Commit 166b5c1d authored by Tom Lane's avatar Tom Lane

Another round of planner/optimizer work. This is just restructuring and

code cleanup; no major improvements yet.  However, EXPLAIN does produce
more intuitive outputs for nested loops with indexscans now...
parent 69d4299e
......@@ -4,7 +4,7 @@
*
* Copyright (c) 1994-5, Regents of the University of California
*
* $Id: explain.c,v 1.50 1999/11/23 20:06:48 momjian Exp $
* $Id: explain.c,v 1.51 2000/01/09 00:26:18 tgl Exp $
*
*/
......@@ -256,8 +256,8 @@ explain_outNode(StringInfo str, Plan *plan, int indent, ExplainState *es)
}
if (es->printCost)
{
appendStringInfo(str, " (cost=%.2f rows=%d width=%d)",
plan->cost, plan->plan_size, plan->plan_width);
appendStringInfo(str, " (cost=%.2f rows=%.0f width=%d)",
plan->cost, plan->plan_rows, plan->plan_width);
}
appendStringInfo(str, "\n");
......
......@@ -6,7 +6,7 @@
* Copyright (c) 1994, Regents of the University of California
*
*
* $Id: nodeHash.c,v 1.41 1999/12/16 22:19:44 wieck Exp $
* $Id: nodeHash.c,v 1.42 2000/01/09 00:26:18 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -227,7 +227,7 @@ HashJoinTable
ExecHashTableCreate(Hash *node)
{
Plan *outerNode;
int ntuples;
double ntuples;
int tupsize;
double inner_rel_bytes;
double hash_table_bytes;
......@@ -250,9 +250,9 @@ ExecHashTableCreate(Hash *node)
* ----------------
*/
outerNode = outerPlan(node);
ntuples = outerNode->plan_size;
if (ntuples <= 0) /* force a plausible size if no info */
ntuples = 1000;
ntuples = outerNode->plan_rows;
if (ntuples <= 0.0) /* force a plausible size if no info */
ntuples = 1000.0;
/*
* estimate tupsize based on footprint of tuple in hashtable... but
......@@ -260,7 +260,7 @@ ExecHashTableCreate(Hash *node)
*/
tupsize = MAXALIGN(outerNode->plan_width) +
MAXALIGN(sizeof(HashJoinTupleData));
inner_rel_bytes = (double) ntuples *tupsize * FUDGE_FAC;
inner_rel_bytes = ntuples * tupsize * FUDGE_FAC;
/*
* Target hashtable size is SortMem kilobytes, but not less than
......@@ -276,7 +276,7 @@ ExecHashTableCreate(Hash *node)
* for an average bucket load of NTUP_PER_BUCKET (per virtual
* bucket!).
*/
totalbuckets = (int) ceil((double) ntuples * FUDGE_FAC / NTUP_PER_BUCKET);
totalbuckets = (int) ceil(ntuples * FUDGE_FAC / NTUP_PER_BUCKET);
/*
* Count the number of buckets we think will actually fit in the
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/nodes/copyfuncs.c,v 1.98 1999/12/13 01:26:53 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/nodes/copyfuncs.c,v 1.99 2000/01/09 00:26:22 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -75,9 +75,9 @@ static void
CopyPlanFields(Plan *from, Plan *newnode)
{
newnode->cost = from->cost;
newnode->plan_size = from->plan_size;
newnode->plan_rows = from->plan_rows;
newnode->plan_width = from->plan_width;
newnode->plan_tupperpage = from->plan_tupperpage;
/* state is NOT copied */
newnode->targetlist = copyObject(from->targetlist);
newnode->qual = copyObject(from->qual);
newnode->lefttree = copyObject(from->lefttree);
......@@ -962,25 +962,44 @@ static RelOptInfo *
_copyRelOptInfo(RelOptInfo *from)
{
RelOptInfo *newnode = makeNode(RelOptInfo);
int i,
len;
/* ----------------
* copy remainder of node
* ----------------
*/
newnode->relids = listCopy(from->relids);
newnode->indexed = from->indexed;
newnode->pages = from->pages;
newnode->tuples = from->tuples;
newnode->size = from->size;
newnode->rows = from->rows;
newnode->width = from->width;
Node_Copy(from, newnode, targetlist);
Node_Copy(from, newnode, pathlist);
/* XXX cheapestpath should point to a member of pathlist? */
Node_Copy(from, newnode, cheapestpath);
newnode->pruneable = from->pruneable;
newnode->indexed = from->indexed;
newnode->pages = from->pages;
newnode->tuples = from->tuples;
Node_Copy(from, newnode, restrictinfo);
Node_Copy(from, newnode, joininfo);
Node_Copy(from, newnode, innerjoin);
return newnode;
}
/* ----------------
* _copyIndexOptInfo
* ----------------
*/
static IndexOptInfo *
_copyIndexOptInfo(IndexOptInfo *from)
{
IndexOptInfo *newnode = makeNode(IndexOptInfo);
int i,
len;
newnode->indexoid = from->indexoid;
newnode->pages = from->pages;
newnode->tuples = from->tuples;
if (from->classlist)
{
for (len = 0; from->classlist[len] != 0; len++)
......@@ -1015,10 +1034,6 @@ _copyRelOptInfo(RelOptInfo *from)
newnode->indproc = from->indproc;
Node_Copy(from, newnode, indpred);
Node_Copy(from, newnode, restrictinfo);
Node_Copy(from, newnode, joininfo);
Node_Copy(from, newnode, innerjoin);
return newnode;
}
......@@ -1120,7 +1135,6 @@ _copyTidPath(TidPath *from)
static void
CopyJoinPathFields(JoinPath *from, JoinPath *newnode)
{
Node_Copy(from, newnode, pathinfo);
Node_Copy(from, newnode, outerjoinpath);
Node_Copy(from, newnode, innerjoinpath);
}
......@@ -1229,7 +1243,6 @@ _copyRestrictInfo(RestrictInfo *from)
* ----------------
*/
Node_Copy(from, newnode, clause);
newnode->selectivity = from->selectivity;
Node_Copy(from, newnode, subclauseindices);
newnode->mergejoinoperator = from->mergejoinoperator;
newnode->left_sortop = from->left_sortop;
......@@ -1617,6 +1630,9 @@ copyObject(void *from)
case T_Stream:
retval = _copyStream(from);
break;
case T_IndexOptInfo:
retval = _copyIndexOptInfo(from);
break;
/*
* PARSE NODES
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/nodes/equalfuncs.c,v 1.54 1999/12/24 06:43:32 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/nodes/equalfuncs.c,v 1.55 2000/01/09 00:26:23 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -302,6 +302,17 @@ _equalRelOptInfo(RelOptInfo *a, RelOptInfo *b)
return equali(a->relids, b->relids);
}
static bool
_equalIndexOptInfo(IndexOptInfo *a, IndexOptInfo *b)
{
/* We treat IndexOptInfos as equal if they refer to the same index.
* Is this sufficient?
*/
if (a->indexoid != b->indexoid)
return false;
return true;
}
static bool
_equalPathKeyItem(PathKeyItem *a, PathKeyItem *b)
{
......@@ -358,8 +369,6 @@ _equalJoinPath(JoinPath *a, JoinPath *b)
{
if (!_equalPath((Path *) a, (Path *) b))
return false;
if (!equal(a->pathinfo, b->pathinfo))
return false;
if (!equal(a->outerjoinpath, b->outerjoinpath))
return false;
if (!equal(a->innerjoinpath, b->innerjoinpath))
......@@ -469,7 +478,6 @@ _equalRestrictInfo(RestrictInfo *a, RestrictInfo *b)
{
if (!equal(a->clause, b->clause))
return false;
/* do not check selectivity because of roundoff error worries */
if (!equal(a->subclauseindices, b->subclauseindices))
return false;
if (a->mergejoinoperator != b->mergejoinoperator)
......@@ -792,6 +800,9 @@ equal(void *a, void *b)
case T_RelOptInfo:
retval = _equalRelOptInfo(a, b);
break;
case T_IndexOptInfo:
retval = _equalIndexOptInfo(a, b);
break;
case T_PathKeyItem:
retval = _equalPathKeyItem(a, b);
break;
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/nodes/Attic/freefuncs.c,v 1.29 1999/12/16 22:19:47 wieck Exp $
* $Header: /cvsroot/pgsql/src/backend/nodes/Attic/freefuncs.c,v 1.30 2000/01/09 00:26:23 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -730,11 +730,29 @@ _freeRelOptInfo(RelOptInfo *node)
freeObject(node->targetlist);
freeObject(node->pathlist);
/* is this right? cheapestpath will typically be a pointer into
/* XXX is this right? cheapestpath will typically be a pointer into
* pathlist, won't it?
*/
freeObject(node->cheapestpath);
freeObject(node->restrictinfo);
freeObject(node->joininfo);
freeObject(node->innerjoin);
pfree(node);
}
/* ----------------
* _freeIndexOptInfo
* ----------------
*/
static void
_freeIndexOptInfo(IndexOptInfo *node)
{
/* ----------------
* free remainder of node
* ----------------
*/
if (node->classlist)
pfree(node->classlist);
......@@ -746,10 +764,6 @@ _freeRelOptInfo(RelOptInfo *node)
freeObject(node->indpred);
freeObject(node->restrictinfo);
freeObject(node->joininfo);
freeObject(node->innerjoin);
pfree(node);
}
......@@ -837,7 +851,6 @@ _freeTidPath(TidPath *node)
static void
FreeJoinPathFields(JoinPath *node)
{
freeObject(node->pathinfo);
freeObject(node->outerjoinpath);
freeObject(node->innerjoinpath);
}
......@@ -936,7 +949,7 @@ _freeRestrictInfo(RestrictInfo *node)
* ----------------
*/
freeObject(node->clause);
/* this is certainly wrong? index RelOptInfos don't belong to
/* this is certainly wrong? IndexOptInfos don't belong to
* RestrictInfo...
*/
freeObject(node->subclauseindices);
......@@ -1253,6 +1266,9 @@ freeObject(void *node)
case T_Stream:
_freeStream(node);
break;
case T_IndexOptInfo:
_freeIndexOptInfo(node);
break;
/*
* PARSE NODES
......
......@@ -5,7 +5,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: outfuncs.c,v 1.100 1999/12/13 01:26:53 tgl Exp $
* $Id: outfuncs.c,v 1.101 2000/01/09 00:26:23 tgl Exp $
*
* NOTES
* Every (plan) node in POSTGRES has an associated "out" routine which
......@@ -265,9 +265,9 @@ static void
_outPlanInfo(StringInfo str, Plan *node)
{
appendStringInfo(str,
":cost %g :size %d :width %d :state %s :qptargetlist ",
":cost %g :rows %.0f :width %d :state %s :qptargetlist ",
node->cost,
node->plan_size,
node->plan_rows,
node->plan_width,
node->state ? "not-NULL" : "<>");
_outNode(str, node->targetlist);
......@@ -834,6 +834,7 @@ _outEState(StringInfo str, EState *node)
/*
* Stuff from relation.h
*/
static void
_outRelOptInfo(StringInfo str, RelOptInfo *node)
{
......@@ -841,12 +842,12 @@ _outRelOptInfo(StringInfo str, RelOptInfo *node)
_outIntList(str, node->relids);
appendStringInfo(str,
" :indexed %s :pages %u :tuples %u :size %u :width %u :targetlist ",
" :rows %.0f :width %d :indexed %s :pages %ld :tuples %.0f :targetlist ",
node->rows,
node->width,
node->indexed ? "true" : "false",
node->pages,
node->tuples,
node->size,
node->width);
node->tuples);
_outNode(str, node->targetlist);
appendStringInfo(str, " :pathlist ");
......@@ -871,6 +872,15 @@ _outRelOptInfo(StringInfo str, RelOptInfo *node)
_outNode(str, node->innerjoin);
}
static void
_outIndexOptInfo(StringInfo str, IndexOptInfo *node)
{
appendStringInfo(str, " INDEXOPTINFO :indexoid %u :pages %ld :tuples %g ",
node->indexoid,
node->pages,
node->tuples);
}
/*
* TargetEntry is a subclass of Node.
*/
......@@ -910,7 +920,7 @@ _outRowMark(StringInfo str, RowMark *node)
static void
_outPath(StringInfo str, Path *node)
{
appendStringInfo(str, " PATH :pathtype %d :cost %f :pathkeys ",
appendStringInfo(str, " PATH :pathtype %d :cost %.2f :pathkeys ",
node->pathtype,
node->path_cost);
_outNode(str, node->pathkeys);
......@@ -923,7 +933,7 @@ static void
_outIndexPath(StringInfo str, IndexPath *node)
{
appendStringInfo(str,
" INDEXPATH :pathtype %d :cost %f :pathkeys ",
" INDEXPATH :pathtype %d :cost %.2f :pathkeys ",
node->path.pathtype,
node->path.path_cost);
_outNode(str, node->path.pathkeys);
......@@ -945,7 +955,7 @@ static void
_outTidPath(StringInfo str, TidPath *node)
{
appendStringInfo(str,
" TIDPATH :pathtype %d :cost %f :pathkeys ",
" TIDPATH :pathtype %d :cost %.2f :pathkeys ",
node->path.pathtype,
node->path.path_cost);
_outNode(str, node->path.pathkeys);
......@@ -964,14 +974,11 @@ static void
_outNestPath(StringInfo str, NestPath *node)
{
appendStringInfo(str,
" NESTPATH :pathtype %d :cost %f :pathkeys ",
" NESTPATH :pathtype %d :cost %.2f :pathkeys ",
node->path.pathtype,
node->path.path_cost);
_outNode(str, node->path.pathkeys);
appendStringInfo(str, " :pathinfo ");
_outNode(str, node->pathinfo);
/*
* Not sure if these are nodes; they're declared as "struct path *".
* For now, i'll just print the addresses.
......@@ -990,14 +997,11 @@ static void
_outMergePath(StringInfo str, MergePath *node)
{
appendStringInfo(str,
" MERGEPATH :pathtype %d :cost %f :pathkeys ",
" MERGEPATH :pathtype %d :cost %.2f :pathkeys ",
node->jpath.path.pathtype,
node->jpath.path.path_cost);
_outNode(str, node->jpath.path.pathkeys);
appendStringInfo(str, " :pathinfo ");
_outNode(str, node->jpath.pathinfo);
/*
* Not sure if these are nodes; they're declared as "struct path *".
* For now, i'll just print the addresses.
......@@ -1025,14 +1029,11 @@ static void
_outHashPath(StringInfo str, HashPath *node)
{
appendStringInfo(str,
" HASHPATH :pathtype %d :cost %f :pathkeys ",
" HASHPATH :pathtype %d :cost %.2f :pathkeys ",
node->jpath.path.pathtype,
node->jpath.path.path_cost);
_outNode(str, node->jpath.path.pathkeys);
appendStringInfo(str, " :pathinfo ");
_outNode(str, node->jpath.pathinfo);
/*
* Not sure if these are nodes; they're declared as "struct path *".
* For now, i'll just print the addresses.
......@@ -1067,9 +1068,7 @@ _outRestrictInfo(StringInfo str, RestrictInfo *node)
appendStringInfo(str, " RESTRICTINFO :clause ");
_outNode(str, node->clause);
appendStringInfo(str,
" :selectivity %f :subclauseindices ",
node->selectivity);
appendStringInfo(str, " :subclauseindices ");
_outNode(str, node->subclauseindices);
appendStringInfo(str, " :mergejoinoperator %u ", node->mergejoinoperator);
......@@ -1466,6 +1465,9 @@ _outNode(StringInfo str, void *obj)
case T_RelOptInfo:
_outRelOptInfo(str, obj);
break;
case T_IndexOptInfo:
_outIndexOptInfo(str, obj);
break;
case T_TargetEntry:
_outTargetEntry(str, obj);
break;
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/nodes/print.c,v 1.33 1999/11/23 20:06:53 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/nodes/print.c,v 1.34 2000/01/09 00:26:24 tgl Exp $
*
* HISTORY
* AUTHOR DATE MAJOR EVENT
......@@ -364,8 +364,8 @@ print_plan_recursive(Plan *p, Query *parsetree, int indentLevel, char *label)
return;
for (i = 0; i < indentLevel; i++)
printf(" ");
printf("%s%s :c=%.4f :s=%d :w=%d ", label, plannode_type(p),
p->cost, p->plan_size, p->plan_width);
printf("%s%s :c=%.4f :r=%.0f :w=%d ", label, plannode_type(p),
p->cost, p->plan_rows, p->plan_width);
if (IsA(p, Scan) ||IsA(p, SeqScan))
{
RangeTblEntry *rte;
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/nodes/readfuncs.c,v 1.76 1999/12/13 01:26:54 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/nodes/readfuncs.c,v 1.77 2000/01/09 00:26:24 tgl Exp $
*
* NOTES
* Most of the read functions for plan nodes are tested. (In fact, they
......@@ -233,9 +233,9 @@ _getPlan(Plan *node)
token = lsptok(NULL, &length); /* next is the actual cost */
node->cost = (Cost) atof(token);
token = lsptok(NULL, &length); /* skip the :size */
token = lsptok(NULL, &length); /* get the plan_size */
node->plan_size = atoi(token);
token = lsptok(NULL, &length); /* skip the :rows */
token = lsptok(NULL, &length); /* get the plan_rows */
node->plan_rows = atof(token);
token = lsptok(NULL, &length); /* skip the :width */
token = lsptok(NULL, &length); /* get the plan_width */
......@@ -1293,6 +1293,14 @@ _readRelOptInfo()
token = lsptok(NULL, &length); /* get :relids */
local_node->relids = toIntList(nodeRead(true)); /* now read it */
token = lsptok(NULL, &length); /* get :rows */
token = lsptok(NULL, &length); /* now read it */
local_node->rows = atof(token);
token = lsptok(NULL, &length); /* get :width */
token = lsptok(NULL, &length); /* now read it */
local_node->width = atoi(token);
token = lsptok(NULL, &length); /* get :indexed */
token = lsptok(NULL, &length); /* now read it */
......@@ -1303,19 +1311,11 @@ _readRelOptInfo()
token = lsptok(NULL, &length); /* get :pages */
token = lsptok(NULL, &length); /* now read it */
local_node->pages = (unsigned int) atoi(token);
local_node->pages = atol(token);
token = lsptok(NULL, &length); /* get :tuples */
token = lsptok(NULL, &length); /* now read it */
local_node->tuples = (unsigned int) atoi(token);
token = lsptok(NULL, &length); /* get :size */
token = lsptok(NULL, &length); /* now read it */
local_node->size = (unsigned int) atoi(token);
token = lsptok(NULL, &length); /* get :width */
token = lsptok(NULL, &length); /* now read it */
local_node->width = (unsigned int) atoi(token);
local_node->tuples = atof(token);
token = lsptok(NULL, &length); /* get :targetlist */
local_node->targetlist = nodeRead(true); /* now read it */
......@@ -1348,6 +1348,34 @@ _readRelOptInfo()
return local_node;
}
/* ----------------
* _readIndexOptInfo
* ----------------
*/
static IndexOptInfo *
_readIndexOptInfo()
{
IndexOptInfo *local_node;
char *token;
int length;
local_node = makeNode(IndexOptInfo);
token = lsptok(NULL, &length); /* get :indexoid */
token = lsptok(NULL, &length); /* now read it */
local_node->indexoid = (Oid) atoi(token);
token = lsptok(NULL, &length); /* get :pages */
token = lsptok(NULL, &length); /* now read it */
local_node->pages = atol(token);
token = lsptok(NULL, &length); /* get :tuples */
token = lsptok(NULL, &length); /* now read it */
local_node->tuples = atof(token);
return local_node;
}
/* ----------------
* _readTargetEntry
* ----------------
......@@ -1572,9 +1600,6 @@ _readNestPath()
token = lsptok(NULL, &length); /* get :pathkeys */
local_node->path.pathkeys = nodeRead(true); /* now read it */
token = lsptok(NULL, &length); /* get :pathinfo */
local_node->pathinfo = nodeRead(true); /* now read it */
/*
* Not sure if these are nodes; they're declared as "struct path *".
* For now, i'll just print the addresses.
......@@ -1626,9 +1651,6 @@ _readMergePath()
token = lsptok(NULL, &length); /* get :pathkeys */
local_node->jpath.path.pathkeys = nodeRead(true); /* now read it */
token = lsptok(NULL, &length); /* get :pathinfo */
local_node->jpath.pathinfo = nodeRead(true); /* now read it */
/*
* Not sure if these are nodes; they're declared as "struct path *".
* For now, i'll just print the addresses.
......@@ -1689,9 +1711,6 @@ _readHashPath()
token = lsptok(NULL, &length); /* get :pathkeys */
local_node->jpath.path.pathkeys = nodeRead(true); /* now read it */
token = lsptok(NULL, &length); /* get :pathinfo */
local_node->jpath.pathinfo = nodeRead(true); /* now read it */
/*
* Not sure if these are nodes; they're declared as "struct path *".
* For now, i'll just print the addresses.
......@@ -1762,10 +1781,6 @@ _readRestrictInfo()
token = lsptok(NULL, &length); /* get :clause */
local_node->clause = nodeRead(true); /* now read it */
token = lsptok(NULL, &length); /* get :selectivity */
token = lsptok(NULL, &length); /* now read it */
local_node->selectivity = atof(token);
token = lsptok(NULL, &length); /* get :subclauseindices */
local_node->subclauseindices = nodeRead(true); /* now read it */
......@@ -1909,6 +1924,8 @@ parsePlanString(void)
return_value = _readEState();
else if (!strncmp(token, "RELOPTINFO", length))
return_value = _readRelOptInfo();
else if (!strncmp(token, "INDEXOPTINFO", length))
return_value = _readIndexOptInfo();
else if (!strncmp(token, "TARGETENTRY", length))
return_value = _readTargetEntry();
else if (!strncmp(token, "RTE", length))
......
......@@ -5,7 +5,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: geqo_eval.c,v 1.44 1999/09/21 20:58:08 momjian Exp $
* $Id: geqo_eval.c,v 1.45 2000/01/09 00:26:27 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -95,7 +95,7 @@ geqo_eval(Query *root, Gene *tour, int num_gene)
joinrel = gimme_tree(root, tour, 0, num_gene, NULL);
/* compute fitness */
fitness = (Cost) joinrel->cheapestpath->path_cost;
fitness = joinrel->cheapestpath->path_cost;
/* restore join_rel_list */
root->join_rel_list = savelist;
......@@ -177,16 +177,14 @@ gimme_tree(Query *root, Gene *tour, int rel_count, int num_gene, RelOptInfo *old
elog(DEBUG, "gimme_tree: still %d relations left", length(new_rels));
}
rels_set_cheapest(new_rels);
rels_set_cheapest(root, new_rels);
/* get essential new relation */
new_rel = (RelOptInfo *) lfirst(new_rels);
rel_count++;
/* processing of other new_rel attributes */
if (new_rel->size <= 0)
new_rel->size = compute_rel_size(new_rel);
new_rel->width = compute_rel_width(new_rel);
set_rel_rows_width(root, new_rel);
root->join_rel_list = lcons(new_rel, NIL);
......
......@@ -5,7 +5,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: geqo_misc.c,v 1.24 1999/08/16 02:17:48 tgl Exp $
* $Id: geqo_misc.c,v 1.25 2000/01/09 00:26:27 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -177,10 +177,9 @@ geqo_print_path(Query *root, Path *path, int indent)
}
if (join)
{
int size = path->parent->size;
jp = (JoinPath *) path;
printf("%s size=%d cost=%f\n", ptype, size, path->path_cost);
printf("%s rows=%.0f cost=%f\n",
ptype, path->parent->rows, path->path_cost);
switch (nodeTag(path))
{
case T_MergePath:
......@@ -188,7 +187,7 @@ geqo_print_path(Query *root, Path *path, int indent)
for (i = 0; i < indent + 1; i++)
printf("\t");
printf(" clauses=(");
geqo_print_joinclauses(root, ((JoinPath *) path)->pathinfo);
geqo_print_joinclauses(root, path->parent->restrictinfo);
printf(")\n");
if (nodeTag(path) == T_MergePath)
......@@ -213,11 +212,10 @@ geqo_print_path(Query *root, Path *path, int indent)
}
else
{
int size = path->parent->size;
int relid = lfirsti(path->parent->relids);
printf("%s(%d) size=%d cost=%f\n",
ptype, relid, size, path->path_cost);
printf("%s(%d) rows=%.0f cost=%f\n",
ptype, relid, path->parent->rows, path->path_cost);
if (IsA(path, IndexPath))
{
......@@ -236,7 +234,7 @@ geqo_print_rel(Query *root, RelOptInfo *rel)
printf("(");
foreach(l, rel->relids)
printf("%d ", lfirsti(l));
printf("): size=%d width=%d\n", rel->size, rel->width);
printf("): rows=%.0f width=%d\n", rel->rows, rel->width);
printf("\tpath list:\n");
foreach(l, rel->pathlist)
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/allpaths.c,v 1.54 1999/11/23 20:06:54 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/allpaths.c,v 1.55 2000/01/09 00:26:29 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -66,23 +66,16 @@ make_one_rel(Query *root, List *rels)
if (levels_needed <= 1)
{
/*
* Unsorted single relation, no more processing is required.
* Single relation, no more processing is required.
*/
return lfirst(rels);
}
else
{
/*
* This means that joins or sorts are required. Set selectivities
* of any clauses not yet set. (I think that this is redundant;
* set_base_rel_pathlist should have set them all already. But
* a scan to check that they are all set doesn't cost much...)
* Generate join tree.
*/
set_rest_relselec(root, rels);
return make_one_rel_by_joins(root, rels, levels_needed);
}
}
......@@ -115,7 +108,7 @@ set_base_rel_pathlist(Query *root, List *rels)
tidscan_pathlist = create_tidscan_paths(root, rel);
if (tidscan_pathlist)
sequential_scan_list = nconc(sequential_scan_list,
tidscan_pathlist);
tidscan_pathlist);
rel_index_scan_list = create_index_paths(root,
rel,
indices,
......@@ -126,7 +119,6 @@ set_base_rel_pathlist(Query *root, List *rels)
* to have marked OR restriction clauses with relevant indices;
* this is why it doesn't need to be given the full list of indices.
*/
or_index_scan_list = create_or_index_paths(root, rel,
rel->restrictinfo);
......@@ -139,19 +131,10 @@ set_base_rel_pathlist(Query *root, List *rels)
nconc(rel_index_scan_list,
or_index_scan_list));
/* Now find the cheapest of the paths */
set_cheapest(rel, rel->pathlist);
/* Set the selectivity estimates for any restriction clauses that
* didn't get set as a byproduct of index-path selectivity estimation
* (see create_index_path()).
*/
set_rest_selec(root, rel->restrictinfo);
/* Calculate the estimated size (post-restrictions) and tuple width
* for this base rel. This uses the restriction clause selectivities.
*/
rel->size = compute_rel_size(rel);
rel->width = compute_rel_width(rel);
/* Mark rel with estimated output rows and width */
set_rel_rows_width(root, rel);
}
}
......@@ -217,16 +200,12 @@ make_one_rel_by_joins(Query *root, List *rels, int levels_needed)
xfunc_trypullup((RelOptInfo *) lfirst(x));
#endif
rels_set_cheapest(joined_rels);
rels_set_cheapest(root, joined_rels);
foreach(x, joined_rels)
{
rel = (RelOptInfo *) lfirst(x);
if (rel->size <= 0)
rel->size = compute_rel_size(rel);
rel->width = compute_rel_width(rel);
#ifdef OPTIMIZER_DEBUG
printf("levels left: %d\n", levels_needed);
debug_print_rel(root, rel);
......@@ -297,10 +276,9 @@ print_path(Query *root, Path *path, int indent)
}
if (join)
{
int size = path->parent->size;
jp = (JoinPath *) path;
printf("%s size=%d cost=%f\n", ptype, size, path->path_cost);
printf("%s rows=%.0f cost=%f\n",
ptype, path->parent->rows, path->path_cost);
switch (nodeTag(path))
{
case T_MergePath:
......@@ -308,7 +286,7 @@ print_path(Query *root, Path *path, int indent)
for (i = 0; i < indent + 1; i++)
printf("\t");
printf(" clauses=(");
print_joinclauses(root, ((JoinPath *) path)->pathinfo);
print_joinclauses(root, jp->path.parent->restrictinfo);
printf(")\n");
if (nodeTag(path) == T_MergePath)
......@@ -333,11 +311,10 @@ print_path(Query *root, Path *path, int indent)
}
else
{
int size = path->parent->size;
int relid = lfirsti(path->parent->relids);
printf("%s(%d) size=%d cost=%f\n",
ptype, relid, size, path->path_cost);
printf("%s(%d) rows=%.0f cost=%f\n",
ptype, relid, path->parent->rows, path->path_cost);
if (IsA(path, IndexPath))
{
......@@ -355,7 +332,7 @@ debug_print_rel(Query *root, RelOptInfo *rel)
printf("(");
foreach(l, rel->relids)
printf("%d ", lfirsti(l));
printf("): size=%d width=%d\n", rel->size, rel->width);
printf("): rows=%.0f width=%d\n", rel->rows, rel->width);
printf("\tpath list:\n");
foreach(l, rel->pathlist)
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/clausesel.c,v 1.26 1999/09/09 02:35:47 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/clausesel.c,v 1.27 2000/01/09 00:26:31 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -24,102 +24,58 @@
/****************************************************************************
* ROUTINES TO SET CLAUSE SELECTIVITIES
* ROUTINES TO COMPUTE SELECTIVITIES
****************************************************************************/
/*
* set_clause_selectivities -
* Sets the selectivity field for each clause in 'restrictinfo-list'
* to 'new-selectivity'. If the selectivity has already been set,
* change it only if the new one is better.
*/
void
set_clause_selectivities(List *restrictinfo_list, Cost new_selectivity)
{
List *rlist;
foreach(rlist, restrictinfo_list)
{
RestrictInfo *clausenode = (RestrictInfo *) lfirst(rlist);
Cost cost_clause = clausenode->selectivity;
if (cost_clause <= 0 || new_selectivity < cost_clause)
clausenode->selectivity = new_selectivity;
}
}
/*
* product_selec -
* Multiplies the selectivities of each clause in 'restrictinfo-list'.
* restrictlist_selec -
* Compute the selectivity of an implicitly-ANDed list of RestrictInfo
* clauses.
*
* Returns a flonum corresponding to the selectivity of 'restrictinfo-list'.
* This is the same as clauselist_selec except for the form of the input.
*/
Cost
product_selec(List *restrictinfo_list)
Selectivity
restrictlist_selec(Query *root, List *restrictinfo_list)
{
Cost result = (Cost) 1.0;
List *rlist;
List *clauselist = get_actual_clauses(restrictinfo_list);
Selectivity result;
foreach(rlist, restrictinfo_list)
{
result *= ((RestrictInfo *) lfirst(rlist))->selectivity;
}
result = clauselist_selec(root, clauselist);
freeList(clauselist);
return result;
}
/*
* set_rest_relselec -
* Scans through clauses on each relation and assigns a selectivity to
* those clauses that haven't been assigned a selectivity by an index.
*
* MODIFIES: selectivities of the various rel's restrictinfo slots.
* clauselist_selec -
* Compute the selectivity of an implicitly-ANDed list of boolean
* expression clauses.
*/
void
set_rest_relselec(Query *root, List *rel_list)
Selectivity
clauselist_selec(Query *root, List *clauses)
{
List *x;
foreach(x, rel_list)
Selectivity s1 = 1.0;
List *clause;
/* Use the product of the selectivities of the subclauses.
* XXX this is probably too optimistic, since the subclauses
* are very likely not independent...
*/
foreach(clause, clauses)
{
RelOptInfo *rel = (RelOptInfo *) lfirst(x);
set_rest_selec(root, rel->restrictinfo);
}
}
/*
* set_rest_selec -
* Sets the selectivity fields for those clauses within a single
* relation's 'restrictinfo-list' that haven't already been set.
*/
void
set_rest_selec(Query *root, List *restrictinfo_list)
{
List *rlist;
foreach(rlist, restrictinfo_list)
{
RestrictInfo *clause = (RestrictInfo *) lfirst(rlist);
if (clause->selectivity <= 0)
{
clause->selectivity =
compute_clause_selec(root, (Node *) clause->clause);
}
Selectivity s2 = compute_clause_selec(root, (Node *) lfirst(clause));
s1 = s1 * s2;
}
return s1;
}
/****************************************************************************
* ROUTINES TO COMPUTE SELECTIVITIES
****************************************************************************/
/*
* compute_clause_selec -
* Computes the selectivity of a clause.
* Compute the selectivity of a general boolean expression clause.
*/
Cost
Selectivity
compute_clause_selec(Query *root, Node *clause)
{
Cost s1 = 1.0; /* default for any unhandled clause type */
Selectivity s1 = 1.0; /* default for any unhandled clause type */
if (clause == NULL)
return s1;
......@@ -131,17 +87,12 @@ compute_clause_selec(Query *root, Node *clause)
* is what we have. The magic #define constants are a hack. I
* didn't want to have to do system cache look ups to find out all
* of that info.
*
* XXX why are we using varno and varoattno? Seems like it should
* be varno/varattno or varnoold/varoattno, not mix & match...
*/
Oid relid = getrelid(((Var *) clause)->varno,
root->rtable);
s1 = restriction_selectivity(F_EQSEL,
BooleanEqualOperator,
relid,
((Var *) clause)->varoattno,
getrelid(((Var *) clause)->varno,
root->rtable),
((Var *) clause)->varattno,
Int8GetDatum(true),
SEL_CONSTANT | SEL_RIGHT);
}
......@@ -163,21 +114,12 @@ compute_clause_selec(Query *root, Node *clause)
}
else if (and_clause(clause))
{
/* Use the product of the selectivities of the subclauses.
* XXX this is probably too optimistic, since the subclauses
* are very likely not independent...
*/
List *arg;
s1 = 1.0;
foreach(arg, ((Expr *) clause)->args)
{
Cost s2 = compute_clause_selec(root, (Node *) lfirst(arg));
s1 = s1 * s2;
}
s1 = clauselist_selec(root, ((Expr *) clause)->args);
}
else if (or_clause(clause))
{
/* Selectivities for an 'or' clause are computed as s1+s2 - s1*s2
/*
* Selectivities for an 'or' clause are computed as s1+s2 - s1*s2
* to account for the probable overlap of selected tuple sets.
* XXX is this too conservative?
*/
......@@ -185,31 +127,15 @@ compute_clause_selec(Query *root, Node *clause)
s1 = 0.0;
foreach(arg, ((Expr *) clause)->args)
{
Cost s2 = compute_clause_selec(root, (Node *) lfirst(arg));
Selectivity s2 = compute_clause_selec(root, (Node *) lfirst(arg));
s1 = s1 + s2 - s1 * s2;
}
}
else if (is_funcclause(clause))
{
/*
* This is not an operator, so we guess at the selectivity. THIS
* IS A HACK TO GET V4 OUT THE DOOR. FUNCS SHOULD BE ABLE TO HAVE
* SELECTIVITIES THEMSELVES. -- JMH 7/9/92
*/
s1 = (Cost) 0.3333333;
}
else if (is_subplan(clause))
{
/*
* Just for the moment! FIX ME! - vadim 02/04/98
*/
s1 = 1.0;
}
else if (is_opclause(clause))
{
if (NumRelids(clause) == 1)
{
/* The clause is not a join clause, since there is only one
/* The opclause is not a join clause, since there is only one
* relid in the clause. The clause selectivity will be based on
* the operator selectivity and operand values.
*/
......@@ -221,33 +147,20 @@ compute_clause_selec(Query *root, Node *clause)
* selectivity of 0.5
*/
if (!oprrest)
s1 = (Cost) 0.5;
s1 = (Selectivity) 0.5;
else
{
int relidx;
AttrNumber attno;
Datum constval;
int flag;
Oid reloid;
get_relattval(clause, 0, &relidx, &attno, &constval, &flag);
if (relidx && attno)
s1 = (Cost) restriction_selectivity(oprrest,
opno,
getrelid(relidx,
root->rtable),
attno,
constval,
flag);
else
{
/*
* attno can be 0 if the clause had a function in it,
* i.e. WHERE myFunc(f) = 10
*
* XXX should be FIXED to use function selectivity
*/
s1 = (Cost) (0.5);
}
reloid = relidx ? getrelid(relidx, root->rtable) : InvalidOid;
s1 = restriction_selectivity(oprrest, opno,
reloid, attno,
constval, flag);
}
}
else
......@@ -265,30 +178,41 @@ compute_clause_selec(Query *root, Node *clause)
* selectivity of 0.5
*/
if (!oprjoin)
s1 = (Cost) (0.5);
s1 = (Selectivity) 0.5;
else
{
int relid1,
relid2;
AttrNumber attno1,
attno2;
Oid reloid1,
reloid2;
get_rels_atts(clause, &relid1, &attno1, &relid2, &attno2);
if (relid1 && relid2 && attno1 && attno2)
s1 = (Cost) join_selectivity(oprjoin,
opno,
getrelid(relid1,
root->rtable),
attno1,
getrelid(relid2,
root->rtable),
attno2);
else /* XXX more code for function selectivity? */
s1 = (Cost) (0.5);
reloid1 = relid1 ? getrelid(relid1, root->rtable) : InvalidOid;
reloid2 = relid2 ? getrelid(relid2, root->rtable) : InvalidOid;
s1 = join_selectivity(oprjoin, opno,
reloid1, attno1,
reloid2, attno2);
}
}
}
else if (is_funcclause(clause))
{
/*
* This is not an operator, so we guess at the selectivity. THIS
* IS A HACK TO GET V4 OUT THE DOOR. FUNCS SHOULD BE ABLE TO HAVE
* SELECTIVITIES THEMSELVES. -- JMH 7/9/92
*/
s1 = (Selectivity) 0.3333333;
}
else if (is_subplan(clause))
{
/*
* Just for the moment! FIX ME! - vadim 02/04/98
*/
s1 = 1.0;
}
return s1;
}
......@@ -18,15 +18,14 @@
* Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/costsize.c,v 1.46 1999/11/23 20:06:54 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/costsize.c,v 1.47 2000/01/09 00:26:31 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include <math.h>
#include "postgres.h"
#include <math.h>
#ifdef HAVE_LIMITS_H
#include <limits.h>
#ifndef MAXINT
......@@ -45,13 +44,17 @@
#include "utils/lsyscache.h"
static int compute_targetlist_width(List *targetlist);
static void set_rel_width(Query *root, RelOptInfo *rel);
static int compute_attribute_width(TargetEntry *tlistentry);
static double relation_byte_size(int tuples, int width);
static double relation_byte_size(double tuples, int width);
static double page_size(double tuples, int width);
static double base_log(double x, double b);
int _disable_cost_ = 30000000;
Cost _cpu_page_weight_ = _CPU_PAGE_WEIGHT_;
Cost _cpu_index_page_weight_ = _CPU_INDEX_PAGE_WEIGHT_;
Cost _disable_cost_ = 100000000.0;
bool _enable_seqscan_ = true;
bool _enable_indexscan_ = true;
......@@ -61,9 +64,6 @@ bool _enable_mergejoin_ = true;
bool _enable_hashjoin_ = true;
bool _enable_tidscan_ = true;
Cost _cpu_page_weight_ = _CPU_PAGE_WEIGHT_;
Cost _cpu_index_page_weight_ = _CPU_INDEX_PAGE_WEIGHT_;
/*
* cost_seqscan
* Determines and returns the cost of scanning a relation sequentially.
......@@ -74,27 +74,21 @@ Cost _cpu_index_page_weight_ = _CPU_INDEX_PAGE_WEIGHT_;
* be).
*
* disk = p
* cpu = *CPU-PAGE-WEIGHT* * t
*
* 'relid' is the relid of the relation to be scanned
* 'relpages' is the number of pages in the relation to be scanned
* (as determined from the system catalogs)
* 'reltuples' is the number of tuples in the relation to be scanned
*
* Returns a flonum.
*
* cpu = CPU-PAGE-WEIGHT * t
*/
Cost
cost_seqscan(int relid, int relpages, int reltuples)
cost_seqscan(RelOptInfo *baserel)
{
Cost temp = 0;
/* Should only be applied to base relations */
Assert(length(baserel->relids) == 1);
if (!_enable_seqscan_)
temp += _disable_cost_;
if (relid < 0)
if (lfirsti(baserel->relids) < 0)
{
/*
* cost of sequentially scanning a materialized temporary relation
*/
......@@ -102,9 +96,10 @@ cost_seqscan(int relid, int relpages, int reltuples)
}
else
{
temp += relpages;
temp += _cpu_page_weight_ * reltuples;
temp += baserel->pages;
temp += _cpu_page_weight_ * baserel->tuples;
}
Assert(temp >= 0);
return temp;
}
......@@ -115,31 +110,38 @@ cost_seqscan(int relid, int relpages, int reltuples)
* Determines and returns the cost of scanning a relation using an index.
*
* disk = expected-index-pages + expected-data-pages
* cpu = *CPU-PAGE-WEIGHT* *
* (expected-index-tuples + expected-data-tuples)
*
* 'indexid' is the index OID
* 'expected-indexpages' is the number of index pages examined in the scan
* 'selec' is the selectivity of the index
* 'relpages' is the number of pages in the main relation
* 'reltuples' is the number of tuples in the main relation
* 'indexpages' is the number of pages in the index relation
* 'indextuples' is the number of tuples in the index relation
*
* Returns a flonum.
*
* cpu = CPU-INDEX-PAGE-WEIGHT * expected-index-tuples +
* CPU-PAGE-WEIGHT * expected-data-tuples
*
* 'baserel' is the base relation the index is for
* 'index' is the index to be used
* 'expected_indexpages' is the estimated number of index pages that will
* be touched in the scan (this is computed by index-type-specific code)
* 'selec' is the selectivity of the index, ie, the fraction of base-relation
* tuples that we will have to fetch and examine
* 'is_injoin' is T if we are considering using the index scan as the inside
* of a nestloop join.
*
* NOTE: 'selec' should be calculated on the basis of indexqual conditions
* only. Any additional quals evaluated as qpquals may reduce the number
* of returned tuples, but they won't reduce the number of tuples we have
* to fetch from the table, so they don't reduce the scan cost.
*/
Cost
cost_index(Oid indexid,
int expected_indexpages,
Cost selec,
int relpages,
int reltuples,
int indexpages,
int indextuples,
cost_index(RelOptInfo *baserel,
IndexOptInfo *index,
long expected_indexpages,
Selectivity selec,
bool is_injoin)
{
Cost temp = 0;
double reltuples = selec * baserel->tuples;
double indextuples = selec * index->tuples;
double relpages;
/* Should only be applied to base relations */
Assert(IsA(baserel, RelOptInfo) && IsA(index, IndexOptInfo));
Assert(length(baserel->relids) == 1);
if (!_enable_indexscan_ && !is_injoin)
temp += _disable_cost_;
......@@ -151,25 +153,49 @@ cost_index(Oid indexid,
*/
if (expected_indexpages <= 0)
expected_indexpages = 1;
if (indextuples <= 0)
indextuples = 1;
if (indextuples <= 0.0)
indextuples = 1.0;
/* expected index relation pages */
temp += expected_indexpages;
/*
* expected base relation pages XXX this isn't really right, since we
* will access the table nonsequentially and might have to fetch the
* same page more than once. This calculation assumes the buffer
* cache will prevent that from happening...
/*--------------------
* expected base relation pages
*
* Worst case is that each tuple the index tells us to fetch comes
* from a different base-rel page, in which case the I/O cost would be
* 'reltuples' pages. In practice we can expect the number of page
* fetches to be reduced by the buffer cache, because more than one
* tuple can be retrieved per page fetched. Currently, we estimate
* the number of pages to be retrieved as
* MIN(reltuples, relpages)
* This amounts to assuming that the buffer cache is perfectly efficient
* and never ends up reading the same page twice within one scan, which
* of course is too optimistic. On the other hand, we are assuming that
* the target tuples are perfectly uniformly distributed across the
* relation's pages, which is too pessimistic --- any nonuniformity of
* distribution will reduce the number of pages we have to fetch.
* So, we guess-and-hope that these sources of error will more or less
* balance out.
*
* XXX if the relation has recently been "clustered" using this index,
* then in fact the target tuples will be highly nonuniformly distributed,
* and we will be seriously overestimating the scan cost! Currently we
* have no way to know whether the relation has been clustered, nor how
* much it's been modified since the last clustering, so we ignore this
* effect. Would be nice to do better someday.
*--------------------
*/
temp += ceil(((double) selec) * ((double) relpages));
relpages = reltuples;
if (baserel->pages > 0 && baserel->pages < relpages)
relpages = baserel->pages;
temp += relpages;
/* per index tuples */
temp += _cpu_index_page_weight_ * selec * indextuples;
temp += _cpu_index_page_weight_ * indextuples;
/* per heap tuples */
temp += _cpu_page_weight_ * selec * reltuples;
temp += _cpu_page_weight_ * reltuples;
Assert(temp >= 0);
return temp;
......@@ -180,13 +206,10 @@ cost_index(Oid indexid,
* Determines and returns the cost of scanning a relation using tid-s.
*
* disk = number of tids
* cpu = *CPU-PAGE-WEIGHT* * number_of_tids
*
* Returns a flonum.
*
* cpu = CPU-PAGE-WEIGHT * number_of_tids
*/
Cost
cost_tidscan(List *tideval)
cost_tidscan(RelOptInfo *baserel, List *tideval)
{
Cost temp = 0;
......@@ -200,28 +223,39 @@ cost_tidscan(List *tideval)
/*
* cost_sort
* Determines and returns the cost of sorting a relation by considering
* the cost of doing an external sort: XXX this is probably too low
* disk = (p lg p)
* cpu = *CPU-PAGE-WEIGHT* * (t lg t)
* Determines and returns the cost of sorting a relation.
*
* If the total volume of data to sort is less than SortMem, we will do
* an in-memory sort, which requires no I/O and about t*log2(t) tuple
* comparisons for t tuples. We use _cpu_index_page_weight as the cost
* of a tuple comparison (is this reasonable, or do we need another
* basic parameter?).
*
* If the total volume exceeds SortMem, we switch to a tape-style merge
* algorithm. There will still be about t*log2(t) tuple comparisons in
* total, but we will also need to write and read each tuple once per
* merge pass. We expect about ceil(log6(r)) merge passes where r is the
* number of initial runs formed (log6 because tuplesort.c uses six-tape
* merging). Since the average initial run should be about twice SortMem,
* we have
* disk = 2 * p * ceil(log6(p / (2*SortMem)))
* cpu = CPU-INDEX-PAGE-WEIGHT * t * log2(t)
*
* 'pathkeys' is a list of sort keys
* 'tuples' is the number of tuples in the relation
* 'width' is the average tuple width in bytes
*
* NOTE: some callers currently pass NULL for pathkeys because they
* NOTE: some callers currently pass NIL for pathkeys because they
* can't conveniently supply the sort keys. Since this routine doesn't
* currently do anything with pathkeys anyway, that doesn't matter...
* but if it ever does, it should react gracefully to lack of key data.
*
* Returns a flonum.
*/
Cost
cost_sort(List *pathkeys, int tuples, int width)
cost_sort(List *pathkeys, double tuples, int width)
{
Cost temp = 0;
int npages = page_size(tuples, width);
double log_npages;
double nbytes = relation_byte_size(tuples, width);
long sortmembytes = SortMem * 1024L;
if (!_enable_sort_)
temp += _disable_cost_;
......@@ -231,25 +265,23 @@ cost_sort(List *pathkeys, int tuples, int width)
* even if passed-in tuple count is zero. Besides, mustn't do
* log(0)...
*/
if (tuples <= 0)
tuples = 1;
if (npages <= 0)
npages = 1;
if (tuples < 2.0)
tuples = 2.0;
log_npages = ceil(base_log((double) npages, 2.0));
if (log_npages <= 0.0)
log_npages = 1.0;
temp += _cpu_index_page_weight_ * tuples * base_log(tuples, 2.0);
temp += npages * log_npages;
if (nbytes > sortmembytes)
{
double npages = ceil(nbytes / BLCKSZ);
double nruns = nbytes / (sortmembytes * 2);
double log_runs = ceil(base_log(nruns, 6.0));
/*
* could be base_log(tuples, NBuffers), but we are only doing 2-way
* merges
*/
temp += _cpu_page_weight_ * tuples * base_log((double) tuples, 2.0);
if (log_runs < 1.0)
log_runs = 1.0;
temp += 2 * npages * log_runs;
}
Assert(temp > 0);
return temp;
}
......@@ -258,18 +290,15 @@ cost_sort(List *pathkeys, int tuples, int width)
* cost_result
* Determines and returns the cost of writing a relation of 'tuples'
* tuples of 'width' bytes out to a result relation.
*
* Returns a flonum.
*
*/
#ifdef NOT_USED
Cost
cost_result(int tuples, int width)
cost_result(double tuples, int width)
{
Cost temp = 0;
temp = temp + page_size(tuples, width);
temp = temp + _cpu_page_weight_ * tuples;
temp += page_size(tuples, width);
temp += _cpu_page_weight_ * tuples;
Assert(temp >= 0);
return temp;
}
......@@ -281,111 +310,106 @@ cost_result(int tuples, int width)
* Determines and returns the cost of joining two relations using the
* nested loop algorithm.
*
* 'outercost' is the (disk+cpu) cost of scanning the outer relation
* 'innercost' is the (disk+cpu) cost of scanning the inner relation
* 'outertuples' is the number of tuples in the outer relation
*
* Returns a flonum.
*
* 'outer_path' is the path for the outer relation
* 'inner_path' is the path for the inner relation
* 'is_indexjoin' is true if we are using an indexscan for the inner relation
*/
Cost
cost_nestloop(Cost outercost,
Cost innercost,
int outertuples,
int innertuples,
int outerpages,
cost_nestloop(Path *outer_path,
Path *inner_path,
bool is_indexjoin)
{
Cost temp = 0;
if (!_enable_nestloop_)
temp += _disable_cost_;
temp += outercost;
temp += outertuples * innercost;
Assert(temp >= 0);
temp += outer_path->path_cost;
temp += outer_path->parent->rows * inner_path->path_cost;
Assert(temp >= 0);
return temp;
}
/*
* cost_mergejoin
* 'outercost' and 'innercost' are the (disk+cpu) costs of scanning the
* outer and inner relations
* 'outersortkeys' and 'innersortkeys' are lists of the keys to be used
* to sort the outer and inner relations (or NIL if no explicit
* sort is needed because the source path is already ordered)
* 'outertuples' and 'innertuples' are the number of tuples in the outer
* and inner relations
* 'outerwidth' and 'innerwidth' are the (typical) widths (in bytes)
* of the tuples of the outer and inner relations
*
* Returns a flonum.
* Determines and returns the cost of joining two relations using the
* merge join algorithm.
*
* 'outer_path' is the path for the outer relation
* 'inner_path' is the path for the inner relation
* 'outersortkeys' and 'innersortkeys' are lists of the keys to be used
* to sort the outer and inner relations, or NIL if no explicit
* sort is needed because the source path is already ordered
*/
Cost
cost_mergejoin(Cost outercost,
Cost innercost,
cost_mergejoin(Path *outer_path,
Path *inner_path,
List *outersortkeys,
List *innersortkeys,
int outersize,
int innersize,
int outerwidth,
int innerwidth)
List *innersortkeys)
{
Cost temp = 0;
if (!_enable_mergejoin_)
temp += _disable_cost_;
temp += outercost;
temp += innercost;
/* cost of source data */
temp += outer_path->path_cost + inner_path->path_cost;
if (outersortkeys) /* do we need to sort? */
temp += cost_sort(outersortkeys, outersize, outerwidth);
temp += cost_sort(outersortkeys,
outer_path->parent->rows,
outer_path->parent->width);
if (innersortkeys) /* do we need to sort? */
temp += cost_sort(innersortkeys, innersize, innerwidth);
temp += _cpu_page_weight_ * (outersize + innersize);
temp += cost_sort(innersortkeys,
inner_path->parent->rows,
inner_path->parent->width);
Assert(temp >= 0);
/*
* Estimate the number of tuples to be processed in the mergejoin itself
* as one per tuple in the two source relations. This could be a drastic
* underestimate if there are many equal-keyed tuples in either relation,
* but we have no good way of estimating that...
*/
temp += _cpu_page_weight_ * (outer_path->parent->rows +
inner_path->parent->rows);
Assert(temp >= 0);
return temp;
}
/*
* cost_hashjoin
* Determines and returns the cost of joining two relations using the
* hash join algorithm.
*
* 'outercost' and 'innercost' are the (disk+cpu) costs of scanning the
* outer and inner relations
* 'outersize' and 'innersize' are the number of tuples in the outer
* and inner relations
* 'outerwidth' and 'innerwidth' are the (typical) widths (in bytes)
* of the tuples of the outer and inner relations
* 'innerdisbursion' is an estimate of the disbursion statistic
* 'outer_path' is the path for the outer relation
* 'inner_path' is the path for the inner relation
* 'innerdisbursion' is an estimate of the disbursion statistic
* for the inner hash key.
*
* Returns a flonum.
*/
Cost
cost_hashjoin(Cost outercost,
Cost innercost,
int outersize,
int innersize,
int outerwidth,
int innerwidth,
Cost innerdisbursion)
cost_hashjoin(Path *outer_path,
Path *inner_path,
Selectivity innerdisbursion)
{
Cost temp = 0;
double outerbytes = relation_byte_size(outersize, outerwidth);
double innerbytes = relation_byte_size(innersize, innerwidth);
double outerbytes = relation_byte_size(outer_path->parent->rows,
outer_path->parent->width);
double innerbytes = relation_byte_size(inner_path->parent->rows,
inner_path->parent->width);
long hashtablebytes = SortMem * 1024L;
if (!_enable_hashjoin_)
temp += _disable_cost_;
/* cost of source data */
temp += outercost + innercost;
temp += outer_path->path_cost + inner_path->path_cost;
/* cost of computing hash function: must do it once per tuple */
temp += _cpu_page_weight_ * (outersize + innersize);
temp += _cpu_page_weight_ * (outer_path->parent->rows +
inner_path->parent->rows);
/* the number of tuple comparisons needed is the number of outer
* tuples times the typical hash bucket size, which we estimate
......@@ -393,8 +417,8 @@ cost_hashjoin(Cost outercost,
* count. The cost per comparison is set at _cpu_index_page_weight_;
* is that reasonable, or do we need another basic parameter?
*/
temp += _cpu_index_page_weight_ * outersize *
(innersize * innerdisbursion);
temp += _cpu_index_page_weight_ * outer_path->parent->rows *
(inner_path->parent->rows * innerdisbursion);
/*
* if inner relation is too big then we will need to "batch" the join,
......@@ -402,8 +426,10 @@ cost_hashjoin(Cost outercost,
* extra time. Charge one cost unit per page of I/O.
*/
if (innerbytes > hashtablebytes)
temp += 2 * (page_size(outersize, outerwidth) +
page_size(innersize, innerwidth));
temp += 2 * (page_size(outer_path->parent->rows,
outer_path->parent->width) +
page_size(inner_path->parent->rows,
inner_path->parent->width));
/*
* Bias against putting larger relation on inside. We don't want
......@@ -415,76 +441,74 @@ cost_hashjoin(Cost outercost,
temp *= 1.1; /* is this an OK fudge factor? */
Assert(temp >= 0);
return temp;
}
/*
* compute_rel_size
* Computes the size of each relation in 'rel_list' (after applying
* restrictions), by multiplying the selectivity of each restriction
* by the original size of the relation.
* set_rel_rows_width
* Set the 'rows' and 'width' estimates for the given base relation.
*
* Sets the 'size' field for each relation entry with this computed size.
*
* Returns the size.
* 'rows' is the estimated number of output tuples (after applying
* restriction clauses).
* 'width' is the estimated average output tuple width in bytes.
*/
int
compute_rel_size(RelOptInfo *rel)
void
set_rel_rows_width(Query *root, RelOptInfo *rel)
{
Cost temp;
int temp1;
/* Should only be applied to base relations */
Assert(length(rel->relids) == 1);
temp = rel->tuples * product_selec(rel->restrictinfo);
Assert(temp >= 0);
if (temp >= (MAXINT - 1))
temp1 = MAXINT;
else
temp1 = ceil((double) temp);
Assert(temp1 >= 0);
Assert(temp1 <= MAXINT);
return temp1;
rel->rows = rel->tuples * restrictlist_selec(root, rel->restrictinfo);
Assert(rel->rows >= 0);
set_rel_width(root, rel);
}
/*
* compute_rel_width
* Computes the width in bytes of a tuple from 'rel'.
*
* Returns the width of the tuple as a fixnum.
* set_joinrel_rows_width
* Set the 'rows' and 'width' estimates for the given join relation.
*/
int
compute_rel_width(RelOptInfo *rel)
void
set_joinrel_rows_width(Query *root, RelOptInfo *rel,
JoinPath *joinpath)
{
return compute_targetlist_width(rel->targetlist);
double temp;
/* cartesian product */
temp = joinpath->outerjoinpath->parent->rows *
joinpath->innerjoinpath->parent->rows;
/* apply restrictivity */
temp *= restrictlist_selec(root, joinpath->path.parent->restrictinfo);
Assert(temp >= 0);
rel->rows = temp;
set_rel_width(root, rel);
}
/*
* compute_targetlist_width
* Computes the width in bytes of a tuple made from 'targetlist'.
*
* Returns the width of the tuple as a fixnum.
* set_rel_width
* Set the estimated output width of the relation.
*/
static int
compute_targetlist_width(List *targetlist)
static void
set_rel_width(Query *root, RelOptInfo *rel)
{
List *temp_tl;
int tuple_width = 0;
List *tle;
foreach(temp_tl, targetlist)
{
tuple_width += compute_attribute_width(lfirst(temp_tl));
}
return tuple_width;
foreach(tle, rel->targetlist)
tuple_width += compute_attribute_width((TargetEntry *) lfirst(tle));
Assert(tuple_width >= 0);
rel->width = tuple_width;
}
/*
* compute_attribute_width
* Given a target list entry, find the size in bytes of the attribute.
*
* If a field is variable-length, it is assumed to be at least the size
* of a TID field.
*
* Returns the width of the attribute as a fixnum.
* If a field is variable-length, we make a default assumption. Would be
* better if VACUUM recorded some stats about the average field width...
*/
static int
compute_attribute_width(TargetEntry *tlistentry)
......@@ -497,47 +521,15 @@ compute_attribute_width(TargetEntry *tlistentry)
return width;
}
/*
* compute_joinrel_size
* Computes the size of the join relation 'joinrel'.
*
* Returns a fixnum.
*/
int
compute_joinrel_size(JoinPath *joinpath)
{
Cost temp = 1.0;
int temp1 = 0;
/* cartesian product */
temp *= ((Path *) joinpath->outerjoinpath)->parent->size;
temp *= ((Path *) joinpath->innerjoinpath)->parent->size;
temp = temp * product_selec(joinpath->pathinfo);
if (temp >= (MAXINT - 1) / 2)
{
/* if we exceed (MAXINT-1)/2, we switch to log scale */
/* +1 prevents log(0) */
temp1 = ceil(log(temp + 1 - (MAXINT - 1) / 2) + (MAXINT - 1) / 2);
}
else
temp1 = ceil((double) temp);
Assert(temp1 >= 0);
return temp1;
}
/*
* relation_byte_size
* Estimate the storage space in bytes for a given number of tuples
* of a given width (size in bytes).
* To avoid overflow with big relations, result is a double.
*/
static double
relation_byte_size(int tuples, int width)
relation_byte_size(double tuples, int width)
{
return ((double) tuples) * ((double) (width + sizeof(HeapTupleData)));
return tuples * ((double) (width + sizeof(HeapTupleData)));
}
/*
......@@ -545,14 +537,10 @@ relation_byte_size(int tuples, int width)
* Returns an estimate of the number of pages covered by a given
* number of tuples of a given width (size in bytes).
*/
int
page_size(int tuples, int width)
static double
page_size(double tuples, int width)
{
int temp;
temp = (int) ceil(relation_byte_size(tuples, width) / BLCKSZ);
Assert(temp >= 0);
return temp;
return ceil(relation_byte_size(tuples, width) / BLCKSZ);
}
static double
......
......@@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/indxpath.c,v 1.75 1999/12/31 05:38:25 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/indxpath.c,v 1.76 2000/01/09 00:26:31 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -41,51 +41,55 @@
#include "utils/lsyscache.h"
#include "utils/syscache.h"
#define is_indexable_operator(clause,opclass,relam,indexkey_on_left) \
(indexable_operator(clause,opclass,relam,indexkey_on_left) != InvalidOid)
typedef enum {
Prefix_None, Prefix_Partial, Prefix_Exact
} Prefix_Status;
static void match_index_orclauses(RelOptInfo *rel, RelOptInfo *index,
static void match_index_orclauses(RelOptInfo *rel, IndexOptInfo *index,
int indexkey, Oid opclass,
List *restrictinfo_list);
static List *match_index_orclause(RelOptInfo *rel, RelOptInfo *index,
static List *match_index_orclause(RelOptInfo *rel, IndexOptInfo *index,
int indexkey, Oid opclass,
List *or_clauses,
List *other_matching_indices);
static bool match_or_subclause_to_indexkey(RelOptInfo *rel, RelOptInfo *index,
static bool match_or_subclause_to_indexkey(RelOptInfo *rel,
IndexOptInfo *index,
int indexkey, Oid opclass,
Expr *clause);
static List *group_clauses_by_indexkey(RelOptInfo *rel, RelOptInfo *index,
static List *group_clauses_by_indexkey(RelOptInfo *rel, IndexOptInfo *index,
int *indexkeys, Oid *classes,
List *restrictinfo_list);
static List *group_clauses_by_ikey_for_joins(RelOptInfo *rel, RelOptInfo *index,
static List *group_clauses_by_ikey_for_joins(RelOptInfo *rel,
IndexOptInfo *index,
int *indexkeys, Oid *classes,
List *join_cinfo_list,
List *restr_cinfo_list);
static bool match_clause_to_indexkey(RelOptInfo *rel, RelOptInfo *index,
static bool match_clause_to_indexkey(RelOptInfo *rel, IndexOptInfo *index,
int indexkey, Oid opclass,
Expr *clause, bool join);
static bool indexable_operator(Expr *clause, Oid opclass, Oid relam,
bool indexkey_on_left);
static bool pred_test(List *predicate_list, List *restrictinfo_list,
List *joininfo_list);
static bool one_pred_test(Expr *predicate, List *restrictinfo_list);
static bool one_pred_clause_expr_test(Expr *predicate, Node *clause);
static bool one_pred_clause_test(Expr *predicate, Node *clause);
static bool clause_pred_clause_test(Expr *predicate, Node *clause);
static void indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index,
static void indexable_joinclauses(RelOptInfo *rel, IndexOptInfo *index,
List *joininfo_list, List *restrictinfo_list,
List **clausegroups, List **outerrelids);
static List *index_innerjoin(Query *root, RelOptInfo *rel, RelOptInfo *index,
static List *index_innerjoin(Query *root, RelOptInfo *rel, IndexOptInfo *index,
List *clausegroup_list, List *outerrelids_list);
static bool useful_for_mergejoin(RelOptInfo *rel, RelOptInfo *index,
static bool useful_for_mergejoin(RelOptInfo *rel, IndexOptInfo *index,
List *joininfo_list);
static bool useful_for_ordering(Query *root, RelOptInfo *rel,
RelOptInfo *index);
IndexOptInfo *index);
static bool match_index_to_operand(int indexkey, Var *operand,
RelOptInfo *rel, RelOptInfo *index);
RelOptInfo *rel, IndexOptInfo *index);
static bool function_index_operand(Expr *funcOpnd, RelOptInfo *rel,
RelOptInfo *index);
IndexOptInfo *index);
static bool match_special_index_operator(Expr *clause, Oid opclass, Oid relam,
bool indexkey_on_left);
static Prefix_Status like_fixed_prefix(char *patt, char **prefix);
......@@ -145,7 +149,7 @@ create_index_paths(Query *root,
foreach(ilist, indices)
{
RelOptInfo *index = (RelOptInfo *) lfirst(ilist);
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
List *restrictclauses;
List *joinclausegroups;
List *joinouterrelids;
......@@ -268,7 +272,7 @@ create_index_paths(Query *root,
*/
static void
match_index_orclauses(RelOptInfo *rel,
RelOptInfo *index,
IndexOptInfo *index,
int indexkey,
Oid opclass,
List *restrictinfo_list)
......@@ -317,7 +321,7 @@ match_index_orclauses(RelOptInfo *rel,
*/
static List *
match_index_orclause(RelOptInfo *rel,
RelOptInfo *index,
IndexOptInfo *index,
int indexkey,
Oid opclass,
List *or_clauses,
......@@ -368,7 +372,7 @@ match_index_orclause(RelOptInfo *rel,
*/
static bool
match_or_subclause_to_indexkey(RelOptInfo *rel,
RelOptInfo *index,
IndexOptInfo *index,
int indexkey,
Oid opclass,
Expr *clause)
......@@ -435,7 +439,7 @@ match_or_subclause_to_indexkey(RelOptInfo *rel,
*/
static List *
group_clauses_by_indexkey(RelOptInfo *rel,
RelOptInfo *index,
IndexOptInfo *index,
int *indexkeys,
Oid *classes,
List *restrictinfo_list)
......@@ -497,7 +501,7 @@ group_clauses_by_indexkey(RelOptInfo *rel,
*/
static List *
group_clauses_by_ikey_for_joins(RelOptInfo *rel,
RelOptInfo *index,
IndexOptInfo *index,
int *indexkeys,
Oid *classes,
List *join_cinfo_list,
......@@ -614,7 +618,7 @@ group_clauses_by_ikey_for_joins(RelOptInfo *rel,
*/
static bool
match_clause_to_indexkey(RelOptInfo *rel,
RelOptInfo *index,
IndexOptInfo *index,
int indexkey,
Oid opclass,
Expr *clause,
......@@ -642,7 +646,7 @@ match_clause_to_indexkey(RelOptInfo *rel,
if ((IsA(rightop, Const) || IsA(rightop, Param)) &&
match_index_to_operand(indexkey, leftop, rel, index))
{
if (indexable_operator(clause, opclass, index->relam, true))
if (is_indexable_operator(clause, opclass, index->relam, true))
return true;
/*
* If we didn't find a member of the index's opclass,
......@@ -656,7 +660,7 @@ match_clause_to_indexkey(RelOptInfo *rel,
if ((IsA(leftop, Const) || IsA(leftop, Param)) &&
match_index_to_operand(indexkey, rightop, rel, index))
{
if (indexable_operator(clause, opclass, index->relam, false))
if (is_indexable_operator(clause, opclass, index->relam, false))
return true;
/*
* If we didn't find a member of the index's opclass,
......@@ -683,7 +687,7 @@ match_clause_to_indexkey(RelOptInfo *rel,
isIndexable = ! intMember(lfirsti(rel->relids), othervarnos);
freeList(othervarnos);
if (isIndexable &&
indexable_operator(clause, opclass, index->relam, true))
is_indexable_operator(clause, opclass, index->relam, true))
return true;
}
else if (match_index_to_operand(indexkey, rightop, rel, index))
......@@ -694,7 +698,7 @@ match_clause_to_indexkey(RelOptInfo *rel,
isIndexable = ! intMember(lfirsti(rel->relids), othervarnos);
freeList(othervarnos);
if (isIndexable &&
indexable_operator(clause, opclass, index->relam, false))
is_indexable_operator(clause, opclass, index->relam, false))
return true;
}
}
......@@ -707,9 +711,9 @@ match_clause_to_indexkey(RelOptInfo *rel,
* Does a binary opclause contain an operator matching the index's
* access method?
*
* If the indexkey is on the right, what we actually want to know
* is whether the operator has a commutator operator that matches
* the index's access method.
* If the indexkey is on the right, what we actually want to know
* is whether the operator has a commutator operator that matches
* the index's access method.
*
* We try both the straightforward match and matches that rely on
* recognizing binary-compatible datatypes. For example, if we have
......@@ -717,12 +721,13 @@ match_clause_to_indexkey(RelOptInfo *rel,
* which we need to replace with oideq in order to recognize it as
* matching an oid_ops index on the oid field.
*
* NOTE: if a binary-compatible match is made, we destructively modify
* the given clause to use the binary-compatible substitute operator!
* This should be safe even if we don't end up using the index, but it's
* a tad ugly...
* Returns the OID of the matching operator, or InvalidOid if no match.
* Note that the returned OID will be different from the one in the given
* expression if we used a binary-compatible substitution. Also note that
* if indexkey_on_left is FALSE (meaning we need to commute), the returned
* OID is *not* commuted; it can be plugged directly into the given clause.
*/
static bool
Oid
indexable_operator(Expr *clause, Oid opclass, Oid relam,
bool indexkey_on_left)
{
......@@ -737,11 +742,11 @@ indexable_operator(Expr *clause, Oid opclass, Oid relam,
else
commuted_op = get_commutator(expr_op);
if (commuted_op == InvalidOid)
return false;
return InvalidOid;
/* Done if the (commuted) operator is a member of the index's AM */
if (op_class(commuted_op, opclass, relam))
return true;
return expr_op;
/*
* Maybe the index uses a binary-compatible operator set.
......@@ -758,7 +763,7 @@ indexable_operator(Expr *clause, Oid opclass, Oid relam,
Operator newop;
if (opname == NULL)
return false; /* probably shouldn't happen */
return InvalidOid; /* probably shouldn't happen */
/* Use the datatype of the index key */
if (indexkey_on_left)
......@@ -781,22 +786,15 @@ indexable_operator(Expr *clause, Oid opclass, Oid relam,
else
commuted_op = get_commutator(new_expr_op);
if (commuted_op == InvalidOid)
return false;
return InvalidOid;
if (op_class(commuted_op, opclass, relam))
{
/*
* Success! Change the opclause to use the
* binary-compatible operator.
*/
((Oper *) clause->oper)->opno = new_expr_op;
return true;
}
return new_expr_op;
}
}
}
return false;
return InvalidOid;
}
/*
......@@ -816,7 +814,7 @@ indexable_operator(Expr *clause, Oid opclass, Oid relam,
*/
static bool
useful_for_mergejoin(RelOptInfo *rel,
RelOptInfo *index,
IndexOptInfo *index,
List *joininfo_list)
{
int *indexkeys = index->indexkeys;
......@@ -867,7 +865,7 @@ useful_for_mergejoin(RelOptInfo *rel,
static bool
useful_for_ordering(Query *root,
RelOptInfo *rel,
RelOptInfo *index)
IndexOptInfo *index)
{
List *index_pathkeys;
......@@ -1335,7 +1333,7 @@ clause_pred_clause_test(Expr *predicate, Node *clause)
* '*outerrelids' receives a list of relid lists
*/
static void
indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index,
indexable_joinclauses(RelOptInfo *rel, IndexOptInfo *index,
List *joininfo_list, List *restrictinfo_list,
List **clausegroups, List **outerrelids)
{
......@@ -1384,7 +1382,7 @@ indexable_joinclauses(RelOptInfo *rel, RelOptInfo *index,
* Returns a list of index pathnodes.
*/
static List *
index_innerjoin(Query *root, RelOptInfo *rel, RelOptInfo *index,
index_innerjoin(Query *root, RelOptInfo *rel, IndexOptInfo *index,
List *clausegroup_list, List *outerrelids_list)
{
List *path_list = NIL;
......@@ -1395,16 +1393,16 @@ index_innerjoin(Query *root, RelOptInfo *rel, RelOptInfo *index,
List *clausegroup = lfirst(i);
IndexPath *pathnode = makeNode(IndexPath);
List *indexquals;
float npages;
float selec;
long npages;
Selectivity selec;
indexquals = get_actual_clauses(clausegroup);
/* expand special operators to indexquals the executor can handle */
indexquals = expand_indexqual_conditions(indexquals);
index_selectivity(root,
lfirsti(rel->relids),
lfirsti(index->relids),
rel,
index,
indexquals,
&npages,
&selec);
......@@ -1419,20 +1417,14 @@ index_innerjoin(Query *root, RelOptInfo *rel, RelOptInfo *index,
* therefore, both indexid and indexqual should be single-element
* lists.
*/
Assert(length(index->relids) == 1);
pathnode->indexid = index->relids;
pathnode->indexid = lconsi(index->indexoid, NIL);
pathnode->indexqual = lcons(indexquals, NIL);
/* joinrelids saves the rels needed on the outer side of the join */
pathnode->joinrelids = lfirst(outerrelids_list);
pathnode->path.path_cost = cost_index((Oid) lfirsti(index->relids),
(int) npages,
selec,
rel->pages,
rel->tuples,
index->pages,
index->tuples,
pathnode->path.path_cost = cost_index(rel, index,
npages, selec,
true);
path_list = lappend(path_list, pathnode);
......@@ -1455,7 +1447,7 @@ static bool
match_index_to_operand(int indexkey,
Var *operand,
RelOptInfo *rel,
RelOptInfo *index)
IndexOptInfo *index)
{
if (index->indproc == InvalidOid)
{
......@@ -1477,7 +1469,7 @@ match_index_to_operand(int indexkey,
}
static bool
function_index_operand(Expr *funcOpnd, RelOptInfo *rel, RelOptInfo *index)
function_index_operand(Expr *funcOpnd, RelOptInfo *rel, IndexOptInfo *index)
{
int relvarno = lfirsti(rel->relids);
Func *function;
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/joinpath.c,v 1.46 1999/08/21 03:49:00 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/joinpath.c,v 1.47 2000/01/09 00:26:33 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -40,7 +40,7 @@ static List *match_unsorted_inner(RelOptInfo *joinrel, RelOptInfo *outerrel,
List *mergeclause_list);
static List *hash_inner_and_outer(Query *root, RelOptInfo *joinrel,
RelOptInfo *outerrel, RelOptInfo *innerrel);
static Cost estimate_disbursion(Query *root, Var *var);
static Selectivity estimate_disbursion(Query *root, Var *var);
static List *select_mergejoin_clauses(List *restrictinfo_list);
/*
......@@ -258,12 +258,8 @@ sort_inner_and_outer(RelOptInfo *joinrel,
curclause_list);
/* And now we can make the path. */
path_node = create_mergejoin_path(joinrel,
outerrel->size,
innerrel->size,
outerrel->width,
innerrel->width,
(Path *) outerrel->cheapestpath,
(Path *) innerrel->cheapestpath,
outerrel->cheapestpath,
innerrel->cheapestpath,
merge_pathkeys,
get_actual_clauses(curclause_list),
outerkeys,
......@@ -359,7 +355,6 @@ match_unsorted_outer(RelOptInfo *joinrel,
/* Always consider a nestloop join with this outer and best inner. */
path_list = lappend(path_list,
create_nestloop_path(joinrel,
outerrel,
outerpath,
nestinnerpath,
merge_pathkeys));
......@@ -393,7 +388,7 @@ match_unsorted_outer(RelOptInfo *joinrel,
int clausecount;
cheapest_cost = cheapest_inner->path_cost +
cost_sort(innersortkeys, innerrel->size, innerrel->width);
cost_sort(innersortkeys, innerrel->rows, innerrel->width);
for (clausecount = mergeclausecount;
clausecount > 0;
......@@ -427,10 +422,6 @@ match_unsorted_outer(RelOptInfo *joinrel,
get_actual_clauses(mergeclauses));
path_list = lappend(path_list,
create_mergejoin_path(joinrel,
outerrel->size,
innerrel->size,
outerrel->width,
innerrel->width,
outerpath,
mergeinnerpath,
merge_pathkeys,
......@@ -496,7 +487,7 @@ match_unsorted_inner(RelOptInfo *joinrel,
if (mergeouterpath != NULL &&
mergeouterpath->path_cost <=
(outerrel->cheapestpath->path_cost +
cost_sort(outersortkeys, outerrel->size, outerrel->width)))
cost_sort(outersortkeys, outerrel->rows, outerrel->width)))
{
/* Use mergeouterpath */
outersortkeys = NIL; /* no explicit sort step */
......@@ -516,10 +507,6 @@ match_unsorted_inner(RelOptInfo *joinrel,
mergeclauses = get_actual_clauses(mergeclauses);
path_list = lappend(path_list,
create_mergejoin_path(joinrel,
outerrel->size,
innerrel->size,
outerrel->width,
innerrel->width,
mergeouterpath,
innerpath,
merge_pathkeys,
......@@ -563,7 +550,7 @@ hash_inner_and_outer(Query *root,
Var *leftop = get_leftop(clause);
Var *rightop = get_rightop(clause);
Var *innerop;
Cost innerdisbursion;
Selectivity innerdisbursion;
HashPath *hash_path;
/* find the inner var and estimate its disbursion */
......@@ -574,12 +561,8 @@ hash_inner_and_outer(Query *root,
innerdisbursion = estimate_disbursion(root, innerop);
hash_path = create_hashjoin_path(joinrel,
outerrel->size,
innerrel->size,
outerrel->width,
innerrel->width,
(Path *) outerrel->cheapestpath,
(Path *) innerrel->cheapestpath,
outerrel->cheapestpath,
innerrel->cheapestpath,
lcons(clause, NIL),
innerdisbursion);
hpath_list = lappend(hpath_list, hash_path);
......@@ -598,7 +581,7 @@ hash_inner_and_outer(Query *root,
* we know that the inner rel is well-dispersed (or the alternatives
* seem much worse).
*/
static Cost
static Selectivity
estimate_disbursion(Query *root, Var *var)
{
Oid relid;
......@@ -608,7 +591,7 @@ estimate_disbursion(Query *root, Var *var)
relid = getrelid(var->varno, root->rtable);
return (Cost) get_attdisbursion(relid, var->varattno, 0.1);
return (Selectivity) get_attdisbursion(relid, var->varattno, 0.1);
}
/*
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/joinrels.c,v 1.39 1999/08/16 02:17:51 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/joinrels.c,v 1.40 2000/01/09 00:26:33 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -35,8 +35,6 @@ static List *new_join_tlist(List *tlist, int first_resdomno);
static void build_joinrel_restrict_and_join(RelOptInfo *joinrel,
List *joininfo_list,
Relids join_relids);
static void set_joinrel_size(RelOptInfo *joinrel, RelOptInfo *outer_rel,
RelOptInfo *inner_rel);
/*
* make_rels_by_joins
......@@ -207,19 +205,15 @@ make_join_rel(RelOptInfo *outer_rel, RelOptInfo *inner_rel)
* The list will be flattened out in update_rels_pathlist_for_joins().
*/
joinrel->relids = lcons(outer_rel->relids, lcons(inner_rel->relids, NIL));
joinrel->indexed = false;
joinrel->pages = 0;
joinrel->tuples = 0;
joinrel->size = 0;
joinrel->rows = 0;
joinrel->width = 0;
/* joinrel->targetlist = NIL;*/
joinrel->targetlist = NIL;
joinrel->pathlist = NIL;
joinrel->cheapestpath = (Path *) NULL;
joinrel->pruneable = true;
joinrel->classlist = NULL;
joinrel->indexkeys = NULL;
joinrel->ordering = NULL;
joinrel->relam = InvalidOid;
joinrel->indexed = false;
joinrel->pages = 0;
joinrel->tuples = 0;
joinrel->restrictinfo = NIL;
joinrel->joininfo = NIL;
joinrel->innerjoin = NIL;
......@@ -236,21 +230,22 @@ make_join_rel(RelOptInfo *outer_rel, RelOptInfo *inner_rel)
/*
* Construct restrict and join clause lists for the new joinrel.
*
* nconc(listCopy(x), y) is an idiom for making a new list without
* changing either input list.
*/
build_joinrel_restrict_and_join(joinrel,
nconc(copyObject(outer_rel->joininfo),
copyObject(inner_rel->joininfo)),
nconc(listCopy(outer_rel->joininfo),
inner_rel->joininfo),
nconc(listCopy(outer_rel->relids),
listCopy(inner_rel->relids)));
set_joinrel_size(joinrel, outer_rel, inner_rel);
inner_rel->relids));
return joinrel;
}
/*
* new_join_tlist
* Builds a join relations's target list by keeping those elements that
* Builds a join relation's target list by keeping those elements that
* will be in the final target list and any other elements that are still
* needed for future joins. For a target list entry to still be needed
* for future joins, its 'joinlist' field must not be empty after removal
......@@ -311,18 +306,16 @@ new_join_tlist(List *tlist,
* 'joininfo_list' is a list of joininfo nodes from the relations being joined
* 'join_relids' is a list of all base relids in the new join relation
*
* NB: the elements of joininfo_list have all been COPIED and so can safely
* be destructively modified and/or inserted in the new joinrel's lists.
* The amount of copying going on here is probably vastly excessive,
* since we copied the underlying clauses as well...
* NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass
* up to the join relation. I believe this is no longer necessary, because
* RestrictInfo nodes are no longer context-dependent. Instead, just add
* the original nodes to the lists belonging to the join relation.
*/
static void
build_joinrel_restrict_and_join(RelOptInfo *joinrel,
List *joininfo_list,
Relids join_relids)
{
List *output_restrictinfo_list = NIL;
List *output_joininfo_list = NIL;
List *xjoininfo;
foreach(xjoininfo, joininfo_list)
......@@ -341,38 +334,25 @@ build_joinrel_restrict_and_join(RelOptInfo *joinrel,
* Be careful to eliminate duplicates, since we will see the
* same clauses arriving from both input relations...
*/
output_restrictinfo_list =
LispUnion(output_restrictinfo_list,
joinrel->restrictinfo =
LispUnion(joinrel->restrictinfo,
joininfo->jinfo_restrictinfo);
}
else
{
JoinInfo *old_joininfo;
/*
* There might already be a JoinInfo with the same set of
* unjoined relids in output_joininfo_list; don't make a
* redundant entry.
* These clauses are still join clauses at this level,
* so find or make the appropriate JoinInfo item for the joinrel,
* and add the clauses to it (eliminating duplicates).
*/
old_joininfo = joininfo_member(new_unjoined_relids,
output_joininfo_list);
if (old_joininfo)
{
old_joininfo->jinfo_restrictinfo =
LispUnion(old_joininfo->jinfo_restrictinfo,
joininfo->jinfo_restrictinfo);
}
else
{
joininfo->unjoined_relids = new_unjoined_relids;
output_joininfo_list = lcons(joininfo,
output_joininfo_list);
}
JoinInfo *new_joininfo;
new_joininfo = find_joininfo_node(joinrel, new_unjoined_relids);
new_joininfo->jinfo_restrictinfo =
LispUnion(new_joininfo->jinfo_restrictinfo,
joininfo->jinfo_restrictinfo);
}
}
joinrel->restrictinfo = output_restrictinfo_list;
joinrel->joininfo = output_joininfo_list;
}
/*
......@@ -424,36 +404,6 @@ get_cheapest_complete_rel(List *join_rel_list)
return final_rel;
}
static void
set_joinrel_size(RelOptInfo *joinrel, RelOptInfo *outer_rel,
RelOptInfo *inner_rel)
{
double dtuples;
int ntuples;
/* avoid overflow ... probably, tuple estimates in RelOptInfo
* just ought to be double ...
*/
dtuples = (double) outer_rel->tuples * (double) inner_rel->tuples;
if (joinrel->restrictinfo != NULL)
dtuples *= product_selec(joinrel->restrictinfo);
if (dtuples >= MAXINT) /* avoid overflow */
ntuples = MAXINT;
else
ntuples = (int) dtuples;
/*
* I bet sizes less than 1 will screw up optimization so make the best
* case 1 instead of 0 - jolly
*/
if (ntuples < 1)
ntuples = 1;
joinrel->tuples = ntuples;
}
/*
* Subset-inclusion tests on integer lists.
*
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/orindxpath.c,v 1.32 1999/08/16 02:17:52 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/orindxpath.c,v 1.33 2000/01/09 00:26:33 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -30,11 +30,11 @@ static void best_or_subclause_indices(Query *root, RelOptInfo *rel,
List *subclauses, List *indices,
List **indexquals,
List **indexids,
Cost *cost, Cost *selec);
Cost *cost);
static void best_or_subclause_index(Query *root, RelOptInfo *rel,
List *indexqual, List *indices,
int *retIndexid,
Cost *retCost, Cost *retSelec);
Oid *retIndexid,
Cost *retCost);
/*
......@@ -89,7 +89,6 @@ create_or_index_paths(Query *root,
List *indexquals;
List *indexids;
Cost cost;
Cost selec;
best_or_subclause_indices(root,
rel,
......@@ -97,8 +96,7 @@ create_or_index_paths(Query *root,
clausenode->subclauseindices,
&indexquals,
&indexids,
&cost,
&selec);
&cost);
pathnode->path.pathtype = T_IndexScan;
pathnode->path.parent = rel;
......@@ -114,7 +112,6 @@ create_or_index_paths(Query *root,
pathnode->indexqual = indexquals;
pathnode->joinrelids = NIL; /* no join clauses here */
pathnode->path.path_cost = cost;
clausenode->selectivity = (Cost) selec;
path_list = lappend(path_list, pathnode);
}
......@@ -141,13 +138,12 @@ create_or_index_paths(Query *root,
*
* 'rel' is the node of the relation on which the indexes are defined
* 'subclauses' are the subclauses of the 'or' clause
* 'indices' is a list of sublists of the index nodes that matched each
* subclause of the 'or' clause
* 'indices' is a list of sublists of the IndexOptInfo nodes that matched
* each subclause of the 'or' clause
* '*indexquals' gets the constructed indexquals for the path (a list
* of sublists of clauses, one sublist per scan of the base rel)
* '*indexids' gets a list of the index IDs for each scan of the rel
* '*indexids' gets a list of the index OIDs for each scan of the rel
* '*cost' gets the total cost of the path
* '*selec' gets the total selectivity of the path.
*/
static void
best_or_subclause_indices(Query *root,
......@@ -156,23 +152,20 @@ best_or_subclause_indices(Query *root,
List *indices,
List **indexquals, /* return value */
List **indexids, /* return value */
Cost *cost, /* return value */
Cost *selec) /* return value */
Cost *cost) /* return value */
{
List *slist;
*indexquals = NIL;
*indexids = NIL;
*cost = (Cost) 0.0;
*selec = (Cost) 0.0;
foreach(slist, subclauses)
{
Expr *subclause = lfirst(slist);
List *indexqual;
int best_indexid;
Oid best_indexid;
Cost best_cost;
Cost best_selec;
/* Convert this 'or' subclause to an indexqual list */
indexqual = make_ands_implicit(subclause);
......@@ -180,18 +173,13 @@ best_or_subclause_indices(Query *root,
indexqual = expand_indexqual_conditions(indexqual);
best_or_subclause_index(root, rel, indexqual, lfirst(indices),
&best_indexid, &best_cost, &best_selec);
&best_indexid, &best_cost);
Assert(best_indexid != InvalidOid);
*indexquals = lappend(*indexquals, indexqual);
*indexids = lappendi(*indexids, best_indexid);
*cost += best_cost;
/* We approximate the selectivity as the sum of the clause
* selectivities (but not more than 1).
* XXX This is too pessimistic, isn't it?
*/
*selec += best_selec;
if (*selec > (Cost) 1.0)
*selec = (Cost) 1.0;
indices = lnext(indices);
}
......@@ -205,59 +193,50 @@ best_or_subclause_indices(Query *root,
*
* 'rel' is the node of the relation on which the index is defined
* 'indexqual' is the indexqual list derived from the subclause
* 'indices' is a list of index nodes that match the subclause
* '*retIndexid' gets the ID of the best index
* 'indices' is a list of IndexOptInfo nodes that match the subclause
* '*retIndexid' gets the OID of the best index
* '*retCost' gets the cost of a scan with that index
* '*retSelec' gets the selectivity of that scan
*/
static void
best_or_subclause_index(Query *root,
RelOptInfo *rel,
List *indexqual,
List *indices,
int *retIndexid, /* return value */
Cost *retCost, /* return value */
Cost *retSelec) /* return value */
Oid *retIndexid, /* return value */
Cost *retCost) /* return value */
{
bool first_run = true;
List *ilist;
/* if we don't match anything, return zeros */
*retIndexid = 0;
*retCost = (Cost) 0.0;
*retSelec = (Cost) 0.0;
*retIndexid = InvalidOid;
*retCost = 0.0;
foreach(ilist, indices)
{
RelOptInfo *index = (RelOptInfo *) lfirst(ilist);
Oid indexid = (Oid) lfirsti(index->relids);
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
long npages;
Selectivity selec;
Cost subcost;
float npages;
float selec;
Assert(IsA(index, IndexOptInfo));
index_selectivity(root,
lfirsti(rel->relids),
indexid,
rel,
index,
indexqual,
&npages,
&selec);
subcost = cost_index(indexid,
(int) npages,
(Cost) selec,
rel->pages,
rel->tuples,
index->pages,
index->tuples,
subcost = cost_index(rel, index,
npages, selec,
false);
if (first_run || subcost < *retCost)
{
*retIndexid = indexid;
*retIndexid = index->indexoid;
*retCost = subcost;
*retSelec = selec;
first_run = false;
}
}
}
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/pathkeys.c,v 1.16 1999/08/22 20:14:42 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/pathkeys.c,v 1.17 2000/01/09 00:26:33 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -261,7 +261,7 @@ get_cheapest_path_for_pathkeys(List *paths, List *pathkeys,
* ordering of that key is not interesting.
*/
List *
build_index_pathkeys(Query *root, RelOptInfo *rel, RelOptInfo *index)
build_index_pathkeys(Query *root, RelOptInfo *rel, IndexOptInfo *index)
{
List *retval = NIL;
int *indexkeys = index->indexkeys;
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/Attic/prune.c,v 1.43 1999/08/16 02:17:52 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/Attic/prune.c,v 1.44 2000/01/09 00:26:33 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -90,7 +90,7 @@ merge_rel_with_same_relids(RelOptInfo *rel, List *unmerged_rels)
* relations), set pointers to the cheapest path and compute rel size.
*/
void
rels_set_cheapest(List *rel_list)
rels_set_cheapest(Query *root, List *rel_list)
{
List *x;
......@@ -101,7 +101,7 @@ rels_set_cheapest(List *rel_list)
cheapest = (JoinPath *) set_cheapest(rel, rel->pathlist);
if (IsA_JoinPath(cheapest))
rel->size = compute_joinrel_size(cheapest);
set_joinrel_rows_width(root, rel, cheapest);
else
elog(ERROR, "rels_set_cheapest: non JoinPath found");
}
......
......@@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/tidpath.c,v 1.1 1999/11/23 20:06:55 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/tidpath.c,v 1.2 2000/01/09 00:26:33 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -241,30 +241,27 @@ List *TidqualFromRestrictinfo(List *relids, List * restrictinfo)
List *
create_tidscan_joinpaths(RelOptInfo *rel)
{
List *rlst = NIL, *lst;
TidPath *pathnode = (TidPath *)0;
List *restinfo, *tideval;
List *rlst = NIL,
*lst;
TidPath *pathnode = (TidPath *) NULL;
List *restinfo,
*tideval;
foreach (lst, rel->joininfo)
{
JoinInfo *joininfo = (JoinInfo *)lfirst(lst);
JoinInfo *joininfo = (JoinInfo *)lfirst(lst);
restinfo = joininfo->jinfo_restrictinfo;
tideval = TidqualFromRestrictinfo(rel->relids, restinfo);
if (tideval && length(tideval) == 1)
if (length(tideval) == 1)
{
pathnode = makeNode(TidPath);
pathnode->path.pathtype = T_TidScan;
pathnode->path.parent = rel;
pathnode->path.path_cost = 0.0;
pathnode->path.pathkeys = NIL;
pathnode->path.path_cost = cost_tidscan(tideval);
pathnode->path.path_cost = cost_tidscan(rel, tideval);
pathnode->tideval = tideval;
/*
pathnode->tideval = copyObject(tideval);
freeList(tideval);
*/
pathnode->unjoined_relids = joininfo->unjoined_relids;
rlst = lappend(rlst, pathnode);
}
......
......@@ -9,7 +9,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/createplan.c,v 1.77 1999/11/23 20:06:57 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/createplan.c,v 1.78 2000/01/09 00:26:34 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -22,6 +22,7 @@
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/internal.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/tlist.h"
......@@ -31,12 +32,12 @@
static List *switch_outer(List *clauses);
static int set_tlist_sort_info(List *tlist, List *pathkeys);
static Scan *create_scan_node(Path *best_path, List *tlist);
static Join *create_join_node(JoinPath *best_path, List *tlist);
static Scan *create_scan_node(Query *root, Path *best_path, List *tlist);
static Join *create_join_node(Query *root, JoinPath *best_path, List *tlist);
static SeqScan *create_seqscan_node(Path *best_path, List *tlist,
List *scan_clauses);
static IndexScan *create_indexscan_node(IndexPath *best_path, List *tlist,
List *scan_clauses);
static IndexScan *create_indexscan_node(Query *root, IndexPath *best_path,
List *tlist, List *scan_clauses);
static TidScan *create_tidscan_node(TidPath *best_path, List *tlist,
List *scan_clauses);
static NestLoop *create_nestloop_node(NestPath *best_path, List *tlist,
......@@ -49,10 +50,11 @@ static HashJoin *create_hashjoin_node(HashPath *best_path, List *tlist,
List *clauses, Plan *outer_node, List *outer_tlist,
Plan *inner_node, List *inner_tlist);
static List *fix_indxqual_references(List *indexquals, IndexPath *index_path);
static List *fix_indxqual_sublist(List *indexqual, IndexPath *index_path,
Form_pg_index index);
static Node *fix_indxqual_operand(Node *node, IndexPath *index_path,
static List *fix_indxqual_sublist(List *indexqual, int baserelid, Oid relam,
Form_pg_index index);
static Node *fix_indxqual_operand(Node *node, int baserelid,
Form_pg_index index,
Oid *opclass);
static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
List *indxid, List *indxqual, List *indxqualorig);
static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
......@@ -66,7 +68,8 @@ static MergeJoin *make_mergejoin(List *tlist, List *qpqual,
List *mergeclauses, Plan *righttree, Plan *lefttree);
static Material *make_material(List *tlist, Oid nonameid, Plan *lefttree,
int keycount);
static void copy_costsize(Plan *dest, Plan *src);
static void copy_path_costsize(Plan *dest, Path *src);
static void copy_plan_costsize(Plan *dest, Plan *src);
/*
* create_plan
......@@ -84,46 +87,31 @@ static void copy_costsize(Plan *dest, Plan *src);
* Returns the access plan.
*/
Plan *
create_plan(Path *best_path)
create_plan(Query *root, Path *best_path)
{
List *tlist;
List *tlist = best_path->parent->targetlist;
Plan *plan_node = (Plan *) NULL;
RelOptInfo *parent_rel;
int size;
int width;
int pages;
int tuples;
parent_rel = best_path->parent;
tlist = parent_rel->targetlist;
size = parent_rel->size;
width = parent_rel->width;
pages = parent_rel->pages;
tuples = parent_rel->tuples;
switch (best_path->pathtype)
{
case T_IndexScan:
case T_SeqScan:
case T_TidScan:
plan_node = (Plan *) create_scan_node(best_path, tlist);
plan_node = (Plan *) create_scan_node(root, best_path, tlist);
break;
case T_HashJoin:
case T_MergeJoin:
case T_NestLoop:
plan_node = (Plan *) create_join_node((JoinPath *) best_path, tlist);
plan_node = (Plan *) create_join_node(root,
(JoinPath *) best_path,
tlist);
break;
default:
/* do nothing */
elog(ERROR, "create_plan: unknown pathtype %d",
best_path->pathtype);
break;
}
plan_node->plan_size = size;
plan_node->plan_width = width;
if (pages == 0)
pages = 1;
plan_node->plan_tupperpage = tuples / pages;
#ifdef NOT_USED /* fix xfunc */
/* sort clauses by cost/(1-selectivity) -- JMH 2/26/92 */
if (XfuncMode != XFUNC_OFF)
......@@ -149,9 +137,8 @@ create_plan(Path *best_path)
* Returns the scan node.
*/
static Scan *
create_scan_node(Path *best_path, List *tlist)
create_scan_node(Query *root, Path *best_path, List *tlist)
{
Scan *node = NULL;
List *scan_clauses;
......@@ -168,7 +155,8 @@ create_scan_node(Path *best_path, List *tlist)
break;
case T_IndexScan:
node = (Scan *) create_indexscan_node((IndexPath *) best_path,
node = (Scan *) create_indexscan_node(root,
(IndexPath *) best_path,
tlist,
scan_clauses);
break;
......@@ -199,7 +187,7 @@ create_scan_node(Path *best_path, List *tlist)
* Returns the join node.
*/
static Join *
create_join_node(JoinPath *best_path, List *tlist)
create_join_node(Query *root, JoinPath *best_path, List *tlist)
{
Plan *outer_node;
List *outer_tlist;
......@@ -208,13 +196,13 @@ create_join_node(JoinPath *best_path, List *tlist)
List *clauses;
Join *retval = NULL;
outer_node = create_plan((Path *) best_path->outerjoinpath);
outer_node = create_plan(root, best_path->outerjoinpath);
outer_tlist = outer_node->targetlist;
inner_node = create_plan((Path *) best_path->innerjoinpath);
inner_node = create_plan(root, best_path->innerjoinpath);
inner_tlist = inner_node->targetlist;
clauses = get_actual_clauses(best_path->pathinfo);
clauses = get_actual_clauses(best_path->path.parent->restrictinfo);
switch (best_path->path.pathtype)
{
......@@ -280,20 +268,19 @@ create_join_node(JoinPath *best_path, List *tlist)
static SeqScan *
create_seqscan_node(Path *best_path, List *tlist, List *scan_clauses)
{
SeqScan *scan_node = (SeqScan *) NULL;
Index scan_relid = -1;
List *temp;
SeqScan *scan_node;
Index scan_relid;
temp = best_path->parent->relids;
/* there should be exactly one base rel involved... */
Assert(length(temp) == 1);
scan_relid = (Index) lfirsti(temp);
Assert(length(best_path->parent->relids) == 1);
scan_relid = (Index) lfirsti(best_path->parent->relids);
scan_node = make_seqscan(tlist,
scan_clauses,
scan_relid);
scan_node->plan.cost = best_path->path_cost;
copy_path_costsize(&scan_node->plan, best_path);
return scan_node;
}
......@@ -312,7 +299,8 @@ create_seqscan_node(Path *best_path, List *tlist, List *scan_clauses)
* scan.
*/
static IndexScan *
create_indexscan_node(IndexPath *best_path,
create_indexscan_node(Query *root,
IndexPath *best_path,
List *tlist,
List *scan_clauses)
{
......@@ -322,11 +310,12 @@ create_indexscan_node(IndexPath *best_path,
List *ixid;
IndexScan *scan_node;
bool lossy = false;
double plan_rows;
/* there should be exactly one base rel involved... */
Assert(length(best_path->path.parent->relids) == 1);
/* check and see if any of the indices are lossy */
/* check to see if any of the indices are lossy */
foreach(ixid, best_path->indexid)
{
HeapTuple indexTuple;
......@@ -354,44 +343,72 @@ create_indexscan_node(IndexPath *best_path,
*
* Since the indexquals were generated from the restriction clauses
* given by scan_clauses, there will normally be some duplications
* between the lists. Get rid of the duplicates, then add back if lossy.
* between the lists. We get rid of the duplicates, then add back
* if lossy.
*
* If this indexscan is a nestloop-join inner indexscan (as indicated
* by having nonempty joinrelids), then it uses indexqual conditions
* that are not part of the relation's restriction clauses. The rows
* estimate stored in the relation's RelOptInfo will be an overestimate
* because it did not take these extra conditions into account. So,
* in this case we recompute the selectivity of the whole scan ---
* considering both indexqual and qpqual --- rather than using the
* RelOptInfo's rows value. Since clausesel.c assumes it's working on
* minimized (no duplicates) expressions, we have to do that while we
* have the duplicate-free qpqual available.
*/
plan_rows = best_path->path.parent->rows; /* OK unless nestloop inner */
if (length(indxqual) > 1)
{
/*
* Build an expression representation of the indexqual, expanding
* the implicit OR and AND semantics of the first- and second-level
* lists. XXX Is it really necessary to do a deep copy here?
* lists.
*/
List *orclauses = NIL;
List *orclause;
Expr *indxqual_expr;
foreach(orclause, indxqual)
{
orclauses = lappend(orclauses,
make_ands_explicit((List *) copyObject(lfirst(orclause))));
}
make_ands_explicit(lfirst(orclause)));
indxqual_expr = make_orclause(orclauses);
/* this set_difference is almost certainly a waste of time... */
qpqual = set_difference(scan_clauses,
lcons(indxqual_expr, NIL));
if (best_path->joinrelids)
{
/* recompute output row estimate using all available quals */
plan_rows = best_path->path.parent->tuples *
clauselist_selec(root, lcons(indxqual_expr, qpqual));
}
if (lossy)
qpqual = lappend(qpqual, indxqual_expr);
qpqual = lappend(qpqual, copyObject(indxqual_expr));
}
else if (indxqual != NIL)
{
/* Here, we can simply treat the first sublist as an independent
* set of qual expressions, since there is no top-level OR behavior.
*/
qpqual = set_difference(scan_clauses, lfirst(indxqual));
List *indxqual_list = lfirst(indxqual);
qpqual = set_difference(scan_clauses, indxqual_list);
if (best_path->joinrelids)
{
/* recompute output row estimate using all available quals */
plan_rows = best_path->path.parent->tuples *
clauselist_selec(root, nconc(listCopy(indxqual_list), qpqual));
}
if (lossy)
qpqual = nconc(qpqual, (List *) copyObject(lfirst(indxqual)));
qpqual = nconc(qpqual, (List *) copyObject(indxqual_list));
}
else
qpqual = NIL;
qpqual = scan_clauses;
/* The executor needs a copy with the indexkey on the left of each clause
* and with index attr numbers substituted for table ones.
......@@ -405,7 +422,8 @@ create_indexscan_node(IndexPath *best_path,
fixed_indxqual,
indxqual);
scan_node->scan.plan.cost = best_path->path.path_cost;
copy_path_costsize(&scan_node->scan.plan, &best_path->path);
scan_node->scan.plan.plan_rows = plan_rows;
return scan_node;
}
......@@ -416,11 +434,11 @@ make_tidscan(List *qptlist,
Index scanrelid,
List *tideval)
{
TidScan *node = makeNode(TidScan);
TidScan *node = makeNode(TidScan);
Plan *plan = &node->scan.plan;
plan->cost = 0;
plan->plan_size = 0;
plan->plan_rows = 0;
plan->plan_width = 0;
plan->state = (EState *) NULL;
plan->targetlist = qptlist;
......@@ -428,7 +446,7 @@ make_tidscan(List *qptlist,
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->tideval = copyObject(tideval);
node->tideval = copyObject(tideval); /* XXX do we really need a copy? */
node->needRescan = false;
node->scan.scanstate = (CommonScanState *) NULL;
......@@ -443,25 +461,23 @@ make_tidscan(List *qptlist,
static TidScan *
create_tidscan_node(TidPath *best_path, List *tlist, List *scan_clauses)
{
TidScan *scan_node = (TidScan *) NULL;
Index scan_relid = -1;
List *temp;
temp = best_path->path.parent->relids;
if (temp == NULL)
elog(ERROR, "scanrelid is empty");
else if (length(temp) != 1)
return scan_node;
else
scan_relid = (Index) lfirsti(temp);
TidScan *scan_node;
Index scan_relid;
/* there should be exactly one base rel involved... */
Assert(length(best_path->path.parent->relids) == 1);
scan_relid = (Index) lfirsti(best_path->path.parent->relids);
scan_node = make_tidscan(tlist,
scan_clauses,
scan_relid,
best_path->tideval);
scan_clauses,
scan_relid,
best_path->tideval);
if (best_path->unjoined_relids)
scan_node->needRescan = true;
scan_node->scan.plan.cost = best_path->path.path_cost;
copy_path_costsize(&scan_node->scan.plan, &best_path->path);
return scan_node;
}
......@@ -581,7 +597,7 @@ create_nestloop_node(NestPath *best_path,
outer_node,
inner_node);
join_node->join.cost = best_path->path.path_cost;
copy_path_costsize(&join_node->join, &best_path->path);
return join_node;
}
......@@ -639,7 +655,7 @@ create_mergejoin_node(MergePath *best_path,
inner_node,
outer_node);
join_node->join.cost = best_path->jpath.path.path_cost;
copy_path_costsize(&join_node->join, &best_path->jpath.path);
return join_node;
}
......@@ -699,7 +715,7 @@ create_hashjoin_node(HashPath *best_path,
outer_node,
(Plan *) hash_node);
join_node->join.cost = best_path->jpath.path.path_cost;
copy_path_costsize(&join_node->join, &best_path->jpath.path);
return join_node;
}
......@@ -713,10 +729,18 @@ create_hashjoin_node(HashPath *best_path,
/*
* fix_indxqual_references
* Adjust indexqual clauses to refer to index attributes instead of the
* attributes of the original relation. Also, commute clauses if needed
* to put the indexkey on the left. (Someday the executor might not need
* that, but for now it does.)
* Adjust indexqual clauses to the form the executor's indexqual
* machinery needs.
*
* We have three tasks here:
* * Var nodes representing index keys must have varattno equal to the
* index's attribute number, not the attribute number in the original rel.
* * indxpath.c may have selected an index that is binary-compatible with
* the actual expression operator, but not the same; we must replace the
* expression's operator with the binary-compatible equivalent operator
* that the index will recognize.
* * If the index key is on the right, commute the clause to put it on the
* left. (Someday the executor might not need this, but for now it does.)
*
* This code used to be entirely bogus for multi-index scans. Now it keeps
* track of which index applies to each subgroup of index qual clauses...
......@@ -729,6 +753,7 @@ static List *
fix_indxqual_references(List *indexquals, IndexPath *index_path)
{
List *fixed_quals = NIL;
int baserelid = lfirsti(index_path->path.parent->relids);
List *indexids = index_path->indexid;
List *i;
......@@ -737,19 +762,31 @@ fix_indxqual_references(List *indexquals, IndexPath *index_path)
List *indexqual = lfirst(i);
Oid indexid = lfirsti(indexids);
HeapTuple indexTuple;
Oid relam;
Form_pg_index index;
/* Get the relam from the index's pg_class entry */
indexTuple = SearchSysCacheTuple(RELOID,
ObjectIdGetDatum(indexid),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "fix_indxqual_references: index %u not found in pg_class",
indexid);
relam = ((Form_pg_class) GETSTRUCT(indexTuple))->relam;
/* Need the index's pg_index entry for other stuff */
indexTuple = SearchSysCacheTuple(INDEXRELID,
ObjectIdGetDatum(indexid),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "fix_indxqual_references: index %u not found",
elog(ERROR, "fix_indxqual_references: index %u not found in pg_index",
indexid);
index = (Form_pg_index) GETSTRUCT(indexTuple);
fixed_quals = lappend(fixed_quals,
fix_indxqual_sublist(indexqual,
index_path,
baserelid,
relam,
index));
indexids = lnext(indexids);
......@@ -761,11 +798,11 @@ fix_indxqual_references(List *indexquals, IndexPath *index_path)
* Fix the sublist of indexquals to be used in a particular scan.
*
* For each qual clause, commute if needed to put the indexkey operand on the
* left, and then change its varno. We do not need to change the other side
* of the clause.
* left, and then change its varno. (We do not need to change the other side
* of the clause.) Also change the operator if necessary.
*/
static List *
fix_indxqual_sublist(List *indexqual, IndexPath *index_path,
fix_indxqual_sublist(List *indexqual, int baserelid, Oid relam,
Form_pg_index index)
{
List *fixed_qual = NIL;
......@@ -779,6 +816,8 @@ fix_indxqual_sublist(List *indexqual, IndexPath *index_path,
Datum constval;
int flag;
Expr *newclause;
Oid opclass,
newopno;
if (!is_opclause((Node *) clause) ||
length(clause->args) != 2)
......@@ -788,8 +827,7 @@ fix_indxqual_sublist(List *indexqual, IndexPath *index_path,
*
* get_relattval sets flag&SEL_RIGHT if the indexkey is on the LEFT.
*/
get_relattval((Node *) clause,
lfirsti(index_path->path.parent->relids),
get_relattval((Node *) clause, baserelid,
&relid, &attno, &constval, &flag);
/* Copy enough structure to allow commuting and replacing an operand
......@@ -802,10 +840,27 @@ fix_indxqual_sublist(List *indexqual, IndexPath *index_path,
if ((flag & SEL_RIGHT) == 0)
CommuteClause(newclause);
/* Now, change the indexkey operand as needed. */
/* Now, determine which index attribute this is,
* change the indexkey operand as needed,
* and get the index opclass.
*/
lfirst(newclause->args) = fix_indxqual_operand(lfirst(newclause->args),
index_path,
index);
baserelid,
index,
&opclass);
/* Substitute the appropriate operator if the expression operator
* is merely binary-compatible with the index. This shouldn't fail,
* since indxpath.c found it before...
*/
newopno = indexable_operator(newclause, opclass, relam, true);
if (newopno == InvalidOid)
elog(ERROR, "fix_indxqual_sublist: failed to find substitute op");
if (newopno != ((Oper *) newclause->oper)->opno)
{
newclause->oper = (Node *) copyObject(newclause->oper);
((Oper *) newclause->oper)->opno = newopno;
}
fixed_qual = lappend(fixed_qual, newclause);
}
......@@ -813,12 +868,12 @@ fix_indxqual_sublist(List *indexqual, IndexPath *index_path,
}
static Node *
fix_indxqual_operand(Node *node, IndexPath *index_path,
Form_pg_index index)
fix_indxqual_operand(Node *node, int baserelid, Form_pg_index index,
Oid *opclass)
{
if (IsA(node, Var))
{
if (((Var *) node)->varno == lfirsti(index_path->path.parent->relids))
if (((Var *) node)->varno == baserelid)
{
int varatt = ((Var *) node)->varattno;
int pos;
......@@ -829,6 +884,7 @@ fix_indxqual_operand(Node *node, IndexPath *index_path,
{
Node *newnode = copyObject(node);
((Var *) newnode)->varattno = pos + 1;
*opclass = index->indclass[pos];
return newnode;
}
}
......@@ -851,6 +907,9 @@ fix_indxqual_operand(Node *node, IndexPath *index_path,
* misbehaves...)
*/
/* indclass[0] is the only class of a functional index */
*opclass = index->indclass[0];
/* return the unmodified node */
return node;
}
......@@ -963,24 +1022,45 @@ set_tlist_sort_info(List *tlist, List *pathkeys)
return keysassigned;
}
/*
* Copy cost and size info from a Path node to the Plan node created from it.
* The executor won't use this info, but it's needed by EXPLAIN.
*/
static void
copy_path_costsize(Plan *dest, Path *src)
{
if (src)
{
dest->cost = src->path_cost;
dest->plan_rows = src->parent->rows;
dest->plan_width = src->parent->width;
}
else
{
dest->cost = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
/*
* Copy cost and size info from a lower plan node to an inserted node.
* This is not critical, since the decisions have already been made,
* but it helps produce more reasonable-looking EXPLAIN output.
*/
static void
copy_costsize(Plan *dest, Plan *src)
copy_plan_costsize(Plan *dest, Plan *src)
{
if (src)
{
dest->cost = src->cost;
dest->plan_size = src->plan_size;
dest->plan_rows = src->plan_rows;
dest->plan_width = src->plan_width;
}
else
{
dest->cost = 0;
dest->plan_size = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
......@@ -1042,7 +1122,7 @@ make_seqscan(List *qptlist,
SeqScan *node = makeNode(SeqScan);
Plan *plan = &node->plan;
copy_costsize(plan, NULL);
copy_plan_costsize(plan, NULL);
plan->state = (EState *) NULL;
plan->targetlist = qptlist;
plan->qual = qpqual;
......@@ -1065,7 +1145,7 @@ make_indexscan(List *qptlist,
IndexScan *node = makeNode(IndexScan);
Plan *plan = &node->scan.plan;
copy_costsize(plan, NULL);
copy_plan_costsize(plan, NULL);
plan->state = (EState *) NULL;
plan->targetlist = qptlist;
plan->qual = qpqual;
......@@ -1140,7 +1220,7 @@ make_hash(List *tlist, Var *hashkey, Plan *lefttree)
Hash *node = makeNode(Hash);
Plan *plan = &node->plan;
copy_costsize(plan, lefttree);
copy_plan_costsize(plan, lefttree);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NULL;
......@@ -1183,8 +1263,8 @@ make_sort(List *tlist, Oid nonameid, Plan *lefttree, int keycount)
Sort *node = makeNode(Sort);
Plan *plan = &node->plan;
copy_costsize(plan, lefttree);
plan->cost += cost_sort(NULL, plan->plan_size, plan->plan_width);
copy_plan_costsize(plan, lefttree);
plan->cost += cost_sort(NIL, plan->plan_rows, plan->plan_width);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NIL;
......@@ -1205,7 +1285,7 @@ make_material(List *tlist,
Material *node = makeNode(Material);
Plan *plan = &node->plan;
copy_costsize(plan, lefttree);
copy_plan_costsize(plan, lefttree);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NIL;
......@@ -1222,7 +1302,7 @@ make_agg(List *tlist, Plan *lefttree)
{
Agg *node = makeNode(Agg);
copy_costsize(&node->plan, lefttree);
copy_plan_costsize(&node->plan, lefttree);
node->plan.state = (EState *) NULL;
node->plan.qual = NULL;
node->plan.targetlist = tlist;
......@@ -1241,7 +1321,7 @@ make_group(List *tlist,
{
Group *node = makeNode(Group);
copy_costsize(&node->plan, lefttree);
copy_plan_costsize(&node->plan, lefttree);
node->plan.state = (EState *) NULL;
node->plan.qual = NULL;
node->plan.targetlist = tlist;
......@@ -1266,7 +1346,7 @@ make_unique(List *tlist, Plan *lefttree, char *uniqueAttr)
Unique *node = makeNode(Unique);
Plan *plan = &node->plan;
copy_costsize(plan, lefttree);
copy_plan_costsize(plan, lefttree);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NIL;
......@@ -1292,7 +1372,7 @@ make_result(List *tlist,
#ifdef NOT_USED
tlist = generate_fjoin(tlist);
#endif
copy_costsize(plan, subplan);
copy_plan_costsize(plan, subplan);
plan->state = (EState *) NULL;
plan->targetlist = tlist;
plan->qual = NIL;
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/initsplan.c,v 1.40 1999/10/07 04:23:06 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/initsplan.c,v 1.41 2000/01/09 00:26:36 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -30,6 +30,7 @@ static void add_restrict_and_join_to_rel(Query *root, Node *clause);
static void add_join_info_to_rels(Query *root, RestrictInfo *restrictinfo,
Relids join_relids);
static void add_vars_to_targetlist(Query *root, List *vars);
static void set_restrictinfo_joininfo(RestrictInfo *restrictinfo);
static void check_mergejoinable(RestrictInfo *restrictinfo);
static void check_hashjoinable(RestrictInfo *restrictinfo);
......@@ -164,12 +165,6 @@ add_restrict_and_join_to_rel(Query *root, Node *clause)
restrictinfo->right_sortop = InvalidOid;
restrictinfo->hashjoinoperator = InvalidOid;
/*
* The selectivity of the clause must be computed regardless of
* whether it's a restriction or a join clause
*/
restrictinfo->selectivity = compute_clause_selec(root, clause);
/*
* Retrieve all relids and vars contained within the clause.
*/
......@@ -189,12 +184,20 @@ add_restrict_and_join_to_rel(Query *root, Node *clause)
{
/*
* 'clause' is a join clause, since there is more than one atom in
* the relid list. Add it to the join lists of all the relevant
* the relid list. Set additional RestrictInfo fields for joining.
*/
set_restrictinfo_joininfo(restrictinfo);
/*
* Add clause to the join lists of all the relevant
* relations. (If, perchance, 'clause' contains NO vars, then
* nothing will happen...)
*/
add_join_info_to_rels(root, restrictinfo, relids);
/* we are going to be doing a join, so add vars to targetlists */
/*
* Add vars used in the join clause to targetlists of member relations,
* so that they will be emitted by the plan nodes that scan those
* relations (else they won't be available at the join node!).
*/
add_vars_to_targetlist(root, vars);
}
}
......@@ -202,7 +205,7 @@ add_restrict_and_join_to_rel(Query *root, Node *clause)
/*
* add_join_info_to_rels
* For every relation participating in a join clause, add 'restrictinfo' to
* the appropriate joininfo list (creating a new one and adding it to the
* the appropriate joininfo list (creating a new list and adding it to the
* appropriate rel node if necessary).
*
* 'restrictinfo' describes the join clause
......@@ -218,8 +221,8 @@ add_join_info_to_rels(Query *root, RestrictInfo *restrictinfo,
foreach(join_relid, join_relids)
{
int cur_relid = lfirsti(join_relid);
JoinInfo *joininfo;
Relids unjoined_relids = NIL;
JoinInfo *joininfo;
List *otherrel;
/* Get the relids not equal to the current relid */
......@@ -230,18 +233,12 @@ add_join_info_to_rels(Query *root, RestrictInfo *restrictinfo,
}
/*
* Find or make the joininfo node for this combination of rels
* Find or make the joininfo node for this combination of rels,
* and add the restrictinfo node to it.
*/
joininfo = find_joininfo_node(get_base_rel(root, cur_relid),
unjoined_relids);
/*
* And add the restrictinfo node to it. NOTE that each joininfo
* gets its own copy of the restrictinfo node! (Is this really
* necessary? Possibly ... later parts of the optimizer destructively
* modify restrict/join clauses...)
*/
joininfo->jinfo_restrictinfo = lcons(copyObject((void *) restrictinfo),
joininfo->jinfo_restrictinfo = lcons(restrictinfo,
joininfo->jinfo_restrictinfo);
}
}
......@@ -253,36 +250,17 @@ add_join_info_to_rels(Query *root, RestrictInfo *restrictinfo,
*****************************************************************************/
/*
* set_joininfo_mergeable_hashable
* Examine each join clause used in a query and set the merge and hash
* info fields in those that are mergejoinable or hashjoinable.
* set_restrictinfo_joininfo
* Examine a RestrictInfo that has been determined to be a join clause,
* and set the merge and hash info fields if it can be merge/hash joined.
*/
void
set_joininfo_mergeable_hashable(List *rel_list)
static void
set_restrictinfo_joininfo(RestrictInfo *restrictinfo)
{
List *x;
foreach(x, rel_list)
{
RelOptInfo *rel = (RelOptInfo *) lfirst(x);
List *y;
foreach(y, rel->joininfo)
{
JoinInfo *joininfo = (JoinInfo *) lfirst(y);
List *z;
foreach(z, joininfo->jinfo_restrictinfo)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(z);
if (_enable_mergejoin_)
check_mergejoinable(restrictinfo);
if (_enable_hashjoin_)
check_hashjoinable(restrictinfo);
}
}
}
if (_enable_mergejoin_)
check_mergejoinable(restrictinfo);
if (_enable_hashjoin_)
check_hashjoinable(restrictinfo);
}
/*
......
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planmain.c,v 1.48 1999/12/09 05:58:52 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planmain.c,v 1.49 2000/01/09 00:26:36 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -218,8 +218,6 @@ subplanner(Query *root,
add_restrict_and_join_to_rels(root, qual);
add_missing_rels_to_query(root);
set_joininfo_mergeable_hashable(root->base_rel_list);
final_rel = make_one_rel(root, root->base_rel_list);
if (! final_rel)
......@@ -275,7 +273,7 @@ subplanner(Query *root,
final_rel->cheapestpath->pathkeys))
{
root->query_pathkeys = final_rel->cheapestpath->pathkeys;
return create_plan(final_rel->cheapestpath);
return create_plan(root, final_rel->cheapestpath);
}
/*
......@@ -283,7 +281,7 @@ subplanner(Query *root,
* cheaper than doing an explicit sort on cheapestpath.
*/
cheapest_cost = final_rel->cheapestpath->path_cost +
cost_sort(root->query_pathkeys, final_rel->size, final_rel->width);
cost_sort(root->query_pathkeys, final_rel->rows, final_rel->width);
sortedpath = get_cheapest_path_for_pathkeys(final_rel->pathlist,
root->query_pathkeys,
......@@ -294,7 +292,7 @@ subplanner(Query *root,
{
/* Found a better presorted path, use it */
root->query_pathkeys = sortedpath->pathkeys;
return create_plan(sortedpath);
return create_plan(root, sortedpath);
}
/* otherwise, doing it the hard way is still cheaper */
}
......@@ -322,7 +320,7 @@ subplanner(Query *root,
* backwards scan, we have to convert to Plan format and
* then poke the result.
*/
Plan *sortedplan = create_plan(sortedpath);
Plan *sortedplan = create_plan(root, sortedpath);
List *sortedpathkeys;
Assert(IsA(sortedplan, IndexScan));
......@@ -350,5 +348,5 @@ subplanner(Query *root,
* an aggregate function...)
*/
root->query_pathkeys = final_rel->cheapestpath->pathkeys;
return create_plan(final_rel->cheapestpath);
return create_plan(root, final_rel->cheapestpath);
}
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/util/pathnode.c,v 1.55 1999/11/23 20:07:00 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/util/pathnode.c,v 1.56 2000/01/09 00:26:37 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -15,8 +15,6 @@
#include "postgres.h"
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
......@@ -37,10 +35,7 @@
bool
path_is_cheaper(Path *path1, Path *path2)
{
Cost cost1 = path1->path_cost;
Cost cost2 = path2->path_cost;
return (bool) (cost1 < cost2);
return (bool) (path1->path_cost < path2->path_cost);
}
/*
......@@ -60,8 +55,8 @@ set_cheapest(RelOptInfo *parent_rel, List *pathlist)
List *p;
Path *cheapest_so_far;
Assert(pathlist != NIL);
Assert(IsA(parent_rel, RelOptInfo));
Assert(pathlist != NIL);
cheapest_so_far = (Path *) lfirst(pathlist);
......@@ -192,18 +187,11 @@ Path *
create_seqscan_path(RelOptInfo *rel)
{
Path *pathnode = makeNode(Path);
int relid = 0;
pathnode->pathtype = T_SeqScan;
pathnode->parent = rel;
pathnode->path_cost = 0.0;
pathnode->pathkeys = NIL; /* seqscan has unordered result */
if (rel->relids != NIL) /* can this happen? */
relid = lfirsti(rel->relids);
pathnode->path_cost = cost_seqscan(relid,
rel->pages, rel->tuples);
pathnode->path_cost = cost_seqscan(rel);
return pathnode;
}
......@@ -222,7 +210,7 @@ create_seqscan_path(RelOptInfo *rel)
IndexPath *
create_index_path(Query *root,
RelOptInfo *rel,
RelOptInfo *index,
IndexOptInfo *index,
List *restriction_clauses)
{
IndexPath *pathnode = makeNode(IndexPath);
......@@ -239,8 +227,7 @@ create_index_path(Query *root,
* conditions. If we do have restriction conditions to use, they
* will get inserted below.
*/
Assert(length(index->relids) == 1);
pathnode->indexid = index->relids;
pathnode->indexid = lconsi(index->indexoid, NIL);
pathnode->indexqual = lcons(NIL, NIL);
pathnode->joinrelids = NIL; /* no join clauses here */
......@@ -250,13 +237,9 @@ create_index_path(Query *root,
* We have no restriction clauses, so compute scan cost using
* selectivity of 1.0.
*/
pathnode->path.path_cost = cost_index(lfirsti(index->relids),
pathnode->path.path_cost = cost_index(rel, index,
index->pages,
1.0,
rel->pages,
rel->tuples,
index->pages,
index->tuples,
(Selectivity) 1.0,
false);
}
else
......@@ -266,9 +249,8 @@ create_index_path(Query *root,
* restriction clause(s). Also, place indexqual in path node.
*/
List *indexquals;
float npages;
float selec;
Cost clausesel;
long npages;
Selectivity selec;
indexquals = get_actual_clauses(restriction_clauses);
/* expand special operators to indexquals the executor can handle */
......@@ -280,39 +262,15 @@ create_index_path(Query *root,
lfirst(pathnode->indexqual) = indexquals;
index_selectivity(root,
lfirsti(rel->relids),
lfirsti(index->relids),
rel,
index,
indexquals,
&npages,
&selec);
pathnode->path.path_cost = cost_index(lfirsti(index->relids),
(int) npages,
selec,
rel->pages,
rel->tuples,
index->pages,
index->tuples,
pathnode->path.path_cost = cost_index(rel, index,
npages, selec,
false);
/*
* Set selectivities of clauses used with index to the selectivity
* of this index, subdividing the selectivity equally over each of
* the clauses. To the extent that index_selectivity() can make a
* better estimate of the joint selectivity of these clauses than
* the product of individual estimates from compute_clause_selec()
* would be, this should give us a more accurate estimate of the
* total selectivity of all the clauses.
*
* XXX If there is more than one useful index for this rel, and the
* indexes can be used with different but overlapping groups of
* restriction clauses, we may end up with too optimistic an estimate,
* since set_clause_selectivities() will save the minimum of the
* per-clause selectivity estimated with each index. But that should
* be fairly unlikely for typical index usage.
*/
clausesel = pow(selec, 1.0 / (double) length(restriction_clauses));
set_clause_selectivities(restriction_clauses, clausesel);
}
return pathnode;
......@@ -331,14 +289,12 @@ create_tidscan_path(RelOptInfo *rel, List *tideval)
pathnode->path.pathtype = T_TidScan;
pathnode->path.parent = rel;
pathnode->path.path_cost = 0.0;
pathnode->path.pathkeys = NIL;
pathnode->path.path_cost = cost_tidscan(tideval);
pathnode->path.path_cost = cost_tidscan(rel, tideval);
/* divide selectivity for each clause to get an equal selectivity
* as IndexScan does OK ?
*/
pathnode->tideval = copyObject(tideval);
pathnode->tideval = copyObject(tideval); /* is copy really necessary? */
pathnode->unjoined_relids = NIL;
return pathnode;
......@@ -350,7 +306,6 @@ create_tidscan_path(RelOptInfo *rel, List *tideval)
* relations.
*
* 'joinrel' is the join relation.
* 'outer_rel' is the outer join relation
* 'outer_path' is the outer path
* 'inner_path' is the inner path
* 'pathkeys' are the path keys of the new join path
......@@ -360,7 +315,6 @@ create_tidscan_path(RelOptInfo *rel, List *tideval)
*/
NestPath *
create_nestloop_path(RelOptInfo *joinrel,
RelOptInfo *outer_rel,
Path *outer_path,
Path *inner_path,
List *pathkeys)
......@@ -371,15 +325,10 @@ create_nestloop_path(RelOptInfo *joinrel,
pathnode->path.parent = joinrel;
pathnode->outerjoinpath = outer_path;
pathnode->innerjoinpath = inner_path;
pathnode->pathinfo = joinrel->restrictinfo;
pathnode->path.pathkeys = pathkeys;
pathnode->path.path_cost = cost_nestloop(outer_path->path_cost,
inner_path->path_cost,
outer_rel->size,
inner_path->parent->size,
page_size(outer_rel->size,
outer_rel->width),
pathnode->path.path_cost = cost_nestloop(outer_path,
inner_path,
IsA(inner_path, IndexPath));
return pathnode;
......@@ -391,10 +340,6 @@ create_nestloop_path(RelOptInfo *joinrel,
* two relations
*
* 'joinrel' is the join relation
* 'outersize' is the number of tuples in the outer relation
* 'innersize' is the number of tuples in the inner relation
* 'outerwidth' is the number of bytes per tuple in the outer relation
* 'innerwidth' is the number of bytes per tuple in the inner relation
* 'outer_path' is the outer path
* 'inner_path' is the inner path
* 'pathkeys' are the path keys of the new join path
......@@ -405,10 +350,6 @@ create_nestloop_path(RelOptInfo *joinrel,
*/
MergePath *
create_mergejoin_path(RelOptInfo *joinrel,
int outersize,
int innersize,
int outerwidth,
int innerwidth,
Path *outer_path,
Path *inner_path,
List *pathkeys,
......@@ -433,19 +374,14 @@ create_mergejoin_path(RelOptInfo *joinrel,
pathnode->jpath.path.parent = joinrel;
pathnode->jpath.outerjoinpath = outer_path;
pathnode->jpath.innerjoinpath = inner_path;
pathnode->jpath.pathinfo = joinrel->restrictinfo;
pathnode->jpath.path.pathkeys = pathkeys;
pathnode->path_mergeclauses = mergeclauses;
pathnode->outersortkeys = outersortkeys;
pathnode->innersortkeys = innersortkeys;
pathnode->jpath.path.path_cost = cost_mergejoin(outer_path->path_cost,
inner_path->path_cost,
pathnode->jpath.path.path_cost = cost_mergejoin(outer_path,
inner_path,
outersortkeys,
innersortkeys,
outersize,
innersize,
outerwidth,
innerwidth);
innersortkeys);
return pathnode;
}
......@@ -455,10 +391,6 @@ create_mergejoin_path(RelOptInfo *joinrel,
* Creates a pathnode corresponding to a hash join between two relations.
*
* 'joinrel' is the join relation
* 'outersize' is the number of tuples in the outer relation
* 'innersize' is the number of tuples in the inner relation
* 'outerwidth' is the number of bytes per tuple in the outer relation
* 'innerwidth' is the number of bytes per tuple in the inner relation
* 'outer_path' is the cheapest outer path
* 'inner_path' is the cheapest inner path
* 'hashclauses' is a list of the hash join clause (always a 1-element list)
......@@ -467,14 +399,10 @@ create_mergejoin_path(RelOptInfo *joinrel,
*/
HashPath *
create_hashjoin_path(RelOptInfo *joinrel,
int outersize,
int innersize,
int outerwidth,
int innerwidth,
Path *outer_path,
Path *inner_path,
List *hashclauses,
Cost innerdisbursion)
Selectivity innerdisbursion)
{
HashPath *pathnode = makeNode(HashPath);
......@@ -482,14 +410,11 @@ create_hashjoin_path(RelOptInfo *joinrel,
pathnode->jpath.path.parent = joinrel;
pathnode->jpath.outerjoinpath = outer_path;
pathnode->jpath.innerjoinpath = inner_path;
pathnode->jpath.pathinfo = joinrel->restrictinfo;
/* A hashjoin never has pathkeys, since its ordering is unpredictable */
pathnode->jpath.path.pathkeys = NIL;
pathnode->path_hashclauses = hashclauses;
pathnode->jpath.path.path_cost = cost_hashjoin(outer_path->path_cost,
inner_path->path_cost,
outersize, innersize,
outerwidth, innerwidth,
pathnode->jpath.path.path_cost = cost_hashjoin(outer_path,
inner_path,
innerdisbursion);
return pathnode;
......
......@@ -8,14 +8,15 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/util/plancat.c,v 1.40 1999/11/22 17:56:17 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/util/plancat.c,v 1.41 2000/01/09 00:26:40 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include <math.h>
#include "postgres.h"
#include <math.h>
#include "access/genam.h"
#include "access/heapam.h"
#include "catalog/catname.h"
......@@ -23,20 +24,12 @@
#include "catalog/pg_inherits.h"
#include "optimizer/clauses.h"
#include "optimizer/internal.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "parser/parsetree.h"
#include "utils/syscache.h"
static void IndexSelectivity(Oid indexrelid, Oid baserelid, int nIndexKeys,
Oid *operatorObjectIds,
AttrNumber *varAttributeNumbers,
Datum *constValues,
int *constFlags,
float *idxPages,
float *idxSelec);
/*
* relation_info -
* Retrieves catalog information for a given relation.
......@@ -47,39 +40,33 @@ static void IndexSelectivity(Oid indexrelid, Oid baserelid, int nIndexKeys,
*/
void
relation_info(Query *root, Index relid,
bool *hasindex, int *pages, int *tuples)
bool *hasindex, long *pages, double *tuples)
{
Oid relationObjectId = getrelid(relid, root->rtable);
HeapTuple relationTuple;
Form_pg_class relation;
Oid relationObjectId;
relationObjectId = getrelid(relid, root->rtable);
relationTuple = SearchSysCacheTuple(RELOID,
ObjectIdGetDatum(relationObjectId),
0, 0, 0);
if (HeapTupleIsValid(relationTuple))
{
relation = (Form_pg_class) GETSTRUCT(relationTuple);
*hasindex = (relation->relhasindex) ? true : false;
*pages = relation->relpages;
*tuples = relation->reltuples;
}
else
{
if (!HeapTupleIsValid(relationTuple))
elog(ERROR, "relation_info: Relation %u not found",
relationObjectId);
}
relation = (Form_pg_class) GETSTRUCT(relationTuple);
*hasindex = (relation->relhasindex) ? true : false;
*pages = relation->relpages;
*tuples = relation->reltuples;
}
/*
* find_secondary_indexes
* Creates a list of RelOptInfo nodes containing information for each
* Creates a list of IndexOptInfo nodes containing information for each
* secondary index defined on the given relation.
*
* 'relid' is the RT index of the relation for which indices are being located
*
* Returns a list of new index RelOptInfo nodes.
* Returns a list of new IndexOptInfo nodes.
*/
List *
find_secondary_indexes(Query *root, Index relid)
......@@ -105,7 +92,7 @@ find_secondary_indexes(Query *root, Index relid)
while (HeapTupleIsValid(indexTuple = heap_getnext(scan, 0)))
{
Form_pg_index index = (Form_pg_index) GETSTRUCT(indexTuple);
RelOptInfo *info = makeNode(RelOptInfo);
IndexOptInfo *info = makeNode(IndexOptInfo);
int i;
Relation indexRelation;
uint16 amstrategy;
......@@ -120,7 +107,7 @@ find_secondary_indexes(Query *root, Index relid)
info->ordering = (Oid *) palloc(sizeof(Oid) * (INDEX_MAX_KEYS+1));
/* Extract info from the pg_index tuple */
info->relids = lconsi(index->indexrelid, NIL);
info->indexoid = index->indexrelid;
info->indproc = index->indproc; /* functional index ?? */
if (VARSIZE(&index->indpred) != 0) /* partial index ?? */
{
......@@ -172,17 +159,6 @@ find_secondary_indexes(Query *root, Index relid)
info->ordering[i] = ((Form_pg_amop) GETSTRUCT(amopTuple))->amopopr;
}
info->indexed = false; /* not indexed itself */
info->size = 0;
info->width = 0;
info->targetlist = NIL;
info->pathlist = NIL;
info->cheapestpath = NULL;
info->pruneable = true;
info->restrictinfo = NIL;
info->joininfo = NIL;
info->innerjoin = NIL;
indexes = lcons(info, indexes);
}
......@@ -200,77 +176,211 @@ find_secondary_indexes(Query *root, Index relid)
* but here we consider the cost of just one pass.
*
* 'root' is the query root
* 'relid' is the RT index of the relation being scanned
* 'indexid' is the OID of the index to be used
* 'rel' is the relation being scanned
* 'index' is the index to be used
* 'indexquals' is the list of qual condition exprs (implicit AND semantics)
* '*idxPages' receives an estimate of the number of index pages touched
* '*idxSelec' receives an estimate of selectivity of the scan
* '*idxSelec' receives an estimate of selectivity of the scan, ie fraction
* of the relation's tuples that will be retrieved
*/
void
index_selectivity(Query *root,
int relid,
Oid indexid,
RelOptInfo *rel,
IndexOptInfo *index,
List *indexquals,
float *idxPages,
float *idxSelec)
long *idxPages,
Selectivity *idxSelec)
{
int nclauses = length(indexquals);
Oid *opno_array;
AttrNumber *attno_array;
Datum *value_array;
int *flag_array;
int relid;
Oid baserelid,
indexrelid;
HeapTuple indRel,
indexTuple;
Form_pg_class indexrelation;
Oid relam;
Form_pg_index pgindex;
int nIndexKeys;
float64data npages,
select,
fattr_select;
bool nphack = false;
List *q;
int i;
if (nclauses <= 0)
{
*idxPages = 0.0;
*idxSelec = 1.0;
return;
}
opno_array = (Oid *) palloc(nclauses * sizeof(Oid));
attno_array = (AttrNumber *) palloc(nclauses * sizeof(AttrNumber));
value_array = (Datum *) palloc(nclauses * sizeof(Datum));
flag_array = (int *) palloc(nclauses * sizeof(int));
Assert(length(rel->relids) == 1); /* must be a base rel */
relid = lfirsti(rel->relids);
baserelid = getrelid(relid, root->rtable);
indexrelid = index->indexoid;
indRel = SearchSysCacheTuple(RELOID,
ObjectIdGetDatum(indexrelid),
0, 0, 0);
if (!HeapTupleIsValid(indRel))
elog(ERROR, "index_selectivity: index %u not found in pg_class",
indexrelid);
indexrelation = (Form_pg_class) GETSTRUCT(indRel);
relam = indexrelation->relam;
indexTuple = SearchSysCacheTuple(INDEXRELID,
ObjectIdGetDatum(indexrelid),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "index_selectivity: index %u not found in pg_index",
indexrelid);
pgindex = (Form_pg_index) GETSTRUCT(indexTuple);
nIndexKeys = 1;
while (pgindex->indclass[nIndexKeys] != InvalidOid)
nIndexKeys++;
/*
* Hack for non-functional btree npages estimation: npages =
* index_pages * selectivity_of_1st_attr_clause(s) - vadim 04/24/97
*/
if (relam == BTREE_AM_OID && pgindex->indproc == InvalidOid)
nphack = true;
npages = 0.0;
select = 1.0;
fattr_select = 1.0;
i = 0;
foreach(q, indexquals)
{
Node *expr = (Node *) lfirst(q);
Oid opno;
int dummyrelid;
AttrNumber attno;
Datum value;
int flag;
Oid indclass;
HeapTuple amopTuple;
Form_pg_amop amop;
float64 amopnpages,
amopselect;
/*
* Extract info from clause.
*/
if (is_opclause(expr))
opno_array[i] = ((Oper *) ((Expr *) expr)->oper)->opno;
opno = ((Oper *) ((Expr *) expr)->oper)->opno;
else
opno_array[i] = InvalidOid;
opno = InvalidOid;
get_relattval(expr, relid, &dummyrelid, &attno, &value, &flag);
get_relattval(expr, relid, &dummyrelid, &attno_array[i],
&value_array[i], &flag_array[i]);
i++;
/*
* Find the AM class for this key.
*/
if (pgindex->indproc != InvalidOid)
{
/*
* Functional index: AM class is the first one defined since
* functional indices have exactly one key.
*/
indclass = pgindex->indclass[0];
}
else
{
int i;
indclass = InvalidOid;
for (i = 0; pgindex->indkey[i]; i++)
{
if (attno == pgindex->indkey[i])
{
indclass = pgindex->indclass[i];
break;
}
}
}
if (!OidIsValid(indclass))
{
/*
* Presumably this means that we are using a functional index
* clause and so had no variable to match to the index key ...
* if not we are in trouble.
*/
elog(NOTICE, "index_selectivity: no key %d in index %u",
attno, indexrelid);
continue;
}
amopTuple = SearchSysCacheTuple(AMOPOPID,
ObjectIdGetDatum(indclass),
ObjectIdGetDatum(opno),
ObjectIdGetDatum(relam),
0);
if (!HeapTupleIsValid(amopTuple))
{
/*
* We might get here because indxpath.c selected a binary-
* compatible index. Try again with the compatible operator.
*/
if (opno != InvalidOid)
{
opno = indexable_operator((Expr *) expr, indclass, relam,
((flag & SEL_RIGHT) != 0));
amopTuple = SearchSysCacheTuple(AMOPOPID,
ObjectIdGetDatum(indclass),
ObjectIdGetDatum(opno),
ObjectIdGetDatum(relam),
0);
}
if (!HeapTupleIsValid(amopTuple))
elog(ERROR, "index_selectivity: no amop %u %u %u",
indclass, opno, relam);
}
amop = (Form_pg_amop) GETSTRUCT(amopTuple);
if (!nphack)
{
amopnpages = (float64) fmgr(amop->amopnpages,
(char *) opno,
(char *) baserelid,
(char *) (int) attno,
(char *) value,
(char *) flag,
(char *) nIndexKeys,
(char *) indexrelid);
if (PointerIsValid(amopnpages))
npages += *amopnpages;
}
amopselect = (float64) fmgr(amop->amopselect,
(char *) opno,
(char *) baserelid,
(char *) (int) attno,
(char *) value,
(char *) flag,
(char *) nIndexKeys,
(char *) indexrelid);
if (PointerIsValid(amopselect))
{
select *= *amopselect;
if (nphack && attno == pgindex->indkey[0])
fattr_select *= *amopselect;
}
}
IndexSelectivity(indexid,
getrelid(relid, root->rtable),
nclauses,
opno_array,
attno_array,
value_array,
flag_array,
idxPages,
idxSelec);
pfree(opno_array);
pfree(attno_array);
pfree(value_array);
pfree(flag_array);
/*
* Estimation of npages below is hack of course, but it's better than
* it was before. - vadim 04/09/97
*/
if (nphack)
{
npages = fattr_select * indexrelation->relpages;
*idxPages = (long) ceil((double) npages);
}
else
{
if (nIndexKeys > 1)
npages = npages / (1.0 + nIndexKeys);
*idxPages = (long) ceil((double) (npages / nIndexKeys));
}
*idxSelec = select;
}
/*
* restriction_selectivity
*
* NOTE: The routine is now merged with RestrictionClauseSelectivity
* as defined in plancat.c
*
* Returns the selectivity of a specified operator.
* This code executes registered procedures stored in the
* operator relation, by calling the function manager.
......@@ -279,7 +389,7 @@ index_selectivity(Query *root,
* relation OIDs or attribute numbers are 0, then the clause
* isn't of the form (op var const).
*/
Cost
Selectivity
restriction_selectivity(Oid functionObjectId,
Oid operatorObjectId,
Oid relationObjectId,
......@@ -297,28 +407,25 @@ restriction_selectivity(Oid functionObjectId,
(char *) constFlag,
NULL);
if (!PointerIsValid(result))
elog(ERROR, "RestrictionClauseSelectivity: bad pointer");
elog(ERROR, "restriction_selectivity: bad pointer");
if (*result < 0.0 || *result > 1.0)
elog(ERROR, "RestrictionClauseSelectivity: bad value %lf",
*result);
elog(ERROR, "restriction_selectivity: bad value %lf", *result);
return (Cost) *result;
return (Selectivity) *result;
}
/*
* join_selectivity
* Similarly, this routine is merged with JoinClauseSelectivity in
* plancat.c
*
* Returns the selectivity of an operator, given the join clause
* information.
* Returns the selectivity of an operator, given the join clause
* information.
*
* XXX The assumption in the selectivity procedures is that if the
* relation OIDs or attribute numbers are 0, then the clause
* isn't of the form (op var var).
*/
Cost
Selectivity
join_selectivity(Oid functionObjectId,
Oid operatorObjectId,
Oid relationObjectId1,
......@@ -336,13 +443,12 @@ join_selectivity(Oid functionObjectId,
(char *) (int) attributeNumber2,
NULL);
if (!PointerIsValid(result))
elog(ERROR, "JoinClauseSelectivity: bad pointer");
elog(ERROR, "join_selectivity: bad pointer");
if (*result < 0.0 || *result > 1.0)
elog(ERROR, "JoinClauseSelectivity: bad value %lf",
*result);
elog(ERROR, "join_selectivity: bad value %lf", *result);
return (Cost) *result;
return (Selectivity) *result;
}
/*
......@@ -421,172 +527,3 @@ VersionGetParents(Oid verrelid)
}
#endif
/*****************************************************************************
*
*****************************************************************************/
/*
* IndexSelectivity
*
* Calls the 'amopnpages' and 'amopselect' functions for each
* AM operator when a given index (specified by 'indexrelid') is used.
* The total number of pages and product of the selectivities are returned.
*
* Assumption: the attribute numbers and operator ObjectIds are in order
* WRT to each other (otherwise, you have no way of knowing which
* AM operator class or attribute number corresponds to which operator.
*
* 'nIndexKeys' is the number of qual clauses in use
* 'varAttributeNumbers' contains attribute numbers for variables
* 'constValues' contains the constant values
* 'constFlags' describes how to treat the constants in each clause
*/
static void
IndexSelectivity(Oid indexrelid,
Oid baserelid,
int nIndexKeys,
Oid *operatorObjectIds,
AttrNumber *varAttributeNumbers,
Datum *constValues,
int *constFlags,
float *idxPages,
float *idxSelec)
{
int i,
n;
HeapTuple indexTuple,
amopTuple,
indRel;
Form_pg_class indexrelation;
Form_pg_index index;
Form_pg_amop amop;
Oid indclass;
float64data npages,
select;
float64 amopnpages,
amopselect;
Oid relam;
bool nphack = false;
float64data fattr_select = 1.0;
indRel = SearchSysCacheTuple(RELOID,
ObjectIdGetDatum(indexrelid),
0, 0, 0);
if (!HeapTupleIsValid(indRel))
elog(ERROR, "IndexSelectivity: index %u not found",
indexrelid);
indexrelation = (Form_pg_class) GETSTRUCT(indRel);
relam = indexrelation->relam;
indexTuple = SearchSysCacheTuple(INDEXRELID,
ObjectIdGetDatum(indexrelid),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "IndexSelectivity: index %u not found",
indexrelid);
index = (Form_pg_index) GETSTRUCT(indexTuple);
/*
* Hack for non-functional btree npages estimation: npages =
* index_pages * selectivity_of_1st_attr_clause(s) - vadim 04/24/97
*/
if (relam == BTREE_AM_OID &&
varAttributeNumbers[0] != InvalidAttrNumber)
nphack = true;
npages = 0.0;
select = 1.0;
for (n = 0; n < nIndexKeys; n++)
{
/*
* Find the AM class for this key.
*
* If the first attribute number is invalid then we have a functional
* index, and AM class is the first one defined since functional
* indices have exactly one key.
*/
indclass = (varAttributeNumbers[0] == InvalidAttrNumber) ?
index->indclass[0] : InvalidOid;
i = 0;
while ((i < nIndexKeys) && (indclass == InvalidOid))
{
if (varAttributeNumbers[n] == index->indkey[i])
{
indclass = index->indclass[i];
break;
}
i++;
}
if (!OidIsValid(indclass))
{
/*
* Presumably this means that we are using a functional index
* clause and so had no variable to match to the index key ...
* if not we are in trouble.
*/
elog(NOTICE, "IndexSelectivity: no key %d in index %u",
varAttributeNumbers[n], indexrelid);
continue;
}
amopTuple = SearchSysCacheTuple(AMOPOPID,
ObjectIdGetDatum(indclass),
ObjectIdGetDatum(operatorObjectIds[n]),
ObjectIdGetDatum(relam),
0);
if (!HeapTupleIsValid(amopTuple))
elog(ERROR, "IndexSelectivity: no amop %u %u %u",
indclass, operatorObjectIds[n], relam);
amop = (Form_pg_amop) GETSTRUCT(amopTuple);
if (!nphack)
{
amopnpages = (float64) fmgr(amop->amopnpages,
(char *) operatorObjectIds[n],
(char *) baserelid,
(char *) (int) varAttributeNumbers[n],
(char *) constValues[n],
(char *) constFlags[n],
(char *) nIndexKeys,
(char *) indexrelid);
if (PointerIsValid(amopnpages))
npages += *amopnpages;
}
amopselect = (float64) fmgr(amop->amopselect,
(char *) operatorObjectIds[n],
(char *) baserelid,
(char *) (int) varAttributeNumbers[n],
(char *) constValues[n],
(char *) constFlags[n],
(char *) nIndexKeys,
(char *) indexrelid);
if (PointerIsValid(amopselect))
{
select *= *amopselect;
if (nphack && varAttributeNumbers[n] == index->indkey[0])
fattr_select *= *amopselect;
}
}
/*
* Estimation of npages below is hack of course, but it's better than
* it was before. - vadim 04/09/97
*/
if (nphack)
{
npages = fattr_select * indexrelation->relpages;
*idxPages = ceil((double) npages);
}
else
{
if (nIndexKeys > 1)
npages = npages / (1.0 + nIndexKeys);
*idxPages = ceil((double) (npages / nIndexKeys));
}
*idxSelec = select;
}
......@@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/util/relnode.c,v 1.19 1999/08/16 02:17:58 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/util/relnode.c,v 1.20 2000/01/09 00:26:41 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -37,21 +37,15 @@ get_base_rel(Query *root, int relid)
{
rel = makeNode(RelOptInfo);
rel->relids = relids;
rel->indexed = false;
rel->pages = 0;
rel->tuples = 0;
rel->size = 0;
rel->rows = 0;
rel->width = 0;
rel->targetlist = NIL;
rel->pathlist = NIL;
rel->cheapestpath = (Path *) NULL;
rel->pruneable = true;
rel->classlist = NULL;
rel->indexkeys = NULL;
rel->ordering = NULL;
rel->relam = InvalidOid;
rel->indproc = InvalidOid;
rel->indpred = NIL;
rel->indexed = false;
rel->pages = 0;
rel->tuples = 0;
rel->restrictinfo = NIL;
rel->joininfo = NIL;
rel->innerjoin = NIL;
......
......@@ -10,7 +10,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/utils/adt/selfuncs.c,v 1.44 1999/11/25 00:21:34 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/utils/adt/selfuncs.c,v 1.45 2000/01/09 00:26:20 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -36,6 +36,9 @@
/* are we looking at a functional index selectivity request? */
#define FunctionalSelectivity(nIndKeys,attNum) ((attNum)==InvalidAttrNumber)
/* default selectivity estimate for equalities such as "A = b" */
#define DEFAULT_EQ_SEL 0.01
/* default selectivity estimate for inequalities such as "A < b" */
#define DEFAULT_INEQ_SEL (1.0 / 3.0)
......@@ -75,7 +78,7 @@ eqsel(Oid opid,
result = (float64) palloc(sizeof(float64data));
if (NONVALUE(attno) || NONVALUE(relid))
*result = 0.1;
*result = DEFAULT_EQ_SEL;
else
{
Oid typid;
......@@ -369,15 +372,16 @@ eqjoinsel(Oid opid,
float64data num1,
num2,
min;
bool unknown1 = NONVALUE(relid1) || NONVALUE(attno1);
bool unknown2 = NONVALUE(relid2) || NONVALUE(attno2);
result = (float64) palloc(sizeof(float64data));
if (NONVALUE(attno1) || NONVALUE(relid1) ||
NONVALUE(attno2) || NONVALUE(relid2))
*result = 0.1;
if (unknown1 && unknown2)
*result = DEFAULT_EQ_SEL;
else
{
num1 = get_attdisbursion(relid1, attno1, 0.01);
num2 = get_attdisbursion(relid2, attno2, 0.01);
num1 = unknown1 ? 1.0 : get_attdisbursion(relid1, attno1, 0.01);
num2 = unknown2 ? 1.0 : get_attdisbursion(relid2, attno2, 0.01);
/*
* The join selectivity cannot be more than num2, since each
* tuple in table 1 could match no more than num2 fraction of
......@@ -386,6 +390,9 @@ eqjoinsel(Oid opid,
* less). By the same reasoning it is not more than num1.
* The min is therefore an upper bound.
*
* If we know the disbursion of only one side, use it; the reasoning
* above still works.
*
* XXX can we make a better estimate here? Using the nullfrac
* statistic might be helpful, for example. Assuming the operator
* is strict (does not succeed for null inputs) then the selectivity
......
......@@ -6,7 +6,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: nodes.h,v 1.59 1999/12/16 17:24:19 momjian Exp $
* $Id: nodes.h,v 1.60 2000/01/09 00:26:42 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -82,6 +82,7 @@ typedef enum NodeTag
T_JoinInfo,
T_Stream,
T_TidPath,
T_IndexOptInfo,
/*---------------------
* TAGS FOR EXECUTOR NODES (execnodes.h)
......@@ -286,12 +287,17 @@ extern void *copyObject(void *obj);
extern bool equal(void *a, void *b);
/* ----------------
* I don't know why this is here. Most likely a hack..
* -cim 6/3/90
* ----------------
/*
* Typedefs for identifying qualifier selectivities and plan costs as such.
* These are just plain "double"s, but declaring a variable as Selectivity
* or Cost makes the intent more obvious.
*
* These could have gone into plannodes.h or some such, but many files
* depend on them...
*/
typedef float Cost;
typedef double Selectivity; /* fraction of tuples a qualifier will pass */
typedef double Cost; /* execution cost (in page-access units) */
/*
* CmdType -
......
......@@ -6,7 +6,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: plannodes.h,v 1.34 1999/11/23 20:07:02 momjian Exp $
* $Id: plannodes.h,v 1.35 2000/01/09 00:26:43 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -63,10 +63,12 @@
typedef struct Plan
{
NodeTag type;
/* planner's estimates of cost and result size */
Cost cost;
int plan_size;
double plan_rows;
int plan_width;
int plan_tupperpage;
EState *state; /* at execution time, state's of
* individual nodes point to one EState
* for the whole top-level plan */
......@@ -185,10 +187,10 @@ typedef struct IndexScan
*/
typedef struct TidScan
{
Scan scan;
Scan scan;
bool needRescan;
List *tideval;
TidScanState *tidstate;
List *tideval;
TidScanState *tidstate;
} TidScan;
/*
......
......@@ -6,7 +6,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: relation.h,v 1.39 1999/11/23 20:07:02 momjian Exp $
* $Id: relation.h,v 1.40 2000/01/09 00:26:44 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -33,13 +33,10 @@ typedef List *Relids;
*
* relids - List of base-relation identifiers; it is a base relation
* if there is just one, a join relation if more than one
* indexed - true if the relation has secondary indices
* pages - number of pages in the relation
* tuples - number of tuples in the relation
* size - estimated number of tuples in the relation after restriction
* clauses have been applied
* rows - estimated number of tuples in the relation after restriction
* clauses have been applied (ie, output rows of a plan for it)
* width - avg. number of bytes per tuple in the relation after the
* appropriate projections have been done
* appropriate projections have been done (ie, output width)
* targetlist - List of TargetList nodes
* pathlist - List of Path nodes, one for each potentially useful
* method of generating the relation
......@@ -47,20 +44,11 @@ typedef List *Relids;
* pruneable - flag to let the planner know whether it can prune the
* pathlist of this RelOptInfo or not.
*
* * If the relation is a (secondary) index it will have the following
* fields set:
*
* classlist - List of PG_AMOPCLASS OIDs for the index
* indexkeys - List of base-relation attribute numbers that are index keys
* ordering - List of PG_OPERATOR OIDs which order the indexscan result
* relam - the OID of the pg_am of the index
*
* NB. the last element of the arrays classlist, indexkeys and ordering
* is always 0.
* * If the relation is a base relation it will have these fields set:
*
* Index relations do not participate in the join tree in the way
* that regular base relations do, but it is still convenient to
* represent them by RelOptInfos.
* indexed - true if the relation has secondary indices
* pages - number of disk pages in relation
* tuples - number of tuples in relation (not considering restrictions)
*
* * The presence of the remaining fields depends on the restrictions
* and joins that the relation participates in:
......@@ -79,16 +67,11 @@ typedef struct RelOptInfo
NodeTag type;
/* all relations included in this RelOptInfo */
Relids relids; /* integer list of base relids */
/* catalog statistics information */
bool indexed;
int pages;
int tuples;
Relids relids; /* integer list of base relids (RT indexes) */
/* estimates generated by planner. XXX int is probably too small... */
int size;
int width;
/* size estimates generated by planner */
double rows; /* estimated number of result tuples */
int width; /* estimated avg width of result tuples */
/* materialization information */
List *targetlist;
......@@ -96,14 +79,10 @@ typedef struct RelOptInfo
struct Path *cheapestpath;
bool pruneable;
/* used solely by indices: */
Oid *classlist; /* classes of AM operators */
int *indexkeys; /* keys over which we're indexing */
Oid *ordering; /* OIDs of sort operators for each key */
Oid relam; /* OID of the access method (in pg_am) */
Oid indproc; /* if a functional index */
List *indpred; /* if a partial index */
/* statistics from pg_class (only valid if it's a base rel!) */
bool indexed;
long pages;
double tuples;
/* used by various scans and joins: */
List *restrictinfo; /* RestrictInfo structures */
......@@ -115,6 +94,48 @@ typedef struct RelOptInfo
*/
} RelOptInfo;
/*
* IndexOptInfo
* Per-index information for planning/optimization
*
* Prior to Postgres 7.0, RelOptInfo was used to describe both relations
* and indexes, but that created confusion without actually doing anything
* useful. So now we have a separate IndexOptInfo struct for indexes.
*
* indexoid - OID of the index relation itself
* pages - number of disk pages in index
* tuples - number of index tuples in index
* classlist - List of PG_AMOPCLASS OIDs for the index
* indexkeys - List of base-relation attribute numbers that are index keys
* ordering - List of PG_OPERATOR OIDs which order the indexscan result
* relam - the OID of the pg_am of the index
* indproc - OID of the function if a functional index, else 0
* indpred - index predicate if a partial index, else NULL
*
* NB. the last element of the arrays classlist, indexkeys and ordering
* is always 0.
*/
typedef struct IndexOptInfo
{
NodeTag type;
Oid indexoid; /* OID of the index relation */
/* statistics from pg_class */
long pages;
double tuples;
/* index descriptor information */
Oid *classlist; /* classes of AM operators */
int *indexkeys; /* keys over which we're indexing */
Oid *ordering; /* OIDs of sort operators for each key */
Oid relam; /* OID of the access method (in pg_am) */
Oid indproc; /* if a functional index */
List *indpred; /* if a partial index */
} IndexOptInfo;
/*
* PathKeys
*
......@@ -208,8 +229,6 @@ typedef struct JoinPath
{
Path path;
List *pathinfo; /* copy of parent->restrictinfo; REMOVE? */
Path *outerjoinpath; /* path for the outer side of the join */
Path *innerjoinpath; /* path for the inner side of the join */
} JoinPath;
......@@ -296,10 +315,10 @@ typedef struct RestrictInfo
NodeTag type;
Expr *clause; /* the represented clause of WHERE cond */
Cost selectivity; /* estimated selectivity */
/* only used if clause is an OR clause: */
List *subclauseindices; /* lists of indexes matching subclauses */
List *subclauseindices; /* indexes matching subclauses */
/* subclauseindices is a List of Lists of IndexOptInfos */
/* valid if clause is mergejoinable, else InvalidOid: */
Oid mergejoinoperator; /* copy of clause operator */
......@@ -346,7 +365,8 @@ typedef struct JoinInfo
* cinfo -- if NULL, this stream node referes to the path node.
* Otherwise this is a pointer to the current clause.
* clausetype -- whether cinfo is in loc_restrictinfo or pathinfo in the
* path node (XXX this is now used only by dead code...)
* path node (XXX this is now used only by dead code, which is
* good because the distinction no longer exists...)
* upstream -- linked list pointer upwards
* downstream -- ditto, downwards
* groupup -- whether or not this node is in a group with the node upstream
......@@ -365,7 +385,7 @@ typedef struct Stream
StreamPtr downstream;
bool groupup;
Cost groupcost;
Cost groupsel;
Selectivity groupsel;
} Stream;
#endif /* RELATION_H */
......@@ -6,7 +6,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: cost.h,v 1.24 1999/11/23 20:07:05 momjian Exp $
* $Id: cost.h,v 1.25 2000/01/09 00:26:46 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -33,34 +33,28 @@ extern bool _enable_mergejoin_;
extern bool _enable_hashjoin_;
extern bool _enable_tidscan_;
extern Cost cost_seqscan(int relid, int relpages, int reltuples);
extern Cost cost_index(Oid indexid, int expected_indexpages, Cost selec,
int relpages, int reltuples, int indexpages,
int indextuples, bool is_injoin);
extern Cost cost_tidscan(List *evallist);
extern Cost cost_sort(List *pathkeys, int tuples, int width);
extern Cost cost_nestloop(Cost outercost, Cost innercost, int outertuples,
int innertuples, int outerpages, bool is_indexjoin);
extern Cost cost_mergejoin(Cost outercost, Cost innercost,
List *outersortkeys, List *innersortkeys,
int outersize, int innersize, int outerwidth, int innerwidth);
extern Cost cost_hashjoin(Cost outercost, Cost innercost,
int outersize, int innersize,
int outerwidth, int innerwidth,
Cost innerdisbursion);
extern int compute_rel_size(RelOptInfo *rel);
extern int compute_rel_width(RelOptInfo *rel);
extern int compute_joinrel_size(JoinPath *joinpath);
extern int page_size(int tuples, int width);
extern Cost cost_seqscan(RelOptInfo *baserel);
extern Cost cost_index(RelOptInfo *baserel, IndexOptInfo *index,
long expected_indexpages, Selectivity selec,
bool is_injoin);
extern Cost cost_tidscan(RelOptInfo *baserel, List *tideval);
extern Cost cost_sort(List *pathkeys, double tuples, int width);
extern Cost cost_nestloop(Path *outer_path, Path *inner_path,
bool is_indexjoin);
extern Cost cost_mergejoin(Path *outer_path, Path *inner_path,
List *outersortkeys, List *innersortkeys);
extern Cost cost_hashjoin(Path *outer_path, Path *inner_path,
Selectivity innerdisbursion);
extern void set_rel_rows_width(Query *root, RelOptInfo *rel);
extern void set_joinrel_rows_width(Query *root, RelOptInfo *rel,
JoinPath *joinpath);
/*
* prototypes for fuctions in clausesel.h
* prototypes for clausesel.c
* routines to compute clause selectivities
*/
extern void set_clause_selectivities(List *restrictinfo_list, Cost new_selectivity);
extern Cost product_selec(List *restrictinfo_list);
extern void set_rest_relselec(Query *root, List *rel_list);
extern void set_rest_selec(Query *root, List *restrictinfo_list);
extern Cost compute_clause_selec(Query *root, Node *clause);
extern Selectivity restrictlist_selec(Query *root, List *restrictinfo_list);
extern Selectivity clauselist_selec(Query *root, List *clauses);
extern Selectivity compute_clause_selec(Query *root, Node *clause);
#endif /* COST_H */
......@@ -6,7 +6,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: pathnode.h,v 1.22 1999/11/23 20:07:06 momjian Exp $
* $Id: pathnode.h,v 1.23 2000/01/09 00:26:47 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -21,26 +21,27 @@
extern bool path_is_cheaper(Path *path1, Path *path2);
extern Path *set_cheapest(RelOptInfo *parent_rel, List *pathlist);
extern List *add_pathlist(RelOptInfo *parent_rel, List *old_paths,
List *new_paths);
List *new_paths);
extern Path *create_seqscan_path(RelOptInfo *rel);
extern IndexPath *create_index_path(Query *root, RelOptInfo *rel,
RelOptInfo *index, List *restriction_clauses);
IndexOptInfo *index,
List *restriction_clauses);
extern TidPath *create_tidscan_path(RelOptInfo *rel, List *tideval);
extern NestPath *create_nestloop_path(RelOptInfo *joinrel,
RelOptInfo *outer_rel, Path *outer_path, Path *inner_path,
List *pathkeys);
extern MergePath *create_mergejoin_path(RelOptInfo *joinrel, int outersize,
int innersize, int outerwidth, int innerwidth, Path *outer_path,
Path *inner_path, List *pathkeys,
List *mergeclauses, List *outersortkeys, List *innersortkeys);
extern HashPath *create_hashjoin_path(RelOptInfo *joinrel, int outersize,
int innersize, int outerwidth, int innerwidth, Path *outer_path,
Path *inner_path, List *hashclauses, Cost innerdisbursion);
Path *outer_path, Path *inner_path,
List *pathkeys);
extern MergePath *create_mergejoin_path(RelOptInfo *joinrel, Path *outer_path,
Path *inner_path, List *pathkeys,
List *mergeclauses,
List *outersortkeys,
List *innersortkeys);
extern HashPath *create_hashjoin_path(RelOptInfo *joinrel, Path *outer_path,
Path *inner_path, List *hashclauses,
Selectivity innerdisbursion);
/*
* prototypes for rel.c
......
......@@ -7,7 +7,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: paths.h,v 1.36 1999/11/23 20:07:06 momjian Exp $
* $Id: paths.h,v 1.37 2000/01/09 00:26:47 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -28,6 +28,8 @@ extern RelOptInfo *make_one_rel(Query *root, List *rels);
extern List *create_index_paths(Query *root, RelOptInfo *rel, List *indices,
List *restrictinfo_list,
List *joininfo_list);
extern Oid indexable_operator(Expr *clause, Oid opclass, Oid relam,
bool indexkey_on_left);
extern List *expand_indexqual_conditions(List *indexquals);
/*
......@@ -65,7 +67,7 @@ extern bool pathkeys_contained_in(List *keys1, List *keys2);
extern Path *get_cheapest_path_for_pathkeys(List *paths, List *pathkeys,
bool indexpaths_only);
extern List *build_index_pathkeys(Query *root, RelOptInfo *rel,
RelOptInfo *index);
IndexOptInfo *index);
extern List *build_join_pathkeys(List *outer_pathkeys,
List *join_rel_tlist, List *joinclauses);
extern bool commute_pathkeys(List *pathkeys);
......@@ -93,7 +95,7 @@ extern bool is_subset(List *s1, List *s2);
* prototypes for path/prune.c
*/
extern void merge_rels_with_same_relids(List *rel_list);
extern void rels_set_cheapest(List *rel_list);
extern void rels_set_cheapest(Query *root, List *rel_list);
extern List *del_rels_all_bushy_inactive(List *old_rels);
#endif /* PATHS_H */
......@@ -6,36 +6,36 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: plancat.h,v 1.14 1999/11/21 23:25:42 tgl Exp $
* $Id: plancat.h,v 1.15 2000/01/09 00:26:47 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef PLANCAT_H
#define PLANCAT_H
#include "nodes/parsenodes.h"
#include "nodes/relation.h"
extern void relation_info(Query *root, Index relid,
bool *hasindex, int *pages, int *tuples);
bool *hasindex, long *pages, double *tuples);
extern List *find_secondary_indexes(Query *root, Index relid);
extern Cost restriction_selectivity(Oid functionObjectId,
extern List *find_inheritance_children(Oid inhparent);
extern Selectivity restriction_selectivity(Oid functionObjectId,
Oid operatorObjectId,
Oid relationObjectId,
AttrNumber attributeNumber,
Datum constValue,
int constFlag);
extern void index_selectivity(Query *root, int relid, Oid indexid,
List *indexquals,
float *idxPages, float *idxSelec);
extern void index_selectivity(Query *root, RelOptInfo *rel,
IndexOptInfo *index, List *indexquals,
long *idxPages, Selectivity *idxSelec);
extern Cost join_selectivity(Oid functionObjectId, Oid operatorObjectId,
extern Selectivity join_selectivity(Oid functionObjectId, Oid operatorObjectId,
Oid relationObjectId1, AttrNumber attributeNumber1,
Oid relationObjectId2, AttrNumber attributeNumber2);
extern List *find_inheritance_children(Oid inhparent);
#endif /* PLANCAT_H */
......@@ -6,7 +6,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: planmain.h,v 1.34 1999/10/07 04:23:19 tgl Exp $
* $Id: planmain.h,v 1.35 2000/01/09 00:26:47 tgl Exp $
*
*-------------------------------------------------------------------------
*/
......@@ -24,7 +24,7 @@ extern Plan *query_planner(Query *root, List *tlist, List *qual);
/*
* prototypes for plan/createplan.c
*/
extern Plan *create_plan(Path *best_path);
extern Plan *create_plan(Query *root, Path *best_path);
extern SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
extern Sort *make_sort(List *tlist, Oid nonameid, Plan *lefttree,
int keycount);
......@@ -41,7 +41,6 @@ extern Result *make_result(List *tlist, Node *resconstantqual, Plan *subplan);
extern void make_var_only_tlist(Query *root, List *tlist);
extern void add_restrict_and_join_to_rels(Query *root, List *clauses);
extern void add_missing_rels_to_query(Query *root);
extern void set_joininfo_mergeable_hashable(List *rel_list);
/*
* prototypes for plan/setrefs.c
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment