Commit 2a8d3d83 authored by Tom Lane's avatar Tom Lane

R-tree is dead ... long live GiST.

parent 645adf5d
......@@ -10,7 +10,7 @@
#include <math.h>
#include "access/gist.h"
#include "access/rtree.h"
#include "access/skey.h"
#include "lib/stringinfo.h"
#include "utils/builtins.h"
......
......@@ -4,7 +4,7 @@
#include "access/gist.h"
#include "access/itup.h"
#include "access/rtree.h"
#include "access/skey.h"
#include "catalog/pg_type.h"
#include "utils/array.h"
#include "utils/builtins.h"
......
......@@ -5,8 +5,7 @@
#include "ltree.h"
#include "access/gist.h"
#include "access/rtree.h"
#include "access/nbtree.h"
#include "access/skey.h"
#include "utils/array.h"
#include "crc32.h"
......
......@@ -5,8 +5,8 @@
#include "ltree.h"
#include "access/gist.h"
#include "access/rtree.h"
#include "access/nbtree.h"
#include "access/skey.h"
#include "utils/array.h"
#include "crc32.h"
......
......@@ -2,13 +2,10 @@
#include "access/gist.h"
#include "access/itup.h"
#include "access/rtree.h"
#include "utils/elog.h"
#include "utils/palloc.h"
#include "access/tuptoaster.h"
#include "storage/bufpage.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "storage/bufpage.h"
#include "access/tuptoaster.h"
PG_FUNCTION_INFO_V1(gtrgm_in);
Datum gtrgm_in(PG_FUNCTION_ARGS);
......
......@@ -9,7 +9,7 @@
#include <float.h>
#include "access/gist.h"
#include "access/rtree.h"
#include "access/skey.h"
#include "utils/builtins.h"
#include "segdata.h"
......@@ -53,7 +53,7 @@ bool *gseg_same(SEG * b1, SEG * b2, bool *result);
/*
** R-tree suport functions
** R-tree support functions
*/
bool seg_same(SEG * a, SEG * b);
bool seg_contains_int(SEG * a, int *b);
......
......@@ -4,11 +4,10 @@
#include "access/gist.h"
#include "access/itup.h"
#include "access/rtree.h"
#include "access/tuptoaster.h"
#include "storage/bufpage.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "storage/bufpage.h"
#include "access/tuptoaster.h"
#include "tsvector.h"
#include "query.h"
......
......@@ -15,10 +15,9 @@
#include "access/gist.h"
#include "access/itup.h"
#include "access/rtree.h"
#include "storage/bufpage.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "storage/bufpage.h"
#include "ts_cfg.h"
#include "tsvector.h"
......
......@@ -9,7 +9,6 @@
#include "access/gist.h"
#include "access/itup.h"
#include "access/rtree.h"
#include "storage/bufpage.h"
#include "utils/array.h"
#include "utils/builtins.h"
......
<!--
$PostgreSQL: pgsql/doc/src/sgml/backup.sgml,v 2.75 2005/11/04 23:13:59 petere Exp $
$PostgreSQL: pgsql/doc/src/sgml/backup.sgml,v 2.76 2005/11/07 17:36:44 tgl Exp $
-->
<chapter id="backup">
<title>Backup and Restore</title>
......@@ -1129,8 +1129,8 @@ restore_command = 'copy /mnt/server/archivedir/%f "%p"' # Windows
<itemizedlist>
<listitem>
<para>
Operations on hash and R-tree indexes are
not presently WAL-logged, so replay will not update these index types.
Operations on hash indexes are
not presently WAL-logged, so replay will not update these indexes.
The recommended workaround is to manually <command>REINDEX</> each
such index after completing a recovery operation.
</para>
......
<!--
$PostgreSQL: pgsql/doc/src/sgml/geqo.sgml,v 1.33 2005/10/25 13:38:09 momjian Exp $
$PostgreSQL: pgsql/doc/src/sgml/geqo.sgml,v 1.34 2005/11/07 17:36:44 tgl Exp $
Genetic Optimizer
-->
......@@ -51,8 +51,8 @@ Genetic Optimizer
caused by the support of a variety of <firstterm>join
methods</firstterm> (e.g., nested loop, hash join, merge join in
<productname>PostgreSQL</productname>) to process individual joins
and a diversity of <firstterm>indexes</firstterm> (e.g., R-tree,
B-tree, hash in <productname>PostgreSQL</productname>) as access
and a diversity of <firstterm>indexes</firstterm> (e.g.,
B-tree, hash, GiST in <productname>PostgreSQL</productname>) as access
paths for relations.
</para>
......
<!--
$PostgreSQL: pgsql/doc/src/sgml/gist.sgml,v 1.24 2005/11/04 23:14:00 petere Exp $
$PostgreSQL: pgsql/doc/src/sgml/gist.sgml,v 1.25 2005/11/07 17:36:44 tgl Exp $
-->
<chapter id="GiST">
<title>GiST Indexes</title>
<sect1 id="gist-intro">
<title>Introduction</title>
<para>
<indexterm>
<primary>index</primary>
<secondary>GiST</secondary>
</indexterm>
<indexterm>
<primary>GiST</primary>
<see>index</see>
</indexterm>
<sect1 id="gist-intro">
<title>Introduction</title>
<para>
<acronym>GiST</acronym> stands for Generalized Search Tree. It is a
balanced, tree-structured access method, that acts as a base template in
which to implement arbitrary indexing schemes. B+-trees, R-trees and many
which to implement arbitrary indexing schemes. B-trees, R-trees and many
other indexing schemes can be implemented in <acronym>GiST</acronym>.
</para>
......@@ -60,17 +57,17 @@ $PostgreSQL: pgsql/doc/src/sgml/gist.sgml,v 1.24 2005/11/04 23:14:00 petere Exp
<para>
This extensibility should not be confused with the extensibility of the
other standard search trees in terms of the data they can handle. For
example, <productname>PostgreSQL</productname> supports extensible B+-trees
and R-trees. That means that you can use
<productname>PostgreSQL</productname> to build a B+-tree or R-tree over any
data type you want. But B+-trees only support range predicates
example, <productname>PostgreSQL</productname> supports extensible B-trees
and hash indexes. That means that you can use
<productname>PostgreSQL</productname> to build a B-tree or hash over any
data type you want. But B-trees only support range predicates
(<literal>&lt;</literal>, <literal>=</literal>, <literal>&gt;</literal>),
and R-trees only support n-D range queries (contains, contained, equals).
and hash indexes only support equality queries.
</para>
<para>
So if you index, say, an image collection with a
<productname>PostgreSQL</productname> B+-tree, you can only issue queries
<productname>PostgreSQL</productname> B-tree, you can only issue queries
such as <quote>is imagex equal to imagey</quote>, <quote>is imagex less
than imagey</quote> and <quote>is imagex greater than imagey</quote>?
Depending on how you define <quote>equals</quote>, <quote>less than</quote>
......@@ -84,7 +81,7 @@ $PostgreSQL: pgsql/doc/src/sgml/gist.sgml,v 1.24 2005/11/04 23:14:00 petere Exp
All it takes to get a <acronym>GiST</acronym> access method up and running
is to implement seven user-defined methods, which define the behavior of
keys in the tree. Of course these methods have to be pretty fancy to
support fancy queries, but for all the standard queries (B+-trees,
support fancy queries, but for all the standard queries (B-trees,
R-trees, etc.) they're relatively straightforward. In short,
<acronym>GiST</acronym> combines extensibility along with generality, code
reuse, and a clean interface.
......
<!-- $PostgreSQL: pgsql/doc/src/sgml/indices.sgml,v 1.54 2005/11/04 23:14:00 petere Exp $ -->
<!-- $PostgreSQL: pgsql/doc/src/sgml/indices.sgml,v 1.55 2005/11/07 17:36:44 tgl Exp $ -->
<chapter id="indexes">
<title id="indexes-title">Indexes</title>
......@@ -104,7 +104,7 @@ CREATE INDEX test1_id_index ON test1 (id);
<para>
<productname>PostgreSQL</productname> provides several index types:
B-tree, R-tree, Hash, and GiST. Each index type uses a different
B-tree, Hash, and GiST. Each index type uses a different
algorithm that is best suited to different types of queries.
By default, the <command>CREATE INDEX</command> command will create a
B-tree index, which fits the most common situations.
......@@ -152,43 +152,6 @@ CREATE INDEX test1_id_index ON test1 (id);
See <xref linkend="indexes-opclass"> below.
</para>
<para>
<indexterm>
<primary>index</primary>
<secondary>R-tree</secondary>
</indexterm>
<indexterm>
<primary>R-tree</primary>
<see>index</see>
</indexterm>
R-tree indexes are suited for queries on two-dimensional spatial data.
To create an R-tree index, use a command of the form
<synopsis>
CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable> USING rtree (<replaceable>column</replaceable>);
</synopsis>
The <productname>PostgreSQL</productname> query planner will
consider using an R-tree index whenever an indexed column is
involved in a comparison using one of these operators:
<simplelist>
<member><literal>&lt;&lt;</literal></member>
<member><literal>&amp;&lt;</literal></member>
<member><literal>&amp;&gt;</literal></member>
<member><literal>&gt;&gt;</literal></member>
<member><literal>&lt;&lt;|</literal></member>
<member><literal>&amp;&lt;|</literal></member>
<member><literal>|&amp;&gt;</literal></member>
<member><literal>|&gt;&gt;</literal></member>
<member><literal>~</literal></member>
<member><literal>@</literal></member>
<member><literal>~=</literal></member>
<member><literal>&amp;&amp;</literal></member>
</simplelist>
(See <xref linkend="functions-geometry"> for the meaning of
these operators.)
</para>
<para>
<indexterm>
<primary>index</primary>
......@@ -208,18 +171,6 @@ CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable>
</synopsis>
</para>
<para>
GiST indexes are not a single kind of index, but rather an infrastructure
within which many different indexing strategies can be implemented.
Accordingly, the particular operators with which a GiST index can be
used vary depending on the indexing strategy (the <firstterm>operator
class</>). The standard distribution of
<productname>PostgreSQL</productname> includes GiST operator classes
equivalent to the R-tree operator classes, and many other GiST operator
classes are available in the <literal>contrib</> collection or as separate
projects. For more information see <xref linkend="GiST">.
</para>
<note>
<para>
Testing has shown <productname>PostgreSQL</productname>'s hash
......@@ -230,21 +181,47 @@ CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable>
after a database crash.
For these reasons, hash index use is presently discouraged.
</para>
</note>
<para>
Similarly, R-tree indexes do not seem to have any performance
advantages compared to the equivalent operations of GiST indexes.
Like hash indexes, they are not WAL-logged and may need
reindexing after a database crash.
</para>
<indexterm>
<primary>index</primary>
<secondary>GiST</secondary>
</indexterm>
<indexterm>
<primary>GiST</primary>
<see>index</see>
</indexterm>
GiST indexes are not a single kind of index, but rather an infrastructure
within which many different indexing strategies can be implemented.
Accordingly, the particular operators with which a GiST index can be
used vary depending on the indexing strategy (the <firstterm>operator
class</>). As an example, the standard distribution of
<productname>PostgreSQL</productname> includes GiST operator classes
for several two-dimensional geometric data types, which support indexed
queries using these operators:
<para>
While the problems with hash indexes may be fixed eventually,
it is likely that the R-tree index type will be retired in a future
release. Users are encouraged to migrate applications that use R-tree
indexes to GiST indexes.
<simplelist>
<member><literal>&lt;&lt;</literal></member>
<member><literal>&amp;&lt;</literal></member>
<member><literal>&amp;&gt;</literal></member>
<member><literal>&gt;&gt;</literal></member>
<member><literal>&lt;&lt;|</literal></member>
<member><literal>&amp;&lt;|</literal></member>
<member><literal>|&amp;&gt;</literal></member>
<member><literal>|&gt;&gt;</literal></member>
<member><literal>~</literal></member>
<member><literal>@</literal></member>
<member><literal>~=</literal></member>
<member><literal>&amp;&amp;</literal></member>
</simplelist>
(See <xref linkend="functions-geometry"> for the meaning of
these operators.)
Many other GiST operator
classes are available in the <literal>contrib</> collection or as separate
projects. For more information see <xref linkend="GiST">.
</para>
</note>
</sect1>
......
<!--
$PostgreSQL: pgsql/doc/src/sgml/mvcc.sgml,v 2.52 2005/10/21 01:41:28 tgl Exp $
$PostgreSQL: pgsql/doc/src/sgml/mvcc.sgml,v 2.53 2005/11/07 17:36:44 tgl Exp $
-->
<chapter id="mvcc">
......@@ -991,18 +991,6 @@ UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
R-tree indexes
</term>
<listitem>
<para>
Share/exclusive index-level locks are used for read/write access.
Locks are released after the entire command is done.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
......@@ -1012,8 +1000,7 @@ UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;
indexes, they are the recommended index type for concurrent
applications that need to index scalar data. When dealing with
non-scalar data, B-trees are not useful, and GiST indexes should
be used instead. R-tree indexes are deprecated and are likely
to disappear entirely in a future release.
be used instead.
</para>
</sect1>
</chapter>
......
<!--
$PostgreSQL: pgsql/doc/src/sgml/ref/create_index.sgml,v 1.51 2005/01/04 00:39:53 tgl Exp $
$PostgreSQL: pgsql/doc/src/sgml/ref/create_index.sgml,v 1.52 2005/11/07 17:36:44 tgl Exp $
PostgreSQL documentation
-->
......@@ -34,7 +34,7 @@ CREATE [ UNIQUE ] INDEX <replaceable class="parameter">name</replaceable> ON <re
<command>CREATE INDEX</command> constructs an index <replaceable
class="parameter">index_name</replaceable> on the specified table.
Indexes are primarily used to enhance database performance (though
inappropriate use will result in slower performance).
inappropriate use can result in slower performance).
</para>
<para>
......@@ -55,11 +55,7 @@ CREATE [ UNIQUE ] INDEX <replaceable class="parameter">name</replaceable> ON <re
<para>
<productname>PostgreSQL</productname> provides the index methods
B-tree, R-tree, hash, and GiST. The B-tree index method is an
implementation of Lehman-Yao high-concurrency B-trees. The R-tree
index method implements standard R-trees using Guttman's quadratic
split algorithm. The hash index method is an implementation of
Litwin's linear hashing. Users can also define their own index
B-tree, hash, and GiST. Users can also define their own index
methods, but that is fairly complicated.
</para>
......@@ -137,9 +133,9 @@ CREATE [ UNIQUE ] INDEX <replaceable class="parameter">name</replaceable> ON <re
<term><replaceable class="parameter">method</replaceable></term>
<listitem>
<para>
The name of the method to be used for the index. Choices are
The name of the index method to be used. Choices are
<literal>btree</literal>, <literal>hash</literal>,
<literal>rtree</literal>, and <literal>gist</literal>. The
and <literal>gist</literal>. The
default method is <literal>btree</literal>.
</para>
</listitem>
......@@ -243,6 +239,15 @@ CREATE [ UNIQUE ] INDEX <replaceable class="parameter">name</replaceable> ON <re
The best way to use indexes in such cases is to create a partial index
using an <literal>IS NULL</> predicate.
</para>
<para>
Prior releases of <productname>PostgreSQL</productname> also had an
R-tree index method. This method has been removed because
it had no significant advantages over the GiST method.
If <literal>USING rtree</> is specified, <command>CREATE INDEX</>
will interpret it as <literal>USING gist</>, to simplify conversion
of old databases to GiST.
</para>
</refsect1>
<refsect1>
......@@ -270,13 +275,13 @@ CREATE INDEX code_idx ON films(code) TABLESPACE indexspace;
Is this example correct?
</comment>
<para>
To create a R-tree index on a point attribute so that we
To create a GiST index on a point attribute so that we
can efficiently use box operators on the result of the
conversion function:
</para>
<programlisting>
CREATE INDEX pointloc
ON points USING RTREE (point2box(location) box_ops);
ON points USING GIST (point2box(location) box_ops);
SELECT * FROM points
WHERE point2box(points.pointloc) = boxes.box;
</programlisting>
......
<!--
$PostgreSQL: pgsql/doc/src/sgml/xindex.sgml,v 1.41 2005/07/19 01:27:59 neilc Exp $
$PostgreSQL: pgsql/doc/src/sgml/xindex.sgml,v 1.42 2005/11/07 17:36:44 tgl Exp $
-->
<sect1 id="xindex">
......@@ -170,8 +170,12 @@ $PostgreSQL: pgsql/doc/src/sgml/xindex.sgml,v 1.41 2005/07/19 01:27:59 neilc Exp
</table>
<para>
R-tree indexes express relationships in two-dimensional space.
They use twelve strategies, shown in
GiST indexes are even more flexible: they do not have a fixed set of
strategies at all. Instead, the <quote>consistency</> support routine
of each particular GiST operator class interprets the strategy numbers
however it likes. As an example, several of the built-in GiST index
operator classes index two-dimensional geometric objects, providing
the <quote>R-tree</> strategies shown in
<xref linkend="xindex-rtree-strat-table">. Four of these are true
two-dimensional tests (overlaps, same, contains, contained by);
four of them consider only the X direction; and the other four
......@@ -179,7 +183,7 @@ $PostgreSQL: pgsql/doc/src/sgml/xindex.sgml,v 1.41 2005/07/19 01:27:59 neilc Exp
</para>
<table tocentry="1" id="xindex-rtree-strat-table">
<title>R-tree Strategies</title>
<title>GiST Two-Dimensional <quote>R-tree</> Strategies</title>
<tgroup cols="2">
<thead>
<row>
......@@ -240,13 +244,6 @@ $PostgreSQL: pgsql/doc/src/sgml/xindex.sgml,v 1.41 2005/07/19 01:27:59 neilc Exp
</tgroup>
</table>
<para>
GiST indexes are even more flexible: they do not have a fixed set of
strategies at all. Instead, the <quote>consistency</> support routine
of each particular GiST operator class interprets the strategy numbers
however it likes.
</para>
<para>
Note that all strategy operators return Boolean values. In
practice, all operators defined as index method strategies must
......@@ -274,9 +271,8 @@ $PostgreSQL: pgsql/doc/src/sgml/xindex.sgml,v 1.41 2005/07/19 01:27:59 neilc Exp
additional support routines in order to work. For example, the B-tree
index method must be able to compare two keys and determine whether one
is greater than, equal to, or less than the other. Similarly, the
R-tree index method must be able to compute
intersections, unions, and sizes of rectangles. These
operations do not correspond to operators used in qualifications in
hash index method must be able to compute hash codes for key values.
These operations do not correspond to operators used in qualifications in
SQL commands; they are administrative routines used by
the index methods, internally.
</para>
......@@ -339,37 +335,6 @@ $PostgreSQL: pgsql/doc/src/sgml/xindex.sgml,v 1.41 2005/07/19 01:27:59 neilc Exp
</tgroup>
</table>
<para>
R-tree indexes require three support functions,
shown in <xref linkend="xindex-rtree-support-table">.
</para>
<table tocentry="1" id="xindex-rtree-support-table">
<title>R-tree Support Functions</title>
<tgroup cols="2">
<thead>
<row>
<entry>Function</entry>
<entry>Support Number</entry>
</row>
</thead>
<tbody>
<row>
<entry>union</entry>
<entry>1</entry>
</row>
<row>
<entry>intersection</entry>
<entry>2</entry>
</row>
<row>
<entry>size</entry>
<entry>3</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
GiST indexes require seven support functions,
shown in <xref linkend="xindex-gist-support-table">.
......@@ -746,7 +711,7 @@ SELECT * FROM table WHERE integer_column &lt; 4;
</programlisting>
can be satisfied exactly by a B-tree index on the integer column.
But there are cases where an index is useful as an inexact guide to
the matching rows. For example, if an R-tree index stores only
the matching rows. For example, if a GiST index stores only
bounding boxes for objects, then it cannot exactly satisfy a <literal>WHERE</>
condition that tests overlap between nonrectangular objects such as
polygons. Yet we could use the index to find objects whose bounding
......
#
# Makefile for the access methods module
#
# $PostgreSQL: pgsql/src/backend/access/Makefile,v 1.9 2003/11/29 19:51:39 pgsql Exp $
# $PostgreSQL: pgsql/src/backend/access/Makefile,v 1.10 2005/11/07 17:36:44 tgl Exp $
#
subdir = src/backend/access
top_builddir = ../../..
include $(top_builddir)/src/Makefile.global
SUBDIRS := common gist hash heap index nbtree rtree transam
SUBDIRS := common gist hash heap index nbtree transam
SUBDIROBJS := $(SUBDIRS:%=%/SUBSYS.o)
all: SUBSYS.o
......
......@@ -10,7 +10,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/gist/gistproc.c,v 1.3 2005/10/15 02:49:08 momjian Exp $
* $PostgreSQL: pgsql/src/backend/access/gist/gistproc.c,v 1.4 2005/11/07 17:36:44 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -18,7 +18,7 @@
#include "access/gist.h"
#include "access/itup.h"
#include "access/rtree.h"
#include "access/skey.h"
#include "utils/geo_decls.h"
......@@ -40,6 +40,47 @@ static bool rtree_internal_consistent(BOX *key, BOX *query,
* Box ops
**************************************************/
static Datum
rt_box_union(PG_FUNCTION_ARGS)
{
BOX *a = PG_GETARG_BOX_P(0);
BOX *b = PG_GETARG_BOX_P(1);
BOX *n;
n = (BOX *) palloc(sizeof(BOX));
n->high.x = Max(a->high.x, b->high.x);
n->high.y = Max(a->high.y, b->high.y);
n->low.x = Min(a->low.x, b->low.x);
n->low.y = Min(a->low.y, b->low.y);
PG_RETURN_BOX_P(n);
}
static Datum
rt_box_inter(PG_FUNCTION_ARGS)
{
BOX *a = PG_GETARG_BOX_P(0);
BOX *b = PG_GETARG_BOX_P(1);
BOX *n;
n = (BOX *) palloc(sizeof(BOX));
n->high.x = Min(a->high.x, b->high.x);
n->high.y = Min(a->high.y, b->high.y);
n->low.x = Max(a->low.x, b->low.x);
n->low.y = Max(a->low.y, b->low.y);
if (n->high.x < n->low.x || n->high.y < n->low.y)
{
pfree(n);
/* Indicate "no intersection" by returning NULL pointer */
n = NULL;
}
PG_RETURN_BOX_P(n);
}
/*
* The GiST Consistent method for boxes
*
......@@ -493,8 +534,6 @@ size_box(Datum dbox)
*
* We can use the same function since all types use bounding boxes as the
* internal-page representation.
*
* This implements the same logic as the rtree internal-page strategy map.
*/
static bool
rtree_internal_consistent(BOX *key, BOX *query, StrategyNumber strategy)
......
#-------------------------------------------------------------------------
#
# Makefile--
# Makefile for access/rtree
#
# IDENTIFICATION
# $PostgreSQL: pgsql/src/backend/access/rtree/Makefile,v 1.11 2003/11/29 19:51:40 pgsql Exp $
#
#-------------------------------------------------------------------------
subdir = src/backend/access/rtree
top_builddir = ../../../..
include $(top_builddir)/src/Makefile.global
OBJS = rtget.o rtproc.o rtree.o rtscan.o rtstrat.o
all: SUBSYS.o
SUBSYS.o: $(OBJS)
$(LD) $(LDREL) $(LDOUT) SUBSYS.o $(OBJS)
depend dep:
$(CC) -MM $(CFLAGS) *.c >depend
clean:
rm -f SUBSYS.o $(OBJS)
ifeq (depend,$(wildcard depend))
include depend
endif
/*-------------------------------------------------------------------------
*
* rtget.c
* fetch tuples from an rtree scan.
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/rtree/rtget.c,v 1.37 2005/10/15 02:49:09 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/iqual.h"
#include "access/relscan.h"
#include "access/rtree.h"
#include "pgstat.h"
static OffsetNumber findnext(IndexScanDesc s, OffsetNumber n,
ScanDirection dir);
static bool rtnext(IndexScanDesc s, ScanDirection dir);
Datum
rtgettuple(PG_FUNCTION_ARGS)
{
IndexScanDesc s = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanDirection dir = (ScanDirection) PG_GETARG_INT32(1);
RTreeScanOpaque so = (RTreeScanOpaque) s->opaque;
Page page;
OffsetNumber offnum;
/*
* If we've already produced a tuple and the executor has informed us that
* it should be marked "killed", do so now.
*/
if (s->kill_prior_tuple && ItemPointerIsValid(&(s->currentItemData)))
{
offnum = ItemPointerGetOffsetNumber(&(s->currentItemData));
page = BufferGetPage(so->curbuf);
PageGetItemId(page, offnum)->lp_flags |= LP_DELETE;
SetBufferCommitInfoNeedsSave(so->curbuf);
}
/*
* Get the next tuple that matches the search key; if asked to skip killed
* tuples, find the first non-killed tuple that matches. Return as soon as
* we've run out of matches or we've found an acceptable match.
*/
for (;;)
{
bool res = rtnext(s, dir);
if (res && s->ignore_killed_tuples)
{
offnum = ItemPointerGetOffsetNumber(&(s->currentItemData));
page = BufferGetPage(so->curbuf);
if (ItemIdDeleted(PageGetItemId(page, offnum)))
continue;
}
PG_RETURN_BOOL(res);
}
}
Datum
rtgetmulti(PG_FUNCTION_ARGS)
{
IndexScanDesc s = (IndexScanDesc) PG_GETARG_POINTER(0);
ItemPointer tids = (ItemPointer) PG_GETARG_POINTER(1);
int32 max_tids = PG_GETARG_INT32(2);
int32 *returned_tids = (int32 *) PG_GETARG_POINTER(3);
RTreeScanOpaque so = (RTreeScanOpaque) s->opaque;
bool res = true;
int32 ntids = 0;
/* XXX generic implementation: loop around guts of rtgettuple */
while (ntids < max_tids)
{
res = rtnext(s, ForwardScanDirection);
if (res && s->ignore_killed_tuples)
{
Page page;
OffsetNumber offnum;
offnum = ItemPointerGetOffsetNumber(&(s->currentItemData));
page = BufferGetPage(so->curbuf);
if (ItemIdDeleted(PageGetItemId(page, offnum)))
continue;
}
if (!res)
break;
tids[ntids] = s->xs_ctup.t_self;
ntids++;
}
*returned_tids = ntids;
PG_RETURN_BOOL(res);
}
static bool
rtnext(IndexScanDesc s, ScanDirection dir)
{
Page p;
OffsetNumber n;
RTreePageOpaque po;
RTreeScanOpaque so;
so = (RTreeScanOpaque) s->opaque;
if (!ItemPointerIsValid(&(s->currentItemData)))
{
/* first call: start at the root */
Assert(BufferIsValid(so->curbuf) == false);
so->curbuf = ReadBuffer(s->indexRelation, P_ROOT);
pgstat_count_index_scan(&s->xs_pgstat_info);
}
p = BufferGetPage(so->curbuf);
po = (RTreePageOpaque) PageGetSpecialPointer(p);
if (!ItemPointerIsValid(&(s->currentItemData)))
{
/* first call: start at first/last offset */
if (ScanDirectionIsForward(dir))
n = FirstOffsetNumber;
else
n = PageGetMaxOffsetNumber(p);
}
else
{
/* go on to the next offset */
n = ItemPointerGetOffsetNumber(&(s->currentItemData));
if (ScanDirectionIsForward(dir))
n = OffsetNumberNext(n);
else
n = OffsetNumberPrev(n);
}
for (;;)
{
IndexTuple it;
RTSTACK *stk;
n = findnext(s, n, dir);
/* no match on this page, so read in the next stack entry */
if (n == InvalidOffsetNumber)
{
/* if out of stack entries, we're done */
if (so->s_stack == NULL)
{
ReleaseBuffer(so->curbuf);
so->curbuf = InvalidBuffer;
return false;
}
stk = so->s_stack;
so->curbuf = ReleaseAndReadBuffer(so->curbuf, s->indexRelation,
stk->rts_blk);
p = BufferGetPage(so->curbuf);
po = (RTreePageOpaque) PageGetSpecialPointer(p);
if (ScanDirectionIsBackward(dir))
n = OffsetNumberPrev(stk->rts_child);
else
n = OffsetNumberNext(stk->rts_child);
so->s_stack = stk->rts_parent;
pfree(stk);
continue;
}
if (po->flags & F_LEAF)
{
ItemPointerSet(&(s->currentItemData),
BufferGetBlockNumber(so->curbuf),
n);
it = (IndexTuple) PageGetItem(p, PageGetItemId(p, n));
s->xs_ctup.t_self = it->t_tid;
return true;
}
else
{
BlockNumber blk;
stk = (RTSTACK *) palloc(sizeof(RTSTACK));
stk->rts_child = n;
stk->rts_blk = BufferGetBlockNumber(so->curbuf);
stk->rts_parent = so->s_stack;
so->s_stack = stk;
it = (IndexTuple) PageGetItem(p, PageGetItemId(p, n));
blk = ItemPointerGetBlockNumber(&(it->t_tid));
/*
* Note that we release the pin on the page as we descend down the
* tree, even though there's a good chance we'll eventually need
* to re-read the buffer later in this scan. This may or may not
* be optimal, but it doesn't seem likely to make a huge
* performance difference either way.
*/
so->curbuf = ReleaseAndReadBuffer(so->curbuf, s->indexRelation, blk);
p = BufferGetPage(so->curbuf);
po = (RTreePageOpaque) PageGetSpecialPointer(p);
if (ScanDirectionIsBackward(dir))
n = PageGetMaxOffsetNumber(p);
else
n = FirstOffsetNumber;
}
}
}
/*
* Return the offset of the next matching index entry. We begin the
* search at offset "n" and search for matches in the direction
* "dir". If no more matching entries are found on the page,
* InvalidOffsetNumber is returned.
*/
static OffsetNumber
findnext(IndexScanDesc s, OffsetNumber n, ScanDirection dir)
{
OffsetNumber maxoff;
IndexTuple it;
RTreePageOpaque po;
RTreeScanOpaque so;
Page p;
so = (RTreeScanOpaque) s->opaque;
p = BufferGetPage(so->curbuf);
maxoff = PageGetMaxOffsetNumber(p);
po = (RTreePageOpaque) PageGetSpecialPointer(p);
/*
* If we modified the index during the scan, we may have a pointer to a
* ghost tuple, before the scan. If this is the case, back up one.
*/
if (so->s_flags & RTS_CURBEFORE)
{
so->s_flags &= ~RTS_CURBEFORE;
n = OffsetNumberPrev(n);
}
while (n >= FirstOffsetNumber && n <= maxoff)
{
it = (IndexTuple) PageGetItem(p, PageGetItemId(p, n));
if (po->flags & F_LEAF)
{
if (index_keytest(it,
RelationGetDescr(s->indexRelation),
s->numberOfKeys, s->keyData))
break;
}
else
{
if (index_keytest(it,
RelationGetDescr(s->indexRelation),
so->s_internalNKey, so->s_internalKey))
break;
}
if (ScanDirectionIsBackward(dir))
n = OffsetNumberPrev(n);
else
n = OffsetNumberNext(n);
}
if (n >= FirstOffsetNumber && n <= maxoff)
return n; /* found a match on this page */
else
return InvalidOffsetNumber; /* no match, go to next page */
}
/*-------------------------------------------------------------------------
*
* rtproc.c
* pg_amproc entries for rtrees.
*
* NOTE: for largely-historical reasons, the intersection functions should
* return a NULL pointer (*not* an SQL null value) to indicate "no
* intersection". The size functions must be prepared to accept such
* a pointer and return 0. This convention means that only pass-by-reference
* data types can be used as the output of the union and intersection
* routines, but that's not a big problem.
*
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/rtree/rtproc.c,v 1.43 2005/10/15 02:49:09 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "utils/geo_decls.h"
Datum
rt_box_union(PG_FUNCTION_ARGS)
{
BOX *a = PG_GETARG_BOX_P(0);
BOX *b = PG_GETARG_BOX_P(1);
BOX *n;
n = (BOX *) palloc(sizeof(BOX));
n->high.x = Max(a->high.x, b->high.x);
n->high.y = Max(a->high.y, b->high.y);
n->low.x = Min(a->low.x, b->low.x);
n->low.y = Min(a->low.y, b->low.y);
PG_RETURN_BOX_P(n);
}
Datum
rt_box_inter(PG_FUNCTION_ARGS)
{
BOX *a = PG_GETARG_BOX_P(0);
BOX *b = PG_GETARG_BOX_P(1);
BOX *n;
n = (BOX *) palloc(sizeof(BOX));
n->high.x = Min(a->high.x, b->high.x);
n->high.y = Min(a->high.y, b->high.y);
n->low.x = Max(a->low.x, b->low.x);
n->low.y = Max(a->low.y, b->low.y);
if (n->high.x < n->low.x || n->high.y < n->low.y)
{
pfree(n);
/* Indicate "no intersection" by returning NULL pointer */
n = NULL;
}
PG_RETURN_BOX_P(n);
}
Datum
rt_box_size(PG_FUNCTION_ARGS)
{
BOX *a = PG_GETARG_BOX_P(0);
/* NB: size is an output argument */
float *size = (float *) PG_GETARG_POINTER(1);
if (a == NULL || a->high.x <= a->low.x || a->high.y <= a->low.y)
*size = 0.0;
else
*size = (float) ((a->high.x - a->low.x) * (a->high.y - a->low.y));
PG_RETURN_VOID();
}
Datum
rt_poly_union(PG_FUNCTION_ARGS)
{
POLYGON *a = PG_GETARG_POLYGON_P(0);
POLYGON *b = PG_GETARG_POLYGON_P(1);
POLYGON *p;
p = (POLYGON *) palloc0(sizeof(POLYGON)); /* zero any holes */
p->size = sizeof(POLYGON);
p->npts = 0;
p->boundbox.high.x = Max(a->boundbox.high.x, b->boundbox.high.x);
p->boundbox.high.y = Max(a->boundbox.high.y, b->boundbox.high.y);
p->boundbox.low.x = Min(a->boundbox.low.x, b->boundbox.low.x);
p->boundbox.low.y = Min(a->boundbox.low.y, b->boundbox.low.y);
/* Avoid leaking memory when handed toasted input. */
PG_FREE_IF_COPY(a, 0);
PG_FREE_IF_COPY(b, 1);
PG_RETURN_POLYGON_P(p);
}
Datum
rt_poly_inter(PG_FUNCTION_ARGS)
{
POLYGON *a = PG_GETARG_POLYGON_P(0);
POLYGON *b = PG_GETARG_POLYGON_P(1);
POLYGON *p;
p = (POLYGON *) palloc0(sizeof(POLYGON)); /* zero any holes */
p->size = sizeof(POLYGON);
p->npts = 0;
p->boundbox.high.x = Min(a->boundbox.high.x, b->boundbox.high.x);
p->boundbox.high.y = Min(a->boundbox.high.y, b->boundbox.high.y);
p->boundbox.low.x = Max(a->boundbox.low.x, b->boundbox.low.x);
p->boundbox.low.y = Max(a->boundbox.low.y, b->boundbox.low.y);
if (p->boundbox.high.x < p->boundbox.low.x ||
p->boundbox.high.y < p->boundbox.low.y)
{
pfree(p);
/* Indicate "no intersection" by returning NULL pointer */
p = NULL;
}
/* Avoid leaking memory when handed toasted input. */
PG_FREE_IF_COPY(a, 0);
PG_FREE_IF_COPY(b, 1);
PG_RETURN_POLYGON_P(p);
}
Datum
rt_poly_size(PG_FUNCTION_ARGS)
{
Pointer aptr = PG_GETARG_POINTER(0);
/* NB: size is an output argument */
float *size = (float *) PG_GETARG_POINTER(1);
POLYGON *a;
double xdim,
ydim;
/*
* Can't just use GETARG because of possibility that input is NULL; since
* POLYGON is toastable, GETARG will try to inspect its value
*/
if (aptr == NULL)
{
*size = 0.0;
PG_RETURN_VOID();
}
/* Now safe to apply GETARG */
a = PG_GETARG_POLYGON_P(0);
if (a->boundbox.high.x <= a->boundbox.low.x ||
a->boundbox.high.y <= a->boundbox.low.y)
*size = 0.0;
else
{
xdim = (a->boundbox.high.x - a->boundbox.low.x);
ydim = (a->boundbox.high.y - a->boundbox.low.y);
*size = (float) (xdim * ydim);
}
/* Avoid leaking memory when handed toasted input. */
PG_FREE_IF_COPY(a, 0);
PG_RETURN_VOID();
}
/*-------------------------------------------------------------------------
*
* rtree.c
* interface routines for the postgres rtree indexed access method.
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/rtree/rtree.c,v 1.92 2005/10/15 02:49:09 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "access/rtree.h"
#include "access/xlogutils.h"
#include "catalog/index.h"
#include "commands/vacuum.h"
#include "executor/executor.h"
#include "miscadmin.h"
/*
* XXX We assume that all datatypes indexable in rtrees are pass-by-reference.
* To fix this, you'd need to improve the IndexTupleGetDatum() macro, and
* do something with the various datum-pfreeing code. However, it's not that
* unreasonable an assumption in practice.
*/
#define IndexTupleGetDatum(itup) \
PointerGetDatum(((char *) (itup)) + sizeof(IndexTupleData))
/*
* Space-allocation macros. Note we count the item's line pointer in its size.
*/
#define RTPageAvailSpace \
(BLCKSZ - (sizeof(PageHeaderData) - sizeof(ItemIdData)) \
- MAXALIGN(sizeof(RTreePageOpaqueData)))
#define IndexTupleTotalSize(itup) \
(MAXALIGN(IndexTupleSize(itup)) + sizeof(ItemIdData))
#define IndexTupleAttSize(itup) \
(IndexTupleSize(itup) - sizeof(IndexTupleData))
/* results of rtpicksplit() */
typedef struct SPLITVEC
{
OffsetNumber *spl_left;
int spl_nleft;
Datum spl_ldatum;
OffsetNumber *spl_right;
int spl_nright;
Datum spl_rdatum;
} SPLITVEC;
/* for sorting tuples by cost, for picking split */
typedef struct SPLITCOST
{
OffsetNumber offset_number;
float cost_differential;
bool choose_left;
} SPLITCOST;
typedef struct RTSTATE
{
FmgrInfo unionFn; /* union function */
FmgrInfo sizeFn; /* size function */
FmgrInfo interFn; /* intersection function */
} RTSTATE;
/* Working state for rtbuild and its callback */
typedef struct
{
RTSTATE rtState;
double indtuples;
} RTBuildState;
/* non-export function prototypes */
static void rtbuildCallback(Relation index,
HeapTuple htup,
Datum *values,
bool *isnull,
bool tupleIsAlive,
void *state);
static void rtdoinsert(Relation r, IndexTuple itup, RTSTATE *rtstate);
static void rttighten(Relation r, RTSTACK *stk, Datum datum, int att_size,
RTSTATE *rtstate);
static void rtdosplit(Relation r, Buffer buffer, RTSTACK *stack,
IndexTuple itup, RTSTATE *rtstate);
static void rtintinsert(Relation r, RTSTACK *stk, IndexTuple ltup,
IndexTuple rtup, RTSTATE *rtstate);
static void rtnewroot(Relation r, IndexTuple lt, IndexTuple rt);
static void rtpicksplit(Relation r, Page page, SPLITVEC *v, IndexTuple itup,
RTSTATE *rtstate);
static void RTInitBuffer(Buffer b, uint32 f);
static OffsetNumber choose(Relation r, Page p, IndexTuple it,
RTSTATE *rtstate);
static int nospace(Page p, IndexTuple it);
static void initRtstate(RTSTATE *rtstate, Relation index);
static int qsort_comp_splitcost(const void *a, const void *b);
/*
* routine to build an index. Basically calls insert over and over
*/
Datum
rtbuild(PG_FUNCTION_ARGS)
{
Relation heap = (Relation) PG_GETARG_POINTER(0);
Relation index = (Relation) PG_GETARG_POINTER(1);
IndexInfo *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
double reltuples;
RTBuildState buildstate;
Buffer buffer;
/* no locking is needed */
initRtstate(&buildstate.rtState, index);
/*
* We expect to be called exactly once for any index relation. If that's
* not the case, big trouble's what we have.
*/
if (RelationGetNumberOfBlocks(index) != 0)
elog(ERROR, "index \"%s\" already contains data",
RelationGetRelationName(index));
/* initialize the root page */
buffer = ReadBuffer(index, P_NEW);
RTInitBuffer(buffer, F_LEAF);
WriteBuffer(buffer);
/* build the index */
buildstate.indtuples = 0;
/* do the heap scan */
reltuples = IndexBuildHeapScan(heap, index, indexInfo,
rtbuildCallback, (void *) &buildstate);
/* okay, all heap tuples are indexed */
/* since we just counted the # of tuples, may as well update stats */
IndexCloseAndUpdateStats(heap, reltuples, index, buildstate.indtuples);
PG_RETURN_VOID();
}
/*
* Per-tuple callback from IndexBuildHeapScan
*/
static void
rtbuildCallback(Relation index,
HeapTuple htup,
Datum *values,
bool *isnull,
bool tupleIsAlive,
void *state)
{
RTBuildState *buildstate = (RTBuildState *) state;
IndexTuple itup;
/* form an index tuple and point it at the heap tuple */
itup = index_form_tuple(RelationGetDescr(index), values, isnull);
itup->t_tid = htup->t_self;
/* rtree indexes don't index nulls, see notes in rtinsert */
if (IndexTupleHasNulls(itup))
{
pfree(itup);
return;
}
/*
* Since we already have the index relation locked, we call rtdoinsert
* directly. Normal access method calls dispatch through rtinsert, which
* locks the relation for write. This is the right thing to do if you're
* inserting single tups, but not when you're initializing the whole index
* at once.
*/
rtdoinsert(index, itup, &buildstate->rtState);
buildstate->indtuples += 1;
pfree(itup);
}
/*
* rtinsert -- wrapper for rtree tuple insertion.
*
* This is the public interface routine for tuple insertion in rtrees.
* It doesn't do any work; just locks the relation and passes the buck.
*/
Datum
rtinsert(PG_FUNCTION_ARGS)
{
Relation r = (Relation) PG_GETARG_POINTER(0);
Datum *values = (Datum *) PG_GETARG_POINTER(1);
bool *isnull = (bool *) PG_GETARG_POINTER(2);
ItemPointer ht_ctid = (ItemPointer) PG_GETARG_POINTER(3);
#ifdef NOT_USED
Relation heapRel = (Relation) PG_GETARG_POINTER(4);
bool checkUnique = PG_GETARG_BOOL(5);
#endif
IndexTuple itup;
RTSTATE rtState;
/* generate an index tuple */
itup = index_form_tuple(RelationGetDescr(r), values, isnull);
itup->t_tid = *ht_ctid;
/*
* Currently, rtrees do not support indexing NULLs; considerable
* infrastructure work would have to be done to do anything reasonable
* with a NULL.
*/
if (IndexTupleHasNulls(itup))
{
pfree(itup);
PG_RETURN_BOOL(false);
}
initRtstate(&rtState, r);
/*
* Since rtree is not marked "amconcurrent" in pg_am, caller should have
* acquired exclusive lock on index relation. We need no locking here.
*/
rtdoinsert(r, itup, &rtState);
PG_RETURN_BOOL(true);
}
static void
rtdoinsert(Relation r, IndexTuple itup, RTSTATE *rtstate)
{
Page page;
Buffer buffer;
BlockNumber blk;
IndexTuple which;
OffsetNumber l;
RTSTACK *stack;
RTreePageOpaque opaque;
Datum datum;
blk = P_ROOT;
buffer = InvalidBuffer;
stack = NULL;
do
{
/* release the current buffer, read in the next one */
buffer = ReleaseAndReadBuffer(buffer, r, blk);
page = (Page) BufferGetPage(buffer);
opaque = (RTreePageOpaque) PageGetSpecialPointer(page);
if (!(opaque->flags & F_LEAF))
{
RTSTACK *n;
ItemId iid;
n = (RTSTACK *) palloc(sizeof(RTSTACK));
n->rts_parent = stack;
n->rts_blk = blk;
n->rts_child = choose(r, page, itup, rtstate);
stack = n;
iid = PageGetItemId(page, n->rts_child);
which = (IndexTuple) PageGetItem(page, iid);
blk = ItemPointerGetBlockNumber(&(which->t_tid));
}
} while (!(opaque->flags & F_LEAF));
if (nospace(page, itup))
{
/* need to do a split */
rtdosplit(r, buffer, stack, itup, rtstate);
freestack(stack);
WriteBuffer(buffer); /* don't forget to release buffer! */
return;
}
/* add the item and write the buffer */
if (PageIsEmpty(page))
{
l = PageAddItem(page, (Item) itup, IndexTupleSize(itup),
FirstOffsetNumber,
LP_USED);
}
else
{
l = PageAddItem(page, (Item) itup, IndexTupleSize(itup),
OffsetNumberNext(PageGetMaxOffsetNumber(page)),
LP_USED);
}
if (l == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
WriteBuffer(buffer);
datum = IndexTupleGetDatum(itup);
/* now expand the page boundary in the parent to include the new child */
rttighten(r, stack, datum, IndexTupleAttSize(itup), rtstate);
freestack(stack);
}
static void
rttighten(Relation r,
RTSTACK *stk,
Datum datum,
int att_size,
RTSTATE *rtstate)
{
Datum oldud;
Datum tdatum;
Page p;
float old_size,
newd_size;
Buffer b;
if (stk == NULL)
return;
b = ReadBuffer(r, stk->rts_blk);
p = BufferGetPage(b);
oldud = IndexTupleGetDatum(PageGetItem(p,
PageGetItemId(p, stk->rts_child)));
FunctionCall2(&rtstate->sizeFn, oldud,
PointerGetDatum(&old_size));
datum = FunctionCall2(&rtstate->unionFn, oldud, datum);
FunctionCall2(&rtstate->sizeFn, datum,
PointerGetDatum(&newd_size));
/*
* If newd_size == 0 we have degenerate rectangles, so we don't know if
* there was any change, so we have to assume there was.
*/
if ((newd_size == 0) || (newd_size != old_size))
{
TupleDesc td = RelationGetDescr(r);
if (td->attrs[0]->attlen < 0)
{
/*
* This is an internal page, so 'oldud' had better be a union
* (constant-length) key, too. (See comment below.)
*/
Assert(VARSIZE(DatumGetPointer(datum)) ==
VARSIZE(DatumGetPointer(oldud)));
memmove(DatumGetPointer(oldud), DatumGetPointer(datum),
VARSIZE(DatumGetPointer(datum)));
}
else
{
memmove(DatumGetPointer(oldud), DatumGetPointer(datum),
att_size);
}
WriteBuffer(b);
/*
* The user may be defining an index on variable-sized data (like
* polygons). If so, we need to get a constant-sized datum for
* insertion on the internal page. We do this by calling the union
* proc, which is required to return a rectangle.
*/
tdatum = FunctionCall2(&rtstate->unionFn, datum, datum);
rttighten(r, stk->rts_parent, tdatum, att_size, rtstate);
pfree(DatumGetPointer(tdatum));
}
else
ReleaseBuffer(b);
pfree(DatumGetPointer(datum));
}
/*
* rtdosplit -- split a page in the tree.
*
* rtpicksplit does the interesting work of choosing the split.
* This routine just does the bit-pushing.
*/
static void
rtdosplit(Relation r,
Buffer buffer,
RTSTACK *stack,
IndexTuple itup,
RTSTATE *rtstate)
{
Page p;
Buffer leftbuf,
rightbuf;
Page left,
right;
ItemId itemid;
IndexTuple item;
IndexTuple ltup,
rtup;
OffsetNumber maxoff;
OffsetNumber i;
OffsetNumber leftoff,
rightoff;
BlockNumber lbknum,
rbknum;
BlockNumber bufblock;
RTreePageOpaque opaque;
bool *isnull;
SPLITVEC v;
OffsetNumber *spl_left,
*spl_right;
TupleDesc tupDesc;
int n;
OffsetNumber newitemoff;
p = (Page) BufferGetPage(buffer);
opaque = (RTreePageOpaque) PageGetSpecialPointer(p);
rtpicksplit(r, p, &v, itup, rtstate);
/*
* The root of the tree is the first block in the relation. If we're
* about to split the root, we need to do some hocus-pocus to enforce this
* guarantee.
*/
if (BufferGetBlockNumber(buffer) == P_ROOT)
{
leftbuf = ReadBuffer(r, P_NEW);
RTInitBuffer(leftbuf, opaque->flags);
lbknum = BufferGetBlockNumber(leftbuf);
left = (Page) BufferGetPage(leftbuf);
}
else
{
leftbuf = buffer;
IncrBufferRefCount(buffer);
lbknum = BufferGetBlockNumber(buffer);
left = (Page) PageGetTempPage(p, sizeof(RTreePageOpaqueData));
}
rightbuf = ReadBuffer(r, P_NEW);
RTInitBuffer(rightbuf, opaque->flags);
rbknum = BufferGetBlockNumber(rightbuf);
right = (Page) BufferGetPage(rightbuf);
spl_left = v.spl_left;
spl_right = v.spl_right;
leftoff = rightoff = FirstOffsetNumber;
maxoff = PageGetMaxOffsetNumber(p);
newitemoff = OffsetNumberNext(maxoff);
/*
* spl_left contains a list of the offset numbers of the tuples that will
* go to the left page. For each offset number, get the tuple item, then
* add the item to the left page. Similarly for the right side.
*/
/* fill left node */
for (n = 0; n < v.spl_nleft; n++)
{
i = *spl_left;
if (i == newitemoff)
item = itup;
else
{
itemid = PageGetItemId(p, i);
item = (IndexTuple) PageGetItem(p, itemid);
}
if (PageAddItem(left, (Item) item, IndexTupleSize(item),
leftoff, LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
leftoff = OffsetNumberNext(leftoff);
spl_left++; /* advance in left split vector */
}
/* fill right node */
for (n = 0; n < v.spl_nright; n++)
{
i = *spl_right;
if (i == newitemoff)
item = itup;
else
{
itemid = PageGetItemId(p, i);
item = (IndexTuple) PageGetItem(p, itemid);
}
if (PageAddItem(right, (Item) item, IndexTupleSize(item),
rightoff, LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
rightoff = OffsetNumberNext(rightoff);
spl_right++; /* advance in right split vector */
}
/* Make sure we consumed all of the split vectors, and release 'em */
Assert(*spl_left == InvalidOffsetNumber);
Assert(*spl_right == InvalidOffsetNumber);
pfree(v.spl_left);
pfree(v.spl_right);
if ((bufblock = BufferGetBlockNumber(buffer)) != P_ROOT)
PageRestoreTempPage(left, p);
WriteBuffer(leftbuf);
WriteBuffer(rightbuf);
/*
* Okay, the page is split. We have three things left to do:
*
* 1) Adjust any active scans on this index to cope with changes we
* introduced in its structure by splitting this page.
*
* 2) "Tighten" the bounding box of the pointer to the left page in the
* parent node in the tree, if any. Since we moved a bunch of stuff off
* the left page, we expect it to get smaller. This happens in the
* internal insertion routine.
*
* 3) Insert a pointer to the right page in the parent. This may cause the
* parent to split. If it does, we need to repeat steps one and two for
* each split node in the tree.
*/
/* adjust active scans */
rtadjscans(r, RTOP_SPLIT, bufblock, FirstOffsetNumber);
tupDesc = r->rd_att;
isnull = (bool *) palloc(r->rd_rel->relnatts * sizeof(bool));
memset(isnull, false, r->rd_rel->relnatts * sizeof(bool));
ltup = index_form_tuple(tupDesc, &(v.spl_ldatum), isnull);
rtup = index_form_tuple(tupDesc, &(v.spl_rdatum), isnull);
pfree(isnull);
pfree(DatumGetPointer(v.spl_ldatum));
pfree(DatumGetPointer(v.spl_rdatum));
/* set pointers to new child pages in the internal index tuples */
ItemPointerSet(&(ltup->t_tid), lbknum, 1);
ItemPointerSet(&(rtup->t_tid), rbknum, 1);
rtintinsert(r, stack, ltup, rtup, rtstate);
pfree(ltup);
pfree(rtup);
}
static void
rtintinsert(Relation r,
RTSTACK *stk,
IndexTuple ltup,
IndexTuple rtup,
RTSTATE *rtstate)
{
IndexTuple old;
Buffer b;
Page p;
Datum ldatum,
rdatum,
newdatum;
if (stk == NULL)
{
rtnewroot(r, ltup, rtup);
return;
}
b = ReadBuffer(r, stk->rts_blk);
p = BufferGetPage(b);
old = (IndexTuple) PageGetItem(p, PageGetItemId(p, stk->rts_child));
/*
* This is a hack. Right now, we force rtree internal keys to be constant
* size. To fix this, need delete the old key and add both left and right
* for the two new pages. The insertion of left may force a split if the
* new left key is bigger than the old key.
*/
if (IndexTupleSize(old) != IndexTupleSize(ltup))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("variable-length rtree keys are not supported")));
/* install pointer to left child */
memmove(old, ltup, IndexTupleSize(ltup));
if (nospace(p, rtup))
{
newdatum = IndexTupleGetDatum(ltup);
rttighten(r, stk->rts_parent, newdatum,
IndexTupleAttSize(ltup), rtstate);
rtdosplit(r, b, stk->rts_parent, rtup, rtstate);
WriteBuffer(b); /* don't forget to release buffer! - 01/31/94 */
}
else
{
if (PageAddItem(p, (Item) rtup, IndexTupleSize(rtup),
PageGetMaxOffsetNumber(p),
LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
WriteBuffer(b);
ldatum = IndexTupleGetDatum(ltup);
rdatum = IndexTupleGetDatum(rtup);
newdatum = FunctionCall2(&rtstate->unionFn, ldatum, rdatum);
rttighten(r, stk->rts_parent, newdatum,
IndexTupleAttSize(rtup), rtstate);
pfree(DatumGetPointer(newdatum));
}
}
static void
rtnewroot(Relation r, IndexTuple lt, IndexTuple rt)
{
Buffer b;
Page p;
b = ReadBuffer(r, P_ROOT);
RTInitBuffer(b, 0);
p = BufferGetPage(b);
if (PageAddItem(p, (Item) lt, IndexTupleSize(lt),
FirstOffsetNumber,
LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
if (PageAddItem(p, (Item) rt, IndexTupleSize(rt),
OffsetNumberNext(FirstOffsetNumber),
LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
WriteBuffer(b);
}
/*
* Choose how to split an rtree page into two pages.
*
* We return two vectors of index item numbers, one for the items to be
* put on the left page, one for the items to be put on the right page.
* In addition, the item to be added (itup) is listed in the appropriate
* vector. It is represented by item number N+1 (N = # of items on page).
*
* Both vectors have a terminating sentinel value of InvalidOffsetNumber,
* but the sentinal value is no longer used, because the SPLITVEC
* vector also contains the length of each vector, and that information
* is now used to iterate over them in rtdosplit(). --kbb, 21 Sept 2001
*
* The bounding-box datums for the two new pages are also returned in *v.
*
* This is the quadratic-cost split algorithm Guttman describes in
* his paper. The reason we chose it is that you can implement this
* with less information about the data types on which you're operating.
*
* We must also deal with a consideration not found in Guttman's algorithm:
* variable-length data. In particular, the incoming item might be
* large enough that not just any split will work. In the worst case,
* our "split" may have to be the new item on one page and all the existing
* items on the other. Short of that, we have to take care that we do not
* make a split that leaves both pages too full for the new item.
*/
static void
rtpicksplit(Relation r,
Page page,
SPLITVEC *v,
IndexTuple itup,
RTSTATE *rtstate)
{
OffsetNumber maxoff,
newitemoff;
OffsetNumber i,
j;
IndexTuple item_1,
item_2;
Datum datum_alpha,
datum_beta;
Datum datum_l,
datum_r;
Datum union_d,
union_dl,
union_dr;
Datum inter_d;
bool firsttime;
float size_alpha,
size_beta,
size_union,
size_inter;
float size_waste,
waste;
float size_l,
size_r;
int nbytes;
OffsetNumber seed_1 = 0,
seed_2 = 0;
OffsetNumber *left,
*right;
Size newitemsz,
item_1_sz,
item_2_sz,
left_avail_space,
right_avail_space;
int total_num_tuples,
num_tuples_without_seeds,
max_after_split; /* in Guttman's lingo, (M - m) */
float diff; /* diff between cost of putting tuple left or
* right */
SPLITCOST *cost_vector;
int n;
/*
* First, make sure the new item is not so large that we can't possibly
* fit it on a page, even by itself. (It's sufficient to make this test
* here, since any oversize tuple must lead to a page split attempt.)
*/
newitemsz = IndexTupleTotalSize(itup);
if (newitemsz > RTPageAvailSpace)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("index row size %lu exceeds rtree maximum, %lu",
(unsigned long) newitemsz,
(unsigned long) RTPageAvailSpace),
errhint("Values larger than a buffer page cannot be indexed.")));
maxoff = PageGetMaxOffsetNumber(page);
newitemoff = OffsetNumberNext(maxoff); /* phony index for new item */
total_num_tuples = newitemoff;
num_tuples_without_seeds = total_num_tuples - 2;
max_after_split = total_num_tuples / 2; /* works for m = M/2 */
/* Make arrays big enough for worst case, including sentinel */
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
firsttime = true;
waste = 0.0;
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
{
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
datum_alpha = IndexTupleGetDatum(item_1);
item_1_sz = IndexTupleTotalSize(item_1);
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
{
item_2 = (IndexTuple) PageGetItem(page, PageGetItemId(page, j));
datum_beta = IndexTupleGetDatum(item_2);
item_2_sz = IndexTupleTotalSize(item_2);
/*
* Ignore seed pairs that don't leave room for the new item on
* either split page.
*/
if (newitemsz + item_1_sz > RTPageAvailSpace &&
newitemsz + item_2_sz > RTPageAvailSpace)
continue;
/* compute the wasted space by unioning these guys */
union_d = FunctionCall2(&rtstate->unionFn,
datum_alpha, datum_beta);
FunctionCall2(&rtstate->sizeFn, union_d,
PointerGetDatum(&size_union));
inter_d = FunctionCall2(&rtstate->interFn,
datum_alpha, datum_beta);
/*
* The interFn may return a NULL pointer (not an SQL null!) to
* indicate no intersection. sizeFn must cope with this.
*/
FunctionCall2(&rtstate->sizeFn, inter_d,
PointerGetDatum(&size_inter));
size_waste = size_union - size_inter;
if (DatumGetPointer(union_d) != NULL)
pfree(DatumGetPointer(union_d));
if (DatumGetPointer(inter_d) != NULL)
pfree(DatumGetPointer(inter_d));
/*
* are these a more promising split that what we've already seen?
*/
if (size_waste > waste || firsttime)
{
waste = size_waste;
seed_1 = i;
seed_2 = j;
firsttime = false;
}
}
}
if (firsttime)
{
/*
* There is no possible split except to put the new item on its own
* page. Since we still have to compute the union rectangles, we play
* dumb and run through the split algorithm anyway, setting seed_1 =
* first item on page and seed_2 = new item.
*/
seed_1 = FirstOffsetNumber;
seed_2 = newitemoff;
}
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, seed_1));
datum_alpha = IndexTupleGetDatum(item_1);
datum_l = FunctionCall2(&rtstate->unionFn, datum_alpha, datum_alpha);
FunctionCall2(&rtstate->sizeFn, datum_l, PointerGetDatum(&size_l));
left_avail_space = RTPageAvailSpace - IndexTupleTotalSize(item_1);
if (seed_2 == newitemoff)
{
item_2 = itup;
/* Needn't leave room for new item in calculations below */
newitemsz = 0;
}
else
item_2 = (IndexTuple) PageGetItem(page, PageGetItemId(page, seed_2));
datum_beta = IndexTupleGetDatum(item_2);
datum_r = FunctionCall2(&rtstate->unionFn, datum_beta, datum_beta);
FunctionCall2(&rtstate->sizeFn, datum_r, PointerGetDatum(&size_r));
right_avail_space = RTPageAvailSpace - IndexTupleTotalSize(item_2);
/*
* Now split up the regions between the two seeds.
*
* The cost_vector array will contain hints for determining where each tuple
* should go. Each record in the array will contain a boolean,
* choose_left, that indicates which node the tuple prefers to be on, and
* the absolute difference in cost between putting the tuple in its
* favored node and in the other node.
*
* Later, we will sort the cost_vector in descending order by cost
* difference, and consider the tuples in that order for placement. That
* way, the tuples that *really* want to be in one node or the other get
* to choose first, and the tuples that don't really care choose last.
*
* First, build the cost_vector array. The new index tuple will also be
* handled in this loop, and represented in the array, with i==newitemoff.
*
* In the case of variable size tuples it is possible that we only have the
* two seeds and no other tuples, in which case we don't do any of this
* cost_vector stuff.
*/
/* to keep compiler quiet */
cost_vector = NULL;
if (num_tuples_without_seeds > 0)
{
cost_vector =
(SPLITCOST *) palloc(num_tuples_without_seeds * sizeof(SPLITCOST));
n = 0;
for (i = FirstOffsetNumber; i <= newitemoff; i = OffsetNumberNext(i))
{
/* Compute new union datums and sizes for both choices */
if ((i == seed_1) || (i == seed_2))
continue;
else if (i == newitemoff)
item_1 = itup;
else
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
datum_alpha = IndexTupleGetDatum(item_1);
union_dl = FunctionCall2(&rtstate->unionFn, datum_l, datum_alpha);
union_dr = FunctionCall2(&rtstate->unionFn, datum_r, datum_alpha);
FunctionCall2(&rtstate->sizeFn, union_dl,
PointerGetDatum(&size_alpha));
FunctionCall2(&rtstate->sizeFn, union_dr,
PointerGetDatum(&size_beta));
pfree(DatumGetPointer(union_dl));
pfree(DatumGetPointer(union_dr));
diff = (size_alpha - size_l) - (size_beta - size_r);
cost_vector[n].offset_number = i;
cost_vector[n].cost_differential = fabs(diff);
cost_vector[n].choose_left = (diff < 0);
n++;
}
/*
* Sort the array. The function qsort_comp_splitcost is set up
* "backwards", to provided descending order.
*/
qsort(cost_vector, num_tuples_without_seeds, sizeof(SPLITCOST),
&qsort_comp_splitcost);
}
/*
* Now make the final decisions about where each tuple will go, and build
* the vectors to return in the SPLITVEC record.
*
* The cost_vector array contains (descriptions of) all the tuples, in the
* order that we want to consider them, so we we just iterate through it
* and place each tuple in left or right nodes, according to the criteria
* described below.
*/
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
/*
* Place the seeds first. left avail space, left union, right avail space,
* and right union have already been adjusted for the seeds.
*/
*left++ = seed_1;
v->spl_nleft++;
*right++ = seed_2;
v->spl_nright++;
for (n = 0; n < num_tuples_without_seeds; n++)
{
bool left_feasible,
right_feasible,
choose_left;
/*
* We need to figure out which page needs the least enlargement in
* order to store the item.
*/
i = cost_vector[n].offset_number;
/* Compute new union datums and sizes for both possible additions */
if (i == newitemoff)
{
item_1 = itup;
/* Needn't leave room for new item anymore */
newitemsz = 0;
}
else
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
item_1_sz = IndexTupleTotalSize(item_1);
datum_alpha = IndexTupleGetDatum(item_1);
union_dl = FunctionCall2(&rtstate->unionFn, datum_l, datum_alpha);
union_dr = FunctionCall2(&rtstate->unionFn, datum_r, datum_alpha);
FunctionCall2(&rtstate->sizeFn, union_dl,
PointerGetDatum(&size_alpha));
FunctionCall2(&rtstate->sizeFn, union_dr,
PointerGetDatum(&size_beta));
/*
* We prefer the page that shows smaller enlargement of its union area
* (Guttman's algorithm), but we must take care that at least one page
* will still have room for the new item after this one is added.
*
* (We know that all the old items together can fit on one page, so we
* need not worry about any other problem than failing to fit the new
* item.)
*
* Guttman's algorithm actually has two factors to consider (in order):
* 1. if one node has so many tuples already assigned to it that the
* other needs all the rest in order to satisfy the condition that
* neither node has fewer than m tuples, then that is decisive; 2.
* otherwise, choose the page that shows the smaller enlargement of
* its union area.
*
* I have chosen m = M/2, where M is the maximum number of tuples on a
* page. (Actually, this is only strictly true for fixed size tuples.
* For variable size tuples, there still might have to be only one
* tuple on a page, if it is really big. But even with variable size
* tuples we still try to get m as close as possible to M/2.)
*
* The question of which page shows the smaller enlargement of its union
* area has already been answered, and the answer stored in the
* choose_left field of the SPLITCOST record.
*/
left_feasible = (left_avail_space >= item_1_sz &&
((left_avail_space - item_1_sz) >= newitemsz ||
right_avail_space >= newitemsz));
right_feasible = (right_avail_space >= item_1_sz &&
((right_avail_space - item_1_sz) >= newitemsz ||
left_avail_space >= newitemsz));
if (left_feasible && right_feasible)
{
/*
* Both feasible, use Guttman's algorithm. First check the m
* condition described above, and if that doesn't apply, choose
* the page with the smaller enlargement of its union area.
*/
if (v->spl_nleft > max_after_split)
choose_left = false;
else if (v->spl_nright > max_after_split)
choose_left = true;
else
choose_left = cost_vector[n].choose_left;
}
else if (left_feasible)
choose_left = true;
else if (right_feasible)
choose_left = false;
else
{
elog(ERROR, "failed to find a workable rtree page split");
choose_left = false; /* keep compiler quiet */
}
if (choose_left)
{
pfree(DatumGetPointer(datum_l));
pfree(DatumGetPointer(union_dr));
datum_l = union_dl;
size_l = size_alpha;
left_avail_space -= item_1_sz;
*left++ = i;
v->spl_nleft++;
}
else
{
pfree(DatumGetPointer(datum_r));
pfree(DatumGetPointer(union_dl));
datum_r = union_dr;
size_r = size_beta;
right_avail_space -= item_1_sz;
*right++ = i;
v->spl_nright++;
}
}
if (num_tuples_without_seeds > 0)
pfree(cost_vector);
*left = *right = InvalidOffsetNumber; /* add ending sentinels */
v->spl_ldatum = datum_l;
v->spl_rdatum = datum_r;
}
static void
RTInitBuffer(Buffer b, uint32 f)
{
RTreePageOpaque opaque;
Page page;
Size pageSize;
pageSize = BufferGetPageSize(b);
page = BufferGetPage(b);
PageInit(page, pageSize, sizeof(RTreePageOpaqueData));
opaque = (RTreePageOpaque) PageGetSpecialPointer(page);
opaque->flags = f;
}
static OffsetNumber
choose(Relation r, Page p, IndexTuple it, RTSTATE *rtstate)
{
OffsetNumber maxoff;
OffsetNumber i;
Datum ud,
id;
Datum datum;
float usize,
dsize;
OffsetNumber which;
float which_grow;
id = IndexTupleGetDatum(it);
maxoff = PageGetMaxOffsetNumber(p);
which_grow = -1.0;
which = -1;
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
datum = IndexTupleGetDatum(PageGetItem(p, PageGetItemId(p, i)));
FunctionCall2(&rtstate->sizeFn, datum,
PointerGetDatum(&dsize));
ud = FunctionCall2(&rtstate->unionFn, datum, id);
FunctionCall2(&rtstate->sizeFn, ud,
PointerGetDatum(&usize));
pfree(DatumGetPointer(ud));
if (which_grow < 0 || usize - dsize < which_grow)
{
which = i;
which_grow = usize - dsize;
if (which_grow == 0)
break;
}
}
return which;
}
static int
nospace(Page p, IndexTuple it)
{
return PageGetFreeSpace(p) < IndexTupleSize(it);
}
void
freestack(RTSTACK *s)
{
RTSTACK *p;
while (s != NULL)
{
p = s->rts_parent;
pfree(s);
s = p;
}
}
/*
* Bulk deletion of all index entries pointing to a set of heap tuples.
* The set of target tuples is specified via a callback routine that tells
* whether any given heap tuple (identified by ItemPointer) is being deleted.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
Datum
rtbulkdelete(PG_FUNCTION_ARGS)
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(1);
void *callback_state = (void *) PG_GETARG_POINTER(2);
IndexBulkDeleteResult *result;
BlockNumber num_pages;
double tuples_removed;
double num_index_tuples;
IndexScanDesc iscan;
tuples_removed = 0;
num_index_tuples = 0;
/*
* Since rtree is not marked "amconcurrent" in pg_am, caller should have
* acquired exclusive lock on index relation. We need no locking here.
*/
/*
* XXX generic implementation --- should be improved!
*/
/* walk through the entire index */
iscan = index_beginscan(NULL, rel, SnapshotAny, 0, NULL);
/* including killed tuples */
iscan->ignore_killed_tuples = false;
while (index_getnext_indexitem(iscan, ForwardScanDirection))
{
vacuum_delay_point();
if (callback(&iscan->xs_ctup.t_self, callback_state))
{
ItemPointerData indextup = iscan->currentItemData;
BlockNumber blkno;
OffsetNumber offnum;
Buffer buf;
Page page;
blkno = ItemPointerGetBlockNumber(&indextup);
offnum = ItemPointerGetOffsetNumber(&indextup);
/* adjust any scans that will be affected by this deletion */
/* (namely, my own scan) */
rtadjscans(rel, RTOP_DEL, blkno, offnum);
/* delete the index tuple */
buf = ReadBuffer(rel, blkno);
page = BufferGetPage(buf);
PageIndexTupleDelete(page, offnum);
WriteBuffer(buf);
tuples_removed += 1;
}
else
num_index_tuples += 1;
}
index_endscan(iscan);
/* return statistics */
num_pages = RelationGetNumberOfBlocks(rel);
result = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
result->num_pages = num_pages;
result->num_index_tuples = num_index_tuples;
result->tuples_removed = tuples_removed;
PG_RETURN_POINTER(result);
}
static void
initRtstate(RTSTATE *rtstate, Relation index)
{
fmgr_info_copy(&rtstate->unionFn,
index_getprocinfo(index, 1, RT_UNION_PROC),
CurrentMemoryContext);
fmgr_info_copy(&rtstate->sizeFn,
index_getprocinfo(index, 1, RT_SIZE_PROC),
CurrentMemoryContext);
fmgr_info_copy(&rtstate->interFn,
index_getprocinfo(index, 1, RT_INTER_PROC),
CurrentMemoryContext);
}
/* for sorting SPLITCOST records in descending order */
static int
qsort_comp_splitcost(const void *a, const void *b)
{
float diff =
((SPLITCOST *) a)->cost_differential -
((SPLITCOST *) b)->cost_differential;
if (diff < 0)
return 1;
else if (diff > 0)
return -1;
else
return 0;
}
#ifdef RTDEBUG
void
_rtdump(Relation r)
{
Buffer buf;
Page page;
OffsetNumber offnum,
maxoff;
BlockNumber blkno;
BlockNumber nblocks;
RTreePageOpaque po;
IndexTuple itup;
BlockNumber itblkno;
OffsetNumber itoffno;
Datum datum;
char *itkey;
nblocks = RelationGetNumberOfBlocks(r);
for (blkno = 0; blkno < nblocks; blkno++)
{
buf = ReadBuffer(r, blkno);
page = BufferGetPage(buf);
po = (RTreePageOpaque) PageGetSpecialPointer(page);
maxoff = PageGetMaxOffsetNumber(page);
printf("Page %d maxoff %d <%s>\n", blkno, maxoff,
(po->flags & F_LEAF ? "LEAF" : "INTERNAL"));
if (PageIsEmpty(page))
{
ReleaseBuffer(buf);
continue;
}
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
itblkno = ItemPointerGetBlockNumber(&(itup->t_tid));
itoffno = ItemPointerGetOffsetNumber(&(itup->t_tid));
datum = IndexTupleGetDatum(itup);
itkey = DatumGetCString(DirectFunctionCall1(box_out,
datum));
printf("\t[%d] size %d heap <%d,%d> key:%s\n",
offnum, IndexTupleSize(itup), itblkno, itoffno, itkey);
pfree(itkey);
}
ReleaseBuffer(buf);
}
}
#endif /* defined RTDEBUG */
void
rtree_redo(XLogRecPtr lsn, XLogRecord *record)
{
elog(PANIC, "rtree_redo: unimplemented");
}
void
rtree_desc(char *buf, uint8 xl_info, char *rec)
{
}
/*-------------------------------------------------------------------------
*
* rtscan.c
* routines to manage scans on index relations
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/rtree/rtscan.c,v 1.60 2005/10/15 02:49:09 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/rtree.h"
#include "utils/lsyscache.h"
#include "utils/resowner.h"
/* routines defined and used here */
static void rtregscan(IndexScanDesc s);
static void rtdropscan(IndexScanDesc s);
static void rtadjone(IndexScanDesc s, int op, BlockNumber blkno,
OffsetNumber offnum);
static void adjuststack(RTSTACK *stk, BlockNumber blkno);
static void adjustiptr(IndexScanDesc s, ItemPointer iptr,
int op, BlockNumber blkno, OffsetNumber offnum);
/*
* Whenever we start an rtree scan in a backend, we register it in private
* space. Then if the rtree index gets updated, we check all registered
* scans and adjust them if the tuple they point at got moved by the
* update. We only need to do this in private space, because when we update
* an rtree we have a write lock on the tree, so no other process can have
* any locks at all on it. A single transaction can have write and read
* locks on the same object, so that's why we need to handle this case.
*/
typedef struct RTScanListData
{
IndexScanDesc rtsl_scan;
ResourceOwner rtsl_owner;
struct RTScanListData *rtsl_next;
} RTScanListData;
typedef RTScanListData *RTScanList;
/* pointer to list of local scans on rtrees */
static RTScanList RTScans = NULL;
Datum
rtbeginscan(PG_FUNCTION_ARGS)
{
Relation r = (Relation) PG_GETARG_POINTER(0);
int nkeys = PG_GETARG_INT32(1);
ScanKey key = (ScanKey) PG_GETARG_POINTER(2);
IndexScanDesc s;
s = RelationGetIndexScan(r, nkeys, key);
rtregscan(s);
PG_RETURN_POINTER(s);
}
Datum
rtrescan(PG_FUNCTION_ARGS)
{
IndexScanDesc s = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanKey key = (ScanKey) PG_GETARG_POINTER(1);
RTreeScanOpaque p;
int i;
/*
* Clear all the pointers.
*/
ItemPointerSetInvalid(&s->currentItemData);
ItemPointerSetInvalid(&s->currentMarkData);
p = (RTreeScanOpaque) s->opaque;
if (p != NULL)
{
/* rescan an existing indexscan --- reset state */
freestack(p->s_stack);
freestack(p->s_markstk);
p->s_stack = p->s_markstk = NULL;
p->s_flags = 0x0;
/* drop pins on buffers -- no locks held */
if (BufferIsValid(p->curbuf))
{
ReleaseBuffer(p->curbuf);
p->curbuf = InvalidBuffer;
}
if (BufferIsValid(p->markbuf))
{
ReleaseBuffer(p->markbuf);
p->markbuf = InvalidBuffer;
}
}
else
{
/* initialize opaque data */
p = (RTreeScanOpaque) palloc(sizeof(RTreeScanOpaqueData));
p->s_stack = p->s_markstk = NULL;
p->curbuf = p->markbuf = InvalidBuffer;
p->s_internalNKey = s->numberOfKeys;
p->s_flags = 0x0;
s->opaque = p;
if (s->numberOfKeys > 0)
p->s_internalKey = (ScanKey) palloc(sizeof(ScanKeyData) * s->numberOfKeys);
}
/* Update scan key, if a new one is given */
if (key && s->numberOfKeys > 0)
{
memmove(s->keyData,
key,
s->numberOfKeys * sizeof(ScanKeyData));
/*
* Scans on internal pages use different operators than they do on
* leaf pages. For example, if the user wants all boxes that exactly
* match (x1,y1,x2,y2), then on internal pages we need to find all
* boxes that contain (x1,y1,x2,y2). rtstrat.c knows how to pick the
* opclass member to use for internal pages. In some cases we need to
* negate the result of the opclass member.
*/
for (i = 0; i < s->numberOfKeys; i++)
{
AttrNumber attno = s->keyData[i].sk_attno;
Oid opclass;
Oid subtype;
StrategyNumber orig_strategy;
StrategyNumber int_strategy;
Oid int_oper;
RegProcedure int_proc;
int int_flags;
opclass = s->indexRelation->rd_indclass->values[attno - 1];
subtype = s->keyData[i].sk_subtype;
orig_strategy = s->keyData[i].sk_strategy;
int_strategy = RTMapToInternalOperator(orig_strategy);
int_oper = get_opclass_member(opclass, subtype, int_strategy);
Assert(OidIsValid(int_oper));
int_proc = get_opcode(int_oper);
int_flags = s->keyData[i].sk_flags;
if (RTMapToInternalNegate(orig_strategy))
int_flags |= SK_NEGATE;
ScanKeyEntryInitialize(&(p->s_internalKey[i]),
int_flags,
attno,
int_strategy,
subtype,
int_proc,
s->keyData[i].sk_argument);
}
}
PG_RETURN_VOID();
}
Datum
rtmarkpos(PG_FUNCTION_ARGS)
{
IndexScanDesc s = (IndexScanDesc) PG_GETARG_POINTER(0);
RTreeScanOpaque p;
RTSTACK *o,
*n,
*tmp;
s->currentMarkData = s->currentItemData;
p = (RTreeScanOpaque) s->opaque;
if (p->s_flags & RTS_CURBEFORE)
p->s_flags |= RTS_MRKBEFORE;
else
p->s_flags &= ~RTS_MRKBEFORE;
o = NULL;
n = p->s_stack;
/* copy the parent stack from the current item data */
while (n != NULL)
{
tmp = (RTSTACK *) palloc(sizeof(RTSTACK));
tmp->rts_child = n->rts_child;
tmp->rts_blk = n->rts_blk;
tmp->rts_parent = o;
o = tmp;
n = n->rts_parent;
}
freestack(p->s_markstk);
p->s_markstk = o;
/* Update markbuf: make sure to bump ref count on curbuf */
if (BufferIsValid(p->markbuf))
{
ReleaseBuffer(p->markbuf);
p->markbuf = InvalidBuffer;
}
if (BufferIsValid(p->curbuf))
{
IncrBufferRefCount(p->curbuf);
p->markbuf = p->curbuf;
}
PG_RETURN_VOID();
}
Datum
rtrestrpos(PG_FUNCTION_ARGS)
{
IndexScanDesc s = (IndexScanDesc) PG_GETARG_POINTER(0);
RTreeScanOpaque p;
RTSTACK *o,
*n,
*tmp;
s->currentItemData = s->currentMarkData;
p = (RTreeScanOpaque) s->opaque;
if (p->s_flags & RTS_MRKBEFORE)
p->s_flags |= RTS_CURBEFORE;
else
p->s_flags &= ~RTS_CURBEFORE;
o = NULL;
n = p->s_markstk;
/* copy the parent stack from the current item data */
while (n != NULL)
{
tmp = (RTSTACK *) palloc(sizeof(RTSTACK));
tmp->rts_child = n->rts_child;
tmp->rts_blk = n->rts_blk;
tmp->rts_parent = o;
o = tmp;
n = n->rts_parent;
}
freestack(p->s_stack);
p->s_stack = o;
/* Update curbuf; be sure to bump ref count on markbuf */
if (BufferIsValid(p->curbuf))
{
ReleaseBuffer(p->curbuf);
p->curbuf = InvalidBuffer;
}
if (BufferIsValid(p->markbuf))
{
IncrBufferRefCount(p->markbuf);
p->curbuf = p->markbuf;
}
PG_RETURN_VOID();
}
Datum
rtendscan(PG_FUNCTION_ARGS)
{
IndexScanDesc s = (IndexScanDesc) PG_GETARG_POINTER(0);
RTreeScanOpaque p;
p = (RTreeScanOpaque) s->opaque;
if (p != NULL)
{
freestack(p->s_stack);
freestack(p->s_markstk);
if (BufferIsValid(p->curbuf))
ReleaseBuffer(p->curbuf);
if (BufferIsValid(p->markbuf))
ReleaseBuffer(p->markbuf);
pfree(s->opaque);
}
rtdropscan(s);
PG_RETURN_VOID();
}
static void
rtregscan(IndexScanDesc s)
{
RTScanList l;
l = (RTScanList) palloc(sizeof(RTScanListData));
l->rtsl_scan = s;
l->rtsl_owner = CurrentResourceOwner;
l->rtsl_next = RTScans;
RTScans = l;
}
static void
rtdropscan(IndexScanDesc s)
{
RTScanList l;
RTScanList prev;
prev = NULL;
for (l = RTScans;
l != NULL && l->rtsl_scan != s;
l = l->rtsl_next)
prev = l;
if (l == NULL)
elog(ERROR, "rtree scan list corrupted -- could not find 0x%p",
(void *) s);
if (prev == NULL)
RTScans = l->rtsl_next;
else
prev->rtsl_next = l->rtsl_next;
pfree(l);
}
/*
* ReleaseResources_rtree() --- clean up rtree subsystem resources.
*
* This is here because it needs to touch this module's static var RTScans.
*/
void
ReleaseResources_rtree(void)
{
RTScanList l;
RTScanList prev;
RTScanList next;
/*
* Note: this should be a no-op during normal query shutdown. However, in
* an abort situation ExecutorEnd is not called and so there may be open
* index scans to clean up.
*/
prev = NULL;
for (l = RTScans; l != NULL; l = next)
{
next = l->rtsl_next;
if (l->rtsl_owner == CurrentResourceOwner)
{
if (prev == NULL)
RTScans = next;
else
prev->rtsl_next = next;
pfree(l);
/* prev does not change */
}
else
prev = l;
}
}
void
rtadjscans(Relation r, int op, BlockNumber blkno, OffsetNumber offnum)
{
RTScanList l;
Oid relid;
relid = RelationGetRelid(r);
for (l = RTScans; l != NULL; l = l->rtsl_next)
{
if (RelationGetRelid(l->rtsl_scan->indexRelation) == relid)
rtadjone(l->rtsl_scan, op, blkno, offnum);
}
}
/*
* rtadjone() -- adjust one scan for update.
*
* By here, the scan passed in is on a modified relation. Op tells
* us what the modification is, and blkno and offind tell us what
* block and offset index were affected. This routine checks the
* current and marked positions, and the current and marked stacks,
* to see if any stored location needs to be changed because of the
* update. If so, we make the change here.
*/
static void
rtadjone(IndexScanDesc s,
int op,
BlockNumber blkno,
OffsetNumber offnum)
{
RTreeScanOpaque so;
adjustiptr(s, &(s->currentItemData), op, blkno, offnum);
adjustiptr(s, &(s->currentMarkData), op, blkno, offnum);
so = (RTreeScanOpaque) s->opaque;
if (op == RTOP_SPLIT)
{
adjuststack(so->s_stack, blkno);
adjuststack(so->s_markstk, blkno);
}
}
/*
* adjustiptr() -- adjust current and marked item pointers in the scan
*
* Depending on the type of update and the place it happened, we
* need to do nothing, to back up one record, or to start over on
* the same page.
*/
static void
adjustiptr(IndexScanDesc s,
ItemPointer iptr,
int op,
BlockNumber blkno,
OffsetNumber offnum)
{
OffsetNumber curoff;
RTreeScanOpaque so;
if (ItemPointerIsValid(iptr))
{
if (ItemPointerGetBlockNumber(iptr) == blkno)
{
curoff = ItemPointerGetOffsetNumber(iptr);
so = (RTreeScanOpaque) s->opaque;
switch (op)
{
case RTOP_DEL:
/* back up one if we need to */
if (curoff >= offnum)
{
if (curoff > FirstOffsetNumber)
{
/* just adjust the item pointer */
ItemPointerSet(iptr, blkno, OffsetNumberPrev(curoff));
}
else
{
/*
* remember that we're before the current tuple
*/
ItemPointerSet(iptr, blkno, FirstOffsetNumber);
if (iptr == &(s->currentItemData))
so->s_flags |= RTS_CURBEFORE;
else
so->s_flags |= RTS_MRKBEFORE;
}
}
break;
case RTOP_SPLIT:
/* back to start of page on split */
ItemPointerSet(iptr, blkno, FirstOffsetNumber);
if (iptr == &(s->currentItemData))
so->s_flags &= ~RTS_CURBEFORE;
else
so->s_flags &= ~RTS_MRKBEFORE;
break;
default:
elog(ERROR, "unrecognized operation in rtree scan adjust: %d", op);
}
}
}
}
/*
* adjuststack() -- adjust the supplied stack for a split on a page in
* the index we're scanning.
*
* If a page on our parent stack has split, we need to back up to the
* beginning of the page and rescan it. The reason for this is that
* the split algorithm for rtrees doesn't order tuples in any useful
* way on a single page. This means on that a split, we may wind up
* looking at some heap tuples more than once. This is handled in the
* access method update code for heaps; if we've modified the tuple we
* are looking at already in this transaction, we ignore the update
* request.
*/
static void
adjuststack(RTSTACK *stk, BlockNumber blkno)
{
while (stk != NULL)
{
if (stk->rts_blk == blkno)
stk->rts_child = FirstOffsetNumber;
stk = stk->rts_parent;
}
}
/*-------------------------------------------------------------------------
*
* rtstrat.c
* strategy map data for rtrees.
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/rtree/rtstrat.c,v 1.27 2005/06/24 20:53:30 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/rtree.h"
/*
* Here's something peculiar to rtrees that doesn't apply to most other
* indexing structures: When we're searching a tree for a given value, we
* can't do the same sorts of comparisons on internal node entries as we
* do at leaves. The reason is that if we're looking for (say) all boxes
* that are the same as (0,0,10,10), then we need to find all leaf pages
* that overlap that region. So internally we search for overlap, and at
* the leaf we search for equality.
*
* This array maps leaf search operators to the internal search operators.
*/
static const StrategyNumber RTOperMap[RTNStrategies] = {
RTOverRightStrategyNumber, /* left */
RTRightStrategyNumber, /* overleft */
RTOverlapStrategyNumber, /* overlap */
RTLeftStrategyNumber, /* overright */
RTOverLeftStrategyNumber, /* right */
RTContainsStrategyNumber, /* same */
RTContainsStrategyNumber, /* contains */
RTOverlapStrategyNumber, /* contained-by */
RTAboveStrategyNumber, /* overbelow */
RTOverAboveStrategyNumber, /* below */
RTOverBelowStrategyNumber, /* above */
RTBelowStrategyNumber /* overabove */
};
/*
* We may need to negate the result of the selected operator. (This could
* be avoided by expanding the set of operators required for an opclass.)
*/
static const bool RTNegateMap[RTNStrategies] = {
true, /* left */
true, /* overleft */
false, /* overlap */
true, /* overright */
true, /* right */
false, /* same */
false, /* contains */
false, /* contained-by */
true, /* overbelow */
true, /* below */
true, /* above */
true /* overabove */
};
StrategyNumber
RTMapToInternalOperator(StrategyNumber strat)
{
Assert(strat > 0 && strat <= RTNStrategies);
return RTOperMap[strat - 1];
}
bool
RTMapToInternalNegate(StrategyNumber strat)
{
Assert(strat > 0 && strat <= RTNStrategies);
return RTNegateMap[strat - 1];
}
......@@ -3,7 +3,7 @@
*
* Resource managers definition
*
* $PostgreSQL: pgsql/src/backend/access/transam/rmgr.c,v 1.20 2005/06/14 11:45:14 teodor Exp $
* $PostgreSQL: pgsql/src/backend/access/transam/rmgr.c,v 1.21 2005/11/07 17:36:45 tgl Exp $
*/
#include "postgres.h"
......@@ -13,7 +13,6 @@
#include "access/heapam.h"
#include "access/multixact.h"
#include "access/nbtree.h"
#include "access/rtree.h"
#include "access/xact.h"
#include "access/xlog_internal.h"
#include "commands/dbcommands.h"
......@@ -36,7 +35,7 @@ const RmgrData RmgrTable[RM_MAX_ID + 1] = {
{"Heap", heap_redo, heap_desc, NULL, NULL},
{"Btree", btree_redo, btree_desc, btree_xlog_startup, btree_xlog_cleanup},
{"Hash", hash_redo, hash_desc, NULL, NULL},
{"Rtree", rtree_redo, rtree_desc, NULL, NULL},
{"Reserved 13", NULL, NULL, NULL, NULL},
{"Gist", gist_redo, gist_desc, gist_xlog_startup, gist_xlog_cleanup},
{"Sequence", seq_redo, seq_desc, NULL, NULL}
};
......@@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/commands/indexcmds.c,v 1.134 2005/10/15 02:49:15 momjian Exp $
* $PostgreSQL: pgsql/src/backend/commands/indexcmds.c,v 1.135 2005/11/07 17:36:45 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -225,11 +225,28 @@ DefineIndex(RangeVar *heapRelation,
tuple = SearchSysCache(AMNAME,
PointerGetDatum(accessMethodName),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
{
/*
* Hack to provide more-or-less-transparent updating of old RTREE
* indexes to GIST: if RTREE is requested and not found, use GIST.
*/
if (strcmp(accessMethodName, "rtree") == 0)
{
ereport(NOTICE,
(errmsg("substituting access method \"gist\" for obsolete method \"rtree\"")));
accessMethodName = "gist";
tuple = SearchSysCache(AMNAME,
PointerGetDatum(accessMethodName),
0, 0, 0);
}
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("access method \"%s\" does not exist",
accessMethodName)));
}
accessMethodId = HeapTupleGetOid(tuple);
accessMethodForm = (Form_pg_am) GETSTRUCT(tuple);
......
......@@ -9,7 +9,7 @@
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/geo_selfuncs.c,v 1.24 2004/12/31 22:01:22 pgsql Exp $
* $PostgreSQL: pgsql/src/backend/utils/adt/geo_selfuncs.c,v 1.25 2005/11/07 17:36:45 tgl Exp $
*
* XXX These are totally bogus. Perhaps someone will make them do
* something reasonable, someday.
......@@ -22,19 +22,19 @@
/*
* Selectivity functions for rtrees. These are bogus -- unless we know
* the actual key distribution in the index, we can't make a good prediction
* of the selectivity of these operators.
* Selectivity functions for geometric operators. These are bogus -- unless
* we know the actual key distribution in the index, we can't make a good
* prediction of the selectivity of these operators.
*
* Note: the values used here may look unreasonably small. Perhaps they
* are. For now, we want to make sure that the optimizer will make use
* of an r-tree index if one is available, so the selectivity had better
* of a geometric index if one is available, so the selectivity had better
* be fairly small.
*
* In general, rtrees need to search multiple subtrees in order to guarantee
* In general, GiST needs to search multiple subtrees in order to guarantee
* that all occurrences of the same key have been found. Because of this,
* the estimated cost for scanning the index ought to be higher than the
* output selectivity would indicate. rtcostestimate(), over in selfuncs.c,
* output selectivity would indicate. gistcostestimate(), over in selfuncs.c,
* ought to be adjusted accordingly --- but until we can generate somewhat
* realistic numbers here, it hardly matters...
*/
......
......@@ -15,7 +15,7 @@
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.191 2005/10/15 02:49:29 momjian Exp $
* $PostgreSQL: pgsql/src/backend/utils/adt/selfuncs.c,v 1.192 2005/11/07 17:36:45 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -4470,24 +4470,6 @@ btcostestimate(PG_FUNCTION_ARGS)
PG_RETURN_VOID();
}
Datum
rtcostestimate(PG_FUNCTION_ARGS)
{
PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(1);
List *indexQuals = (List *) PG_GETARG_POINTER(2);
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(3);
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(4);
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(5);
double *indexCorrelation = (double *) PG_GETARG_POINTER(6);
genericcostestimate(root, index, indexQuals, 0.0,
indexStartupCost, indexTotalCost,
indexSelectivity, indexCorrelation);
PG_RETURN_VOID();
}
Datum
hashcostestimate(PG_FUNCTION_ARGS)
{
......
......@@ -14,7 +14,7 @@
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/resowner/resowner.c,v 1.14 2005/10/15 02:49:36 momjian Exp $
* $PostgreSQL: pgsql/src/backend/utils/resowner/resowner.c,v 1.15 2005/11/07 17:36:45 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -23,7 +23,6 @@
#include "utils/resowner.h"
#include "access/gistscan.h"
#include "access/hash.h"
#include "access/rtree.h"
#include "storage/bufmgr.h"
#include "storage/proc.h"
#include "utils/memutils.h"
......@@ -280,7 +279,6 @@ ResourceOwnerReleaseInternal(ResourceOwner owner,
/* Clean up index scans too */
ReleaseResources_gist();
ReleaseResources_hash();
ReleaseResources_rtree();
}
/* Let add-on modules get a chance too */
......
......@@ -3,7 +3,7 @@
*
* Copyright (c) 2000-2005, PostgreSQL Global Development Group
*
* $PostgreSQL: pgsql/src/bin/psql/tab-complete.c,v 1.138 2005/10/15 02:49:40 momjian Exp $
* $PostgreSQL: pgsql/src/bin/psql/tab-complete.c,v 1.139 2005/11/07 17:36:45 tgl Exp $
*/
/*----------------------------------------------------------------------
......@@ -1025,7 +1025,7 @@ psql_completion(char *text, int start, int end)
else if (pg_strcasecmp(prev_wd, "USING") == 0)
{
static const char *const index_mth[] =
{"BTREE", "RTREE", "HASH", "GIST", NULL};
{"BTREE", "HASH", "GIST", NULL};
COMPLETE_WITH_LIST(index_mth);
}
......
......@@ -9,18 +9,18 @@
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/access/gist.h,v 1.50 2005/10/15 02:49:42 momjian Exp $
* $PostgreSQL: pgsql/src/include/access/gist.h,v 1.51 2005/11/07 17:36:46 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef GIST_H
#define GIST_H
#include "access/xlog.h"
#include "access/xlogdefs.h"
#include "storage/bufpage.h"
#include "storage/off.h"
#include "utils/rel.h"
#include "access/xlog.h"
#include "access/xlogdefs.h"
/*
* amproc indexes for GiST indexes.
......@@ -34,6 +34,23 @@
#define GIST_EQUAL_PROC 7
#define GISTNProcs 7
/*
* strategy numbers for GiST opclasses that want to implement the old
* RTREE behavior.
*/
#define RTLeftStrategyNumber 1
#define RTOverLeftStrategyNumber 2
#define RTOverlapStrategyNumber 3
#define RTOverRightStrategyNumber 4
#define RTRightStrategyNumber 5
#define RTSameStrategyNumber 6
#define RTContainsStrategyNumber 7
#define RTContainedByStrategyNumber 8
#define RTOverBelowStrategyNumber 9
#define RTBelowStrategyNumber 10
#define RTAboveStrategyNumber 11
#define RTOverAboveStrategyNumber 12
/*
* Page opaque data in a GiST index page.
*/
......
......@@ -3,7 +3,7 @@
*
* Resource managers definition
*
* $PostgreSQL: pgsql/src/include/access/rmgr.h,v 1.14 2005/06/06 17:01:24 tgl Exp $
* $PostgreSQL: pgsql/src/include/access/rmgr.h,v 1.15 2005/11/07 17:36:46 tgl Exp $
*/
#ifndef RMGR_H
#define RMGR_H
......@@ -23,7 +23,6 @@ typedef uint8 RmgrId;
#define RM_HEAP_ID 10
#define RM_BTREE_ID 11
#define RM_HASH_ID 12
#define RM_RTREE_ID 13
#define RM_GIST_ID 14
#define RM_SEQ_ID 15
#define RM_MAX_ID RM_SEQ_ID
......
/*-------------------------------------------------------------------------
*
* rtree.h
* common declarations for the rtree access method code.
*
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/access/rtree.h,v 1.41 2005/06/24 20:53:31 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef RTREE_H
#define RTREE_H
#include "access/itup.h"
#include "access/sdir.h"
#include "access/skey.h"
#include "access/xlog.h"
#include "utils/rel.h"
/* see rtstrat.c for what all this is about */
#define RTNStrategies 12
#define RTLeftStrategyNumber 1
#define RTOverLeftStrategyNumber 2
#define RTOverlapStrategyNumber 3
#define RTOverRightStrategyNumber 4
#define RTRightStrategyNumber 5
#define RTSameStrategyNumber 6
#define RTContainsStrategyNumber 7
#define RTContainedByStrategyNumber 8
#define RTOverBelowStrategyNumber 9
#define RTBelowStrategyNumber 10
#define RTAboveStrategyNumber 11
#define RTOverAboveStrategyNumber 12
#define RTNProcs 3
#define RT_UNION_PROC 1
#define RT_INTER_PROC 2
#define RT_SIZE_PROC 3
#define F_LEAF (1 << 0)
typedef struct RTreePageOpaqueData
{
uint32 flags;
} RTreePageOpaqueData;
typedef RTreePageOpaqueData *RTreePageOpaque;
/*
* When we descend a tree, we keep a stack of parent pointers.
*/
typedef struct RTSTACK
{
struct RTSTACK *rts_parent;
OffsetNumber rts_child;
BlockNumber rts_blk;
} RTSTACK;
/*
* When we're doing a scan, we need to keep track of the parent stack
* for the marked and current items. Also, rtrees have the following
* property: if you're looking for the box (1,1,2,2), on the internal
* nodes you have to search for all boxes that *contain* (1,1,2,2),
* and not the ones that match it. We have a private scan key for
* internal nodes in the opaque structure for rtrees for this reason.
* See access/index-rtree/rtscan.c and rtstrat.c for how it gets
* initialized. We also keep pins on the scan's current buffer and
* marked buffer, if any: this avoids the need to invoke ReadBuffer()
* for each tuple produced by the index scan.
*/
typedef struct RTreeScanOpaqueData
{
struct RTSTACK *s_stack;
struct RTSTACK *s_markstk;
uint16 s_flags;
int s_internalNKey;
ScanKey s_internalKey;
Buffer curbuf;
Buffer markbuf;
} RTreeScanOpaqueData;
typedef RTreeScanOpaqueData *RTreeScanOpaque;
/*
* When we're doing a scan and updating a tree at the same time, the
* updates may affect the scan. We use the flags entry of the scan's
* opaque space to record our actual position in response to updates
* that we can't handle simply by adjusting pointers.
*/
#define RTS_CURBEFORE ((uint16) (1 << 0))
#define RTS_MRKBEFORE ((uint16) (1 << 1))
/* root page of an rtree */
#define P_ROOT 0
/*
* When we update a relation on which we're doing a scan, we need to
* check the scan and fix it if the update affected any of the pages it
* touches. Otherwise, we can miss records that we should see. The only
* times we need to do this are for deletions and splits. See the code in
* rtscan.c for how the scan is fixed. These two contants tell us what sort
* of operation changed the index.
*/
#define RTOP_DEL 0
#define RTOP_SPLIT 1
/* defined in rtree.c */
extern void freestack(RTSTACK *s);
/*
* RTree code.
* Defined in access/rtree/
*/
extern Datum rtinsert(PG_FUNCTION_ARGS);
extern Datum rtbulkdelete(PG_FUNCTION_ARGS);
extern Datum rtbeginscan(PG_FUNCTION_ARGS);
extern Datum rtgettuple(PG_FUNCTION_ARGS);
extern Datum rtgetmulti(PG_FUNCTION_ARGS);
extern Datum rtendscan(PG_FUNCTION_ARGS);
extern Datum rtmarkpos(PG_FUNCTION_ARGS);
extern Datum rtrestrpos(PG_FUNCTION_ARGS);
extern Datum rtrescan(PG_FUNCTION_ARGS);
extern Datum rtbuild(PG_FUNCTION_ARGS);
extern void _rtdump(Relation r);
extern void rtree_redo(XLogRecPtr lsn, XLogRecord *record);
extern void rtree_desc(char *buf, uint8 xl_info, char *rec);
/* rtscan.c */
extern void rtadjscans(Relation r, int op, BlockNumber blkno,
OffsetNumber offnum);
extern void ReleaseResources_rtree(void);
/* rtstrat.c */
extern StrategyNumber RTMapToInternalOperator(StrategyNumber strat);
extern bool RTMapToInternalNegate(StrategyNumber strat);
#endif /* RTREE_H */
/*-------------------------------------------------------------------------
*
* rtscan.h
* routines defined in access/rtree/rtscan.c
*
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/access/rtscan.h,v 1.18 2004/12/31 22:03:21 pgsql Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef RTSCAN_H
#define RTSCAN_H
#include "storage/block.h"
#include "storage/off.h"
#include "utils/rel.h"
void rtadjscans(Relation r, int op, BlockNumber blkno, OffsetNumber offnum);
#endif /* RTSCAN_H */
......@@ -37,7 +37,7 @@
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/catalog/catversion.h,v 1.305 2005/10/21 15:45:06 tgl Exp $
* $PostgreSQL: pgsql/src/include/catalog/catversion.h,v 1.306 2005/11/07 17:36:46 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -53,6 +53,6 @@
*/
/* yyyymmddN */
#define CATALOG_VERSION_NO 200510211
#define CATALOG_VERSION_NO 200511071
#endif
......@@ -8,7 +8,7 @@
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/catalog/pg_am.h,v 1.38 2005/10/15 02:49:42 momjian Exp $
* $PostgreSQL: pgsql/src/include/catalog/pg_am.h,v 1.39 2005/11/07 17:36:46 tgl Exp $
*
* NOTES
* the genbki.sh script reads this file and generates .bki
......@@ -104,8 +104,6 @@ typedef FormData_pg_am *Form_pg_am;
* ----------------
*/
DATA(insert OID = 402 ( rtree 12 3 0 f f f f f rtinsert rtbeginscan rtgettuple rtgetmulti rtrescan rtendscan rtmarkpos rtrestrpos rtbuild rtbulkdelete - rtcostestimate ));
DESCR("r-tree index access method");
DATA(insert OID = 403 ( btree 5 1 1 t t t t t btinsert btbeginscan btgettuple btgetmulti btrescan btendscan btmarkpos btrestrpos btbuild btbulkdelete btvacuumcleanup btcostestimate ));
DESCR("b-tree index access method");
#define BTREE_AM_OID 403
......
......@@ -23,7 +23,7 @@
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/catalog/pg_amop.h,v 1.66 2005/10/15 02:49:42 momjian Exp $
* $PostgreSQL: pgsql/src/include/catalog/pg_amop.h,v 1.67 2005/11/07 17:36:46 tgl Exp $
*
* NOTES
* the genbki.sh script reads this file and generates .bki
......@@ -80,40 +80,6 @@ typedef FormData_pg_amop *Form_pg_amop;
* ----------------
*/
/*
* rtree box_ops
*/
DATA(insert ( 425 0 1 f 493 ));
DATA(insert ( 425 0 2 f 494 ));
DATA(insert ( 425 0 3 f 500 ));
DATA(insert ( 425 0 4 f 495 ));
DATA(insert ( 425 0 5 f 496 ));
DATA(insert ( 425 0 6 f 499 ));
DATA(insert ( 425 0 7 f 498 ));
DATA(insert ( 425 0 8 f 497 ));
DATA(insert ( 425 0 9 f 2571 ));
DATA(insert ( 425 0 10 f 2570 ));
DATA(insert ( 425 0 11 f 2573 ));
DATA(insert ( 425 0 12 f 2572 ));
/*
* rtree poly_ops (supports polygons)
*/
DATA(insert ( 1993 0 1 f 485 ));
DATA(insert ( 1993 0 2 f 486 ));
DATA(insert ( 1993 0 3 f 492 ));
DATA(insert ( 1993 0 4 f 487 ));
DATA(insert ( 1993 0 5 f 488 ));
DATA(insert ( 1993 0 6 f 491 ));
DATA(insert ( 1993 0 7 f 490 ));
DATA(insert ( 1993 0 8 f 489 ));
DATA(insert ( 1993 0 9 f 2575 ));
DATA(insert ( 1993 0 10 f 2574 ));
DATA(insert ( 1993 0 11 f 2577 ));
DATA(insert ( 1993 0 12 f 2576 ));
/*
* btree int2_ops
*/
......
......@@ -19,7 +19,7 @@
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/catalog/pg_amproc.h,v 1.54 2005/07/01 19:19:03 tgl Exp $
* $PostgreSQL: pgsql/src/include/catalog/pg_amproc.h,v 1.55 2005/11/07 17:36:46 tgl Exp $
*
* NOTES
* the genbki.sh script reads this file and generates .bki
......@@ -74,15 +74,6 @@ typedef FormData_pg_amproc *Form_pg_amproc;
* ----------------
*/
/* rtree */
DATA(insert ( 425 0 1 193 ));
DATA(insert ( 425 0 2 194 ));
DATA(insert ( 425 0 3 195 ));
DATA(insert ( 1993 0 1 197 ));
DATA(insert ( 1993 0 2 198 ));
DATA(insert ( 1993 0 3 199 ));
/* btree */
DATA(insert ( 397 0 1 382 ));
DATA(insert ( 421 0 1 357 ));
......
......@@ -27,7 +27,7 @@
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/catalog/pg_opclass.h,v 1.66 2005/07/01 19:19:03 tgl Exp $
* $PostgreSQL: pgsql/src/include/catalog/pg_opclass.h,v 1.67 2005/11/07 17:36:46 tgl Exp $
*
* NOTES
* the genbki.sh script reads this file and generates .bki
......@@ -94,7 +94,6 @@ DATA(insert OID = 397 ( 403 array_ops PGNSP PGUID 2277 t 0 ));
DATA(insert OID = 423 ( 403 bit_ops PGNSP PGUID 1560 t 0 ));
DATA(insert OID = 424 ( 403 bool_ops PGNSP PGUID 16 t 0 ));
#define BOOL_BTREE_OPS_OID 424
DATA(insert OID = 425 ( 402 box_ops PGNSP PGUID 603 t 0 ));
DATA(insert OID = 426 ( 403 bpchar_ops PGNSP PGUID 1042 t 0 ));
#define BPCHAR_BTREE_OPS_OID 426
DATA(insert OID = 427 ( 405 bpchar_ops PGNSP PGUID 1042 t 0 ));
......@@ -135,7 +134,6 @@ DATA(insert OID = 1989 ( 403 oid_ops PGNSP PGUID 26 t 0 ));
DATA(insert OID = 1990 ( 405 oid_ops PGNSP PGUID 26 t 0 ));
DATA(insert OID = 1991 ( 403 oidvector_ops PGNSP PGUID 30 t 0 ));
DATA(insert OID = 1992 ( 405 oidvector_ops PGNSP PGUID 30 t 0 ));
DATA(insert OID = 1993 ( 402 poly_ops PGNSP PGUID 604 t 0 ));
DATA(insert OID = 1994 ( 403 text_ops PGNSP PGUID 25 t 0 ));
#define TEXT_BTREE_OPS_OID 1994
DATA(insert OID = 1995 ( 405 text_ops PGNSP PGUID 25 t 0 ));
......
......@@ -7,7 +7,7 @@
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/catalog/pg_proc.h,v 1.387 2005/10/15 02:49:42 momjian Exp $
* $PostgreSQL: pgsql/src/include/catalog/pg_proc.h,v 1.388 2005/11/07 17:36:46 tgl Exp $
*
* NOTES
* The script catalog/genbki.sh reads this file and generates .bki
......@@ -394,18 +394,6 @@ DATA(insert OID = 191 ( box_right PGNSP PGUID 12 f f t f i 2 16 "603 603" _
DESCR("is right of");
DATA(insert OID = 192 ( box_contained PGNSP PGUID 12 f f t f i 2 16 "603 603" _null_ _null_ _null_ box_contained - _null_ ));
DESCR("contained in?");
DATA(insert OID = 193 ( rt_box_union PGNSP PGUID 12 f f t f i 2 603 "603 603" _null_ _null_ _null_ rt_box_union - _null_ ));
DESCR("r-tree");
DATA(insert OID = 194 ( rt_box_inter PGNSP PGUID 12 f f t f i 2 2278 "603 603" _null_ _null_ _null_ rt_box_inter - _null_ ));
DESCR("r-tree");
DATA(insert OID = 195 ( rt_box_size PGNSP PGUID 12 f f t f i 2 2278 "603 2281" _null_ _null_ _null_ rt_box_size - _null_ ));
DESCR("r-tree");
DATA(insert OID = 197 ( rt_poly_union PGNSP PGUID 12 f f t f i 2 604 "604 604" _null_ _null_ _null_ rt_poly_union - _null_ ));
DESCR("r-tree");
DATA(insert OID = 198 ( rt_poly_inter PGNSP PGUID 12 f f t f i 2 2278 "604 604" _null_ _null_ _null_ rt_poly_inter - _null_ ));
DESCR("r-tree");
DATA(insert OID = 199 ( rt_poly_size PGNSP PGUID 12 f f t f i 2 2278 "604 2281" _null_ _null_ _null_ rt_poly_size - _null_ ));
DESCR("r-tree");
/* OIDS 200 - 299 */
......@@ -668,29 +656,6 @@ DESCR("convert int4 to float4");
DATA(insert OID = 319 ( int4 PGNSP PGUID 12 f f t f i 1 23 "700" _null_ _null_ _null_ ftoi4 - _null_ ));
DESCR("convert float4 to int4");
DATA(insert OID = 320 ( rtinsert PGNSP PGUID 12 f f t f v 6 16 "2281 2281 2281 2281 2281 2281" _null_ _null_ _null_ rtinsert - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 322 ( rtgettuple PGNSP PGUID 12 f f t f v 2 16 "2281 2281" _null_ _null_ _null_ rtgettuple - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 635 ( rtgetmulti PGNSP PGUID 12 f f t f v 4 16 "2281 2281 2281 2281" _null_ _null_ _null_ rtgetmulti - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 323 ( rtbuild PGNSP PGUID 12 f f t f v 3 2278 "2281 2281 2281" _null_ _null_ _null_ rtbuild - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 324 ( rtbeginscan PGNSP PGUID 12 f f t f v 3 2281 "2281 2281 2281" _null_ _null_ _null_ rtbeginscan - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 325 ( rtendscan PGNSP PGUID 12 f f t f v 1 2278 "2281" _null_ _null_ _null_ rtendscan - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 326 ( rtmarkpos PGNSP PGUID 12 f f t f v 1 2278 "2281" _null_ _null_ _null_ rtmarkpos - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 327 ( rtrestrpos PGNSP PGUID 12 f f t f v 1 2278 "2281" _null_ _null_ _null_ rtrestrpos - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 328 ( rtrescan PGNSP PGUID 12 f f t f v 2 2278 "2281 2281" _null_ _null_ _null_ rtrescan - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 321 ( rtbulkdelete PGNSP PGUID 12 f f t f v 3 2281 "2281 2281 2281" _null_ _null_ _null_ rtbulkdelete - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 1265 ( rtcostestimate PGNSP PGUID 12 f f t f v 7 2278 "2281 2281 2281 2281 2281 2281 2281" _null_ _null_ _null_ rtcostestimate - _null_ ));
DESCR("r-tree(internal)");
DATA(insert OID = 330 ( btgettuple PGNSP PGUID 12 f f t f v 2 16 "2281 2281" _null_ _null_ _null_ btgettuple - _null_ ));
DESCR("btree(internal)");
DATA(insert OID = 636 ( btgetmulti PGNSP PGUID 12 f f t f v 4 16 "2281 2281 2281 2281" _null_ _null_ _null_ btgetmulti - _null_ ));
......
......@@ -6,7 +6,7 @@
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/utils/geo_decls.h,v 1.48 2005/07/01 19:19:04 tgl Exp $
* $PostgreSQL: pgsql/src/include/utils/geo_decls.h,v 1.49 2005/11/07 17:36:47 tgl Exp $
*
* NOTE
* These routines do *not* use the float types from adt/.
......@@ -406,14 +406,6 @@ extern Datum poly_circle(PG_FUNCTION_ARGS);
extern Datum circle_poly(PG_FUNCTION_ARGS);
extern Datum circle_area(PG_FUNCTION_ARGS);
/* support routines for the rtree access method (access/rtree/rtproc.c) */
extern Datum rt_box_union(PG_FUNCTION_ARGS);
extern Datum rt_box_inter(PG_FUNCTION_ARGS);
extern Datum rt_box_size(PG_FUNCTION_ARGS);
extern Datum rt_poly_size(PG_FUNCTION_ARGS);
extern Datum rt_poly_union(PG_FUNCTION_ARGS);
extern Datum rt_poly_inter(PG_FUNCTION_ARGS);
/* support routines for the GiST access method (access/gist/gistproc.c) */
extern Datum gist_box_compress(PG_FUNCTION_ARGS);
extern Datum gist_box_decompress(PG_FUNCTION_ARGS);
......
......@@ -8,7 +8,7 @@
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.24 2005/10/15 02:49:46 momjian Exp $
* $PostgreSQL: pgsql/src/include/utils/selfuncs.h,v 1.25 2005/11/07 17:36:47 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -124,7 +124,6 @@ extern Selectivity estimate_hash_bucketsize(PlannerInfo *root, Node *hashkey,
double nbuckets);
extern Datum btcostestimate(PG_FUNCTION_ARGS);
extern Datum rtcostestimate(PG_FUNCTION_ARGS);
extern Datum hashcostestimate(PG_FUNCTION_ARGS);
extern Datum gistcostestimate(PG_FUNCTION_ARGS);
......
......@@ -46,55 +46,6 @@ CREATE INDEX onek2_u2_prtl ON onek2 USING btree(unique2 int4_ops)
CREATE INDEX onek2_stu1_prtl ON onek2 USING btree(stringu1 name_ops)
where onek2.stringu1 >= 'J' and onek2.stringu1 < 'K';
--
-- RTREE
--
-- rtrees use a quadratic page-splitting algorithm that takes a
-- really, really long time. we don't test all rtree opclasses
-- in the regression test (we check them using the sequoia 2000
-- benchmark).
--
CREATE INDEX rect2ind ON fast_emp4000 USING rtree (home_base);
SET enable_seqscan = ON;
SET enable_indexscan = OFF;
SET enable_bitmapscan = OFF;
SELECT * FROM fast_emp4000
WHERE home_base @ '(200,200),(2000,1000)'::box
ORDER BY home_base USING <;
home_base
-----------------------
(1444,403),(1346,344)
(337,455),(240,359)
(2 rows)
SELECT count(*) FROM fast_emp4000 WHERE home_base && '(1000,1000,0,0)'::box;
count
-------
2
(1 row)
SET enable_seqscan = OFF;
SET enable_indexscan = ON;
SET enable_bitmapscan = ON;
-- there's no easy way to check that these commands actually use
-- the index, unfortunately. (EXPLAIN would work, but its output
-- changes too often for me to want to put an EXPLAIN in the test...)
SELECT * FROM fast_emp4000
WHERE home_base @ '(200,200),(2000,1000)'::box
ORDER BY home_base USING <;
home_base
-----------------------
(1444,403),(1346,344)
(337,455),(240,359)
(2 rows)
SELECT count(*) FROM fast_emp4000 WHERE home_base && '(1000,1000,0,0)'::box;
count
-------
2
(1 row)
DROP INDEX rect2ind;
--
-- GiST (rtree-equivalent opclasses only)
--
CREATE INDEX grect2ind ON fast_emp4000 USING gist (home_base);
......
......@@ -798,18 +798,6 @@ FROM pg_amop p1 LEFT JOIN pg_opclass p2 ON amopclaid = p2.oid
ORDER BY 1, 2, 3;
opcamid | amopstrategy | oprname
---------+--------------+---------
402 | 1 | <<
402 | 2 | &<
402 | 3 | &&
402 | 4 | &>
402 | 5 | >>
402 | 6 | ~=
402 | 7 | ~
402 | 8 | @
402 | 9 | &<|
402 | 10 | <<|
402 | 11 | |>>
402 | 12 | |&>
403 | 1 | <
403 | 1 | ~<~
403 | 2 | <=
......@@ -834,7 +822,7 @@ ORDER BY 1, 2, 3;
783 | 10 | <<|
783 | 11 | |>>
783 | 12 | |&>
(36 rows)
(24 rows)
-- Check that all operators linked to by opclass entries have selectivity
-- estimators. This is not absolutely required, but it seems a reasonable
......
......@@ -67,42 +67,6 @@ CREATE INDEX onek2_u2_prtl ON onek2 USING btree(unique2 int4_ops)
CREATE INDEX onek2_stu1_prtl ON onek2 USING btree(stringu1 name_ops)
where onek2.stringu1 >= 'J' and onek2.stringu1 < 'K';
--
-- RTREE
--
-- rtrees use a quadratic page-splitting algorithm that takes a
-- really, really long time. we don't test all rtree opclasses
-- in the regression test (we check them using the sequoia 2000
-- benchmark).
--
CREATE INDEX rect2ind ON fast_emp4000 USING rtree (home_base);
SET enable_seqscan = ON;
SET enable_indexscan = OFF;
SET enable_bitmapscan = OFF;
SELECT * FROM fast_emp4000
WHERE home_base @ '(200,200),(2000,1000)'::box
ORDER BY home_base USING <;
SELECT count(*) FROM fast_emp4000 WHERE home_base && '(1000,1000,0,0)'::box;
SET enable_seqscan = OFF;
SET enable_indexscan = ON;
SET enable_bitmapscan = ON;
-- there's no easy way to check that these commands actually use
-- the index, unfortunately. (EXPLAIN would work, but its output
-- changes too often for me to want to put an EXPLAIN in the test...)
SELECT * FROM fast_emp4000
WHERE home_base @ '(200,200),(2000,1000)'::box
ORDER BY home_base USING <;
SELECT count(*) FROM fast_emp4000 WHERE home_base && '(1000,1000,0,0)'::box;
DROP INDEX rect2ind;
--
-- GiST (rtree-equivalent opclasses only)
--
......
......@@ -212,9 +212,6 @@ index types<br />
<a id="access_nbtree" name="access_nbtree"></a> <a
href="../../backend/access/nbtree">access/nbtree</a> - Lehman and
Yao's btree management algorithm<br />
<a id="access_rtree" name="access_rtree"></a> <a
href="../../backend/access/rtree">access/rtree</a> - used for
indexing of 2-dimensional data<br />
<a id="access_transam" name="access_transam"></a> <a
href="../../backend/access/transam">access/transam</a> -
transaction manager (BEGIN/ABORT/COMMIT)<br />
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment