset");
LLVMBuildStore(b, v_off, v_offp);
}
/*
* jump to next block, unless last possible column, or all desired
* (available) attributes have been fetched.
*/
if (attnum + 1 == natts)
{
/* jump out */
LLVMBuildBr(b, b_out);
}
else
{
LLVMBuildBr(b, attcheckattnoblocks[attnum + 1]);
}
}
/* build block that returns */
LLVMPositionBuilderAtEnd(b, b_out);
{
LLVMValueRef v_off = LLVMBuildLoad(b, v_offp, "");
LLVMBuildStore(b, l_int32_const(natts), v_nvalidp);
v_off = LLVMBuildTrunc(b, v_off, LLVMInt32Type(), "");
LLVMBuildStore(b, v_off, v_slotoffp);
LLVMBuildStore(b, l_int8_const(1), v_slowp);
LLVMBuildRetVoid(b);
}
LLVMDisposeBuilder(b);
return v_deform_fn;
}
static LLVMValueRef
get_memset(LLVMModuleRef mod)
{
LLVMTypeRef sig;
LLVMValueRef v_fn;
LLVMTypeRef param_types[5];
const char *nm = "llvm.memset.p0i8.i32";
v_fn = LLVMGetNamedFunction(mod, nm);
if (v_fn)
return v_fn;
param_types[0] = LLVMPointerType(LLVMInt8Type(), 0); /* addr */
param_types[1] = LLVMInt8Type(); /* val */
param_types[2] = LLVMInt32Type(); /* len */
param_types[3] = LLVMInt32Type(); /* align */
param_types[4] = LLVMInt1Type(); /* volatile */
sig = LLVMFunctionType(LLVMVoidType(), param_types, lengthof(param_types), 0);
v_fn = LLVMAddFunction(mod, nm, sig);
LLVMSetFunctionCallConv(v_fn, LLVMCCallConv);
Assert(LLVMGetIntrinsicID(v_fn));
return v_fn;
}
......@@ -272,6 +272,7 @@ llvm_compile_expr(ExprState *state)
case EEOP_OUTER_FETCHSOME:
case EEOP_SCAN_FETCHSOME:
{
TupleDesc desc = NULL;
LLVMValueRef v_slot;
LLVMBasicBlockRef b_fetch;
LLVMValueRef v_nvalid;
......@@ -279,17 +280,38 @@ llvm_compile_expr(ExprState *state)
b_fetch = l_bb_before_v(opblocks[i + 1],
"op.%d.fetch", i);
if (op->d.fetch.known_desc)
desc = op->d.fetch.known_desc;
if (opcode == EEOP_INNER_FETCHSOME)
{
PlanState *is = innerPlanState(parent);
v_slot = v_innerslot;
if (!desc &&
is &&
is->ps_ResultTupleSlot &&
is->ps_ResultTupleSlot->tts_fixedTupleDescriptor)
desc = is->ps_ResultTupleSlot->tts_tupleDescriptor;
}
else if (opcode == EEOP_OUTER_FETCHSOME)
{
PlanState *os = outerPlanState(parent);
v_slot = v_outerslot;
if (!desc &&
os &&
os->ps_ResultTupleSlot &&
os->ps_ResultTupleSlot->tts_fixedTupleDescriptor)
desc = os->ps_ResultTupleSlot->tts_tupleDescriptor;
}
else
{
v_slot = v_scanslot;
if (!desc && parent)
desc = parent->scandesc;
}
/*
......@@ -308,6 +330,27 @@ llvm_compile_expr(ExprState *state)
LLVMPositionBuilderAtEnd(b, b_fetch);
/*
* If the tupledesc of the to-be-deformed tuple is known,
* and JITing of deforming is enabled, build deform
* function specific to tupledesc and the exact number of
* to-be-extracted attributes.
*/
if (desc && (context->base.flags & PGJIT_DEFORM))
{
LLVMValueRef params[1];
LLVMValueRef l_jit_deform;
l_jit_deform =
slot_compile_deform(context, desc,
op->d.fetch.last_var);
params[0] = v_slot;
LLVMBuildCall(b, l_jit_deform,
params, lengthof(params), "");
}
else
{
LLVMValueRef params[2];
......
......@@ -96,6 +96,7 @@ FunctionReturningBool(void)
void *referenced_functions[] =
{
strlen,
varsize_any,
slot_getsomeattrs,
heap_getsysattr,
MakeExpandedObjectReadOnlyInternal,
......
......@@ -550,6 +550,8 @@ standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
*/
if (jit_expressions)
result->jitFlags |= PGJIT_EXPR;
if (jit_tuple_deforming)
result->jitFlags |= PGJIT_DEFORM;
}
return result;
......
......@@ -1788,6 +1788,17 @@ static struct config_bool ConfigureNamesBool[] =
NULL, NULL, NULL
},
{
{"jit_tuple_deforming", PGC_USERSET, DEVELOPER_OPTIONS,
gettext_noop("Allow JIT compilation of tuple deforming."),
NULL,
GUC_NOT_IN_SAMPLE
},
&jit_tuple_deforming,
true,
NULL, NULL, NULL
},
/* End-of-list marker */
{
{NULL, 0, 0, NULL, NULL}, NULL, false, NULL, NULL, NULL
......
......@@ -829,5 +829,6 @@ extern void heap_free_minimal_tuple(MinimalTuple mtup);
extern MinimalTuple heap_copy_minimal_tuple(MinimalTuple mtup);
extern HeapTuple heap_tuple_from_minimal_tuple(MinimalTuple mtup);
extern MinimalTuple minimal_tuple_from_heap_tuple(HeapTuple htup);
extern size_t varsize_any(void *p);
#endif /* HTUP_DETAILS_H */
......@@ -262,6 +262,7 @@ typedef struct ExprEvalStep
{
/* attribute number up to which to fetch (inclusive) */
int last_var;
TupleDesc known_desc;
} fetch;
/* for EEOP_INNER/OUTER/SCAN_[SYS]VAR[_FIRST] */
......
......@@ -21,6 +21,7 @@
#define PGJIT_OPT3 1 << 1
/* reserved for PGJIT_INLINE */
#define PGJIT_EXPR 1 << 3
#define PGJIT_DEFORM 1 << 4
typedef struct JitContext
......@@ -67,6 +68,7 @@ extern bool jit_debugging_support;
extern bool jit_dump_bitcode;
extern bool jit_expressions;
extern bool jit_profiling_support;
extern bool jit_tuple_deforming;
extern double jit_above_cost;
extern double jit_optimize_above_cost;
......
......@@ -32,6 +32,7 @@ extern "C"
#include "fmgr.h"
#include "jit/jit.h"
#include "nodes/pg_list.h"
#include "access/tupdesc.h"
typedef struct LLVMJitContext
......@@ -75,6 +76,7 @@ extern LLVMTypeRef StructAggStatePerGroupData;
extern LLVMValueRef AttributeTemplate;
extern LLVMValueRef FuncStrlen;
extern LLVMValueRef FuncVarsizeAny;
extern LLVMValueRef FuncSlotGetsomeattrs;
extern LLVMValueRef FuncHeapGetsysattr;
extern LLVMValueRef FuncMakeExpandedObjectReadOnlyInternal;
......@@ -107,6 +109,7 @@ extern LLVMValueRef llvm_function_reference(LLVMJitContext *context,
****************************************************************************
*/
extern bool llvm_compile_expr(struct ExprState *state);
extern LLVMValueRef slot_compile_deform(struct LLVMJitContext *context, TupleDesc desc, int natts);
/*
****************************************************************************
......
......@@ -920,6 +920,7 @@ typedef struct PlanState
ExprState *qual; /* boolean qual condition */
struct PlanState *lefttree; /* input plan tree(s) */
struct PlanState *righttree;
List *initPlan; /* Init SubPlanState nodes (un-correlated expr
* subselects) */
List *subPlan; /* SubPlanState nodes in my expressions */
......@@ -935,6 +936,13 @@ typedef struct PlanState
TupleTableSlot *ps_ResultTupleSlot; /* slot for my result tuples */
ExprContext *ps_ExprContext; /* node's expression-evaluation context */
ProjectionInfo *ps_ProjInfo; /* info for doing tuple projection */
/*
* Scanslot's descriptor if known. This is a bit of a hack, but otherwise
* it's hard for expression compilation to optimize based on the
* descriptor, without encoding knowledge about all executor nodes.
*/
TupleDesc scandesc;
} PlanState;
/* ----------------
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment