Commit 11b5e3e3 authored by Robert Haas's avatar Robert Haas

Split JSON lexer/parser from 'json' data type support.

Keep the code that pertains to the 'json' data type in json.c, but
move the lexing and parsing code to a new file jsonapi.c, a name
I chose because the corresponding prototypes are in jsonapi.h.

This seems like a logical division, because the JSON lexer and parser
are also used by the 'jsonb' data type, but the SQL-callable functions
in json.c are a separate thing. Also, the new jsonapi.c file needs to
include far fewer header files than json.c, which seems like a good
sign that this is an appropriate place to insert an abstraction
boundary. I took the opportunity to remove a few apparently-unneeded
includes from json.c at the same time.

Patch by me, reviewed by David Steele, Mark Dilger, and Andrew
Dunstan. The previous commit was, too, but I forgot to note it
in the commit message.

Discussion: http://postgr.es/m/CA+TgmoYfOXhd27MUDGioVh6QtpD0C1K-f6ObSA10AWiHBAL5bA@mail.gmail.com
parent ce0425b1
...@@ -44,6 +44,7 @@ OBJS = \ ...@@ -44,6 +44,7 @@ OBJS = \
int.o \ int.o \
int8.o \ int8.o \
json.o \ json.o \
jsonapi.o \
jsonb.o \ jsonb.o \
jsonb_gin.o \ jsonb_gin.o \
jsonb_op.o \ jsonb_op.o \
......
...@@ -13,14 +13,9 @@ ...@@ -13,14 +13,9 @@
*/ */
#include "postgres.h" #include "postgres.h"
#include "access/htup_details.h"
#include "access/transam.h"
#include "catalog/pg_type.h" #include "catalog/pg_type.h"
#include "executor/spi.h"
#include "funcapi.h" #include "funcapi.h"
#include "lib/stringinfo.h"
#include "libpq/pqformat.h" #include "libpq/pqformat.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h" #include "miscadmin.h"
#include "parser/parse_coerce.h" #include "parser/parse_coerce.h"
#include "utils/array.h" #include "utils/array.h"
...@@ -30,27 +25,8 @@ ...@@ -30,27 +25,8 @@
#include "utils/json.h" #include "utils/json.h"
#include "utils/jsonapi.h" #include "utils/jsonapi.h"
#include "utils/lsyscache.h" #include "utils/lsyscache.h"
#include "utils/syscache.h"
#include "utils/typcache.h" #include "utils/typcache.h"
/*
* The context of the parser is maintained by the recursive descent
* mechanism, but is passed explicitly to the error reporting routine
* for better diagnostics.
*/
typedef enum /* contexts of JSON parser */
{
JSON_PARSE_VALUE, /* expecting a value */
JSON_PARSE_STRING, /* expecting a string (for a field name) */
JSON_PARSE_ARRAY_START, /* saw '[', expecting value or ']' */
JSON_PARSE_ARRAY_NEXT, /* saw array element, expecting ',' or ']' */
JSON_PARSE_OBJECT_START, /* saw '{', expecting label or '}' */
JSON_PARSE_OBJECT_LABEL, /* saw object label, expecting ':' */
JSON_PARSE_OBJECT_NEXT, /* saw object value, expecting ',' or '}' */
JSON_PARSE_OBJECT_COMMA, /* saw object ',', expecting next label */
JSON_PARSE_END /* saw the end of a document, expect nothing */
} JsonParseContext;
typedef enum /* type categories for datum_to_json */ typedef enum /* type categories for datum_to_json */
{ {
JSONTYPE_NULL, /* null, so we didn't bother to identify */ JSONTYPE_NULL, /* null, so we didn't bother to identify */
...@@ -75,19 +51,6 @@ typedef struct JsonAggState ...@@ -75,19 +51,6 @@ typedef struct JsonAggState
Oid val_output_func; Oid val_output_func;
} JsonAggState; } JsonAggState;
static inline void json_lex(JsonLexContext *lex);
static inline void json_lex_string(JsonLexContext *lex);
static inline void json_lex_number(JsonLexContext *lex, char *s,
bool *num_err, int *total_len);
static inline void parse_scalar(JsonLexContext *lex, JsonSemAction *sem);
static void parse_object_field(JsonLexContext *lex, JsonSemAction *sem);
static void parse_object(JsonLexContext *lex, JsonSemAction *sem);
static void parse_array_element(JsonLexContext *lex, JsonSemAction *sem);
static void parse_array(JsonLexContext *lex, JsonSemAction *sem);
static void report_parse_error(JsonParseContext ctx, JsonLexContext *lex) pg_attribute_noreturn();
static void report_invalid_token(JsonLexContext *lex) pg_attribute_noreturn();
static int report_json_context(JsonLexContext *lex);
static char *extract_mb_char(char *s);
static void composite_to_json(Datum composite, StringInfo result, static void composite_to_json(Datum composite, StringInfo result,
bool use_line_feeds); bool use_line_feeds);
static void array_dim_to_json(StringInfo result, int dim, int ndims, int *dims, static void array_dim_to_json(StringInfo result, int dim, int ndims, int *dims,
...@@ -106,121 +69,6 @@ static void add_json(Datum val, bool is_null, StringInfo result, ...@@ -106,121 +69,6 @@ static void add_json(Datum val, bool is_null, StringInfo result,
Oid val_type, bool key_scalar); Oid val_type, bool key_scalar);
static text *catenate_stringinfo_string(StringInfo buffer, const char *addon); static text *catenate_stringinfo_string(StringInfo buffer, const char *addon);
/* the null action object used for pure validation */
static JsonSemAction nullSemAction =
{
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL
};
/* Recursive Descent parser support routines */
/*
* lex_peek
*
* what is the current look_ahead token?
*/
static inline JsonTokenType
lex_peek(JsonLexContext *lex)
{
return lex->token_type;
}
/*
* lex_accept
*
* accept the look_ahead token and move the lexer to the next token if the
* look_ahead token matches the token parameter. In that case, and if required,
* also hand back the de-escaped lexeme.
*
* returns true if the token matched, false otherwise.
*/
static inline bool
lex_accept(JsonLexContext *lex, JsonTokenType token, char **lexeme)
{
if (lex->token_type == token)
{
if (lexeme != NULL)
{
if (lex->token_type == JSON_TOKEN_STRING)
{
if (lex->strval != NULL)
*lexeme = pstrdup(lex->strval->data);
}
else
{
int len = (lex->token_terminator - lex->token_start);
char *tokstr = palloc(len + 1);
memcpy(tokstr, lex->token_start, len);
tokstr[len] = '\0';
*lexeme = tokstr;
}
}
json_lex(lex);
return true;
}
return false;
}
/*
* lex_accept
*
* move the lexer to the next token if the current look_ahead token matches
* the parameter token. Otherwise, report an error.
*/
static inline void
lex_expect(JsonParseContext ctx, JsonLexContext *lex, JsonTokenType token)
{
if (!lex_accept(lex, token, NULL))
report_parse_error(ctx, lex);
}
/* chars to consider as part of an alphanumeric token */
#define JSON_ALPHANUMERIC_CHAR(c) \
(((c) >= 'a' && (c) <= 'z') || \
((c) >= 'A' && (c) <= 'Z') || \
((c) >= '0' && (c) <= '9') || \
(c) == '_' || \
IS_HIGHBIT_SET(c))
/*
* Utility function to check if a string is a valid JSON number.
*
* str is of length len, and need not be null-terminated.
*/
bool
IsValidJsonNumber(const char *str, int len)
{
bool numeric_error;
int total_len;
JsonLexContext dummy_lex;
if (len <= 0)
return false;
/*
* json_lex_number expects a leading '-' to have been eaten already.
*
* having to cast away the constness of str is ugly, but there's not much
* easy alternative.
*/
if (*str == '-')
{
dummy_lex.input = unconstify(char *, str) +1;
dummy_lex.input_length = len - 1;
}
else
{
dummy_lex.input = unconstify(char *, str);
dummy_lex.input_length = len;
}
json_lex_number(&dummy_lex, dummy_lex.input, &numeric_error, &total_len);
return (!numeric_error) && (total_len == dummy_lex.input_length);
}
/* /*
* Input. * Input.
*/ */
...@@ -285,1058 +133,6 @@ json_recv(PG_FUNCTION_ARGS) ...@@ -285,1058 +133,6 @@ json_recv(PG_FUNCTION_ARGS)
PG_RETURN_TEXT_P(cstring_to_text_with_len(str, nbytes)); PG_RETURN_TEXT_P(cstring_to_text_with_len(str, nbytes));
} }
/*
* makeJsonLexContext
*
* lex constructor, with or without StringInfo object
* for de-escaped lexemes.
*
* Without is better as it makes the processing faster, so only make one
* if really required.
*
* If you already have the json as a text* value, use the first of these
* functions, otherwise use makeJsonLexContextCstringLen().
*/
JsonLexContext *
makeJsonLexContext(text *json, bool need_escapes)
{
return makeJsonLexContextCstringLen(VARDATA_ANY(json),
VARSIZE_ANY_EXHDR(json),
need_escapes);
}
JsonLexContext *
makeJsonLexContextCstringLen(char *json, int len, bool need_escapes)
{
JsonLexContext *lex = palloc0(sizeof(JsonLexContext));
lex->input = lex->token_terminator = lex->line_start = json;
lex->line_number = 1;
lex->input_length = len;
if (need_escapes)
lex->strval = makeStringInfo();
return lex;
}
/*
* pg_parse_json
*
* Publicly visible entry point for the JSON parser.
*
* lex is a lexing context, set up for the json to be processed by calling
* makeJsonLexContext(). sem is a structure of function pointers to semantic
* action routines to be called at appropriate spots during parsing, and a
* pointer to a state object to be passed to those routines.
*/
void
pg_parse_json(JsonLexContext *lex, JsonSemAction *sem)
{
JsonTokenType tok;
/* get the initial token */
json_lex(lex);
tok = lex_peek(lex);
/* parse by recursive descent */
switch (tok)
{
case JSON_TOKEN_OBJECT_START:
parse_object(lex, sem);
break;
case JSON_TOKEN_ARRAY_START:
parse_array(lex, sem);
break;
default:
parse_scalar(lex, sem); /* json can be a bare scalar */
}
lex_expect(JSON_PARSE_END, lex, JSON_TOKEN_END);
}
/*
* json_count_array_elements
*
* Returns number of array elements in lex context at start of array token
* until end of array token at same nesting level.
*
* Designed to be called from array_start routines.
*/
int
json_count_array_elements(JsonLexContext *lex)
{
JsonLexContext copylex;
int count;
/*
* It's safe to do this with a shallow copy because the lexical routines
* don't scribble on the input. They do scribble on the other pointers
* etc, so doing this with a copy makes that safe.
*/
memcpy(&copylex, lex, sizeof(JsonLexContext));
copylex.strval = NULL; /* not interested in values here */
copylex.lex_level++;
count = 0;
lex_expect(JSON_PARSE_ARRAY_START, &copylex, JSON_TOKEN_ARRAY_START);
if (lex_peek(&copylex) != JSON_TOKEN_ARRAY_END)
{
do
{
count++;
parse_array_element(&copylex, &nullSemAction);
}
while (lex_accept(&copylex, JSON_TOKEN_COMMA, NULL));
}
lex_expect(JSON_PARSE_ARRAY_NEXT, &copylex, JSON_TOKEN_ARRAY_END);
return count;
}
/*
* Recursive Descent parse routines. There is one for each structural
* element in a json document:
* - scalar (string, number, true, false, null)
* - array ( [ ] )
* - array element
* - object ( { } )
* - object field
*/
static inline void
parse_scalar(JsonLexContext *lex, JsonSemAction *sem)
{
char *val = NULL;
json_scalar_action sfunc = sem->scalar;
char **valaddr;
JsonTokenType tok = lex_peek(lex);
valaddr = sfunc == NULL ? NULL : &val;
/* a scalar must be a string, a number, true, false, or null */
switch (tok)
{
case JSON_TOKEN_TRUE:
lex_accept(lex, JSON_TOKEN_TRUE, valaddr);
break;
case JSON_TOKEN_FALSE:
lex_accept(lex, JSON_TOKEN_FALSE, valaddr);
break;
case JSON_TOKEN_NULL:
lex_accept(lex, JSON_TOKEN_NULL, valaddr);
break;
case JSON_TOKEN_NUMBER:
lex_accept(lex, JSON_TOKEN_NUMBER, valaddr);
break;
case JSON_TOKEN_STRING:
lex_accept(lex, JSON_TOKEN_STRING, valaddr);
break;
default:
report_parse_error(JSON_PARSE_VALUE, lex);
}
if (sfunc != NULL)
(*sfunc) (sem->semstate, val, tok);
}
static void
parse_object_field(JsonLexContext *lex, JsonSemAction *sem)
{
/*
* An object field is "fieldname" : value where value can be a scalar,
* object or array. Note: in user-facing docs and error messages, we
* generally call a field name a "key".
*/
char *fname = NULL; /* keep compiler quiet */
json_ofield_action ostart = sem->object_field_start;
json_ofield_action oend = sem->object_field_end;
bool isnull;
char **fnameaddr = NULL;
JsonTokenType tok;
if (ostart != NULL || oend != NULL)
fnameaddr = &fname;
if (!lex_accept(lex, JSON_TOKEN_STRING, fnameaddr))
report_parse_error(JSON_PARSE_STRING, lex);
lex_expect(JSON_PARSE_OBJECT_LABEL, lex, JSON_TOKEN_COLON);
tok = lex_peek(lex);
isnull = tok == JSON_TOKEN_NULL;
if (ostart != NULL)
(*ostart) (sem->semstate, fname, isnull);
switch (tok)
{
case JSON_TOKEN_OBJECT_START:
parse_object(lex, sem);
break;
case JSON_TOKEN_ARRAY_START:
parse_array(lex, sem);
break;
default:
parse_scalar(lex, sem);
}
if (oend != NULL)
(*oend) (sem->semstate, fname, isnull);
}
static void
parse_object(JsonLexContext *lex, JsonSemAction *sem)
{
/*
* an object is a possibly empty sequence of object fields, separated by
* commas and surrounded by curly braces.
*/
json_struct_action ostart = sem->object_start;
json_struct_action oend = sem->object_end;
JsonTokenType tok;
check_stack_depth();
if (ostart != NULL)
(*ostart) (sem->semstate);
/*
* Data inside an object is at a higher nesting level than the object
* itself. Note that we increment this after we call the semantic routine
* for the object start and restore it before we call the routine for the
* object end.
*/
lex->lex_level++;
/* we know this will succeed, just clearing the token */
lex_expect(JSON_PARSE_OBJECT_START, lex, JSON_TOKEN_OBJECT_START);
tok = lex_peek(lex);
switch (tok)
{
case JSON_TOKEN_STRING:
parse_object_field(lex, sem);
while (lex_accept(lex, JSON_TOKEN_COMMA, NULL))
parse_object_field(lex, sem);
break;
case JSON_TOKEN_OBJECT_END:
break;
default:
/* case of an invalid initial token inside the object */
report_parse_error(JSON_PARSE_OBJECT_START, lex);
}
lex_expect(JSON_PARSE_OBJECT_NEXT, lex, JSON_TOKEN_OBJECT_END);
lex->lex_level--;
if (oend != NULL)
(*oend) (sem->semstate);
}
static void
parse_array_element(JsonLexContext *lex, JsonSemAction *sem)
{
json_aelem_action astart = sem->array_element_start;
json_aelem_action aend = sem->array_element_end;
JsonTokenType tok = lex_peek(lex);
bool isnull;
isnull = tok == JSON_TOKEN_NULL;
if (astart != NULL)
(*astart) (sem->semstate, isnull);
/* an array element is any object, array or scalar */
switch (tok)
{
case JSON_TOKEN_OBJECT_START:
parse_object(lex, sem);
break;
case JSON_TOKEN_ARRAY_START:
parse_array(lex, sem);
break;
default:
parse_scalar(lex, sem);
}
if (aend != NULL)
(*aend) (sem->semstate, isnull);
}
static void
parse_array(JsonLexContext *lex, JsonSemAction *sem)
{
/*
* an array is a possibly empty sequence of array elements, separated by
* commas and surrounded by square brackets.
*/
json_struct_action astart = sem->array_start;
json_struct_action aend = sem->array_end;
check_stack_depth();
if (astart != NULL)
(*astart) (sem->semstate);
/*
* Data inside an array is at a higher nesting level than the array
* itself. Note that we increment this after we call the semantic routine
* for the array start and restore it before we call the routine for the
* array end.
*/
lex->lex_level++;
lex_expect(JSON_PARSE_ARRAY_START, lex, JSON_TOKEN_ARRAY_START);
if (lex_peek(lex) != JSON_TOKEN_ARRAY_END)
{
parse_array_element(lex, sem);
while (lex_accept(lex, JSON_TOKEN_COMMA, NULL))
parse_array_element(lex, sem);
}
lex_expect(JSON_PARSE_ARRAY_NEXT, lex, JSON_TOKEN_ARRAY_END);
lex->lex_level--;
if (aend != NULL)
(*aend) (sem->semstate);
}
/*
* Lex one token from the input stream.
*/
static inline void
json_lex(JsonLexContext *lex)
{
char *s;
int len;
/* Skip leading whitespace. */
s = lex->token_terminator;
len = s - lex->input;
while (len < lex->input_length &&
(*s == ' ' || *s == '\t' || *s == '\n' || *s == '\r'))
{
if (*s == '\n')
++lex->line_number;
++s;
++len;
}
lex->token_start = s;
/* Determine token type. */
if (len >= lex->input_length)
{
lex->token_start = NULL;
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s;
lex->token_type = JSON_TOKEN_END;
}
else
switch (*s)
{
/* Single-character token, some kind of punctuation mark. */
case '{':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_OBJECT_START;
break;
case '}':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_OBJECT_END;
break;
case '[':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_ARRAY_START;
break;
case ']':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_ARRAY_END;
break;
case ',':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_COMMA;
break;
case ':':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_COLON;
break;
case '"':
/* string */
json_lex_string(lex);
lex->token_type = JSON_TOKEN_STRING;
break;
case '-':
/* Negative number. */
json_lex_number(lex, s + 1, NULL, NULL);
lex->token_type = JSON_TOKEN_NUMBER;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
/* Positive number. */
json_lex_number(lex, s, NULL, NULL);
lex->token_type = JSON_TOKEN_NUMBER;
break;
default:
{
char *p;
/*
* We're not dealing with a string, number, legal
* punctuation mark, or end of string. The only legal
* tokens we might find here are true, false, and null,
* but for error reporting purposes we scan until we see a
* non-alphanumeric character. That way, we can report
* the whole word as an unexpected token, rather than just
* some unintuitive prefix thereof.
*/
for (p = s; p - s < lex->input_length - len && JSON_ALPHANUMERIC_CHAR(*p); p++)
/* skip */ ;
/*
* We got some sort of unexpected punctuation or an
* otherwise unexpected character, so just complain about
* that one character.
*/
if (p == s)
{
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
report_invalid_token(lex);
}
/*
* We've got a real alphanumeric token here. If it
* happens to be true, false, or null, all is well. If
* not, error out.
*/
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = p;
if (p - s == 4)
{
if (memcmp(s, "true", 4) == 0)
lex->token_type = JSON_TOKEN_TRUE;
else if (memcmp(s, "null", 4) == 0)
lex->token_type = JSON_TOKEN_NULL;
else
report_invalid_token(lex);
}
else if (p - s == 5 && memcmp(s, "false", 5) == 0)
lex->token_type = JSON_TOKEN_FALSE;
else
report_invalid_token(lex);
}
} /* end of switch */
}
/*
* The next token in the input stream is known to be a string; lex it.
*/
static inline void
json_lex_string(JsonLexContext *lex)
{
char *s;
int len;
int hi_surrogate = -1;
if (lex->strval != NULL)
resetStringInfo(lex->strval);
Assert(lex->input_length > 0);
s = lex->token_start;
len = lex->token_start - lex->input;
for (;;)
{
s++;
len++;
/* Premature end of the string. */
if (len >= lex->input_length)
{
lex->token_terminator = s;
report_invalid_token(lex);
}
else if (*s == '"')
break;
else if ((unsigned char) *s < 32)
{
/* Per RFC4627, these characters MUST be escaped. */
/* Since *s isn't printable, exclude it from the context string */
lex->token_terminator = s;
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Character with value 0x%02x must be escaped.",
(unsigned char) *s),
report_json_context(lex)));
}
else if (*s == '\\')
{
/* OK, we have an escape character. */
s++;
len++;
if (len >= lex->input_length)
{
lex->token_terminator = s;
report_invalid_token(lex);
}
else if (*s == 'u')
{
int i;
int ch = 0;
for (i = 1; i <= 4; i++)
{
s++;
len++;
if (len >= lex->input_length)
{
lex->token_terminator = s;
report_invalid_token(lex);
}
else if (*s >= '0' && *s <= '9')
ch = (ch * 16) + (*s - '0');
else if (*s >= 'a' && *s <= 'f')
ch = (ch * 16) + (*s - 'a') + 10;
else if (*s >= 'A' && *s <= 'F')
ch = (ch * 16) + (*s - 'A') + 10;
else
{
lex->token_terminator = s + pg_mblen(s);
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s",
"json"),
errdetail("\"\\u\" must be followed by four hexadecimal digits."),
report_json_context(lex)));
}
}
if (lex->strval != NULL)
{
char utf8str[5];
int utf8len;
if (ch >= 0xd800 && ch <= 0xdbff)
{
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s",
"json"),
errdetail("Unicode high surrogate must not follow a high surrogate."),
report_json_context(lex)));
hi_surrogate = (ch & 0x3ff) << 10;
continue;
}
else if (ch >= 0xdc00 && ch <= 0xdfff)
{
if (hi_surrogate == -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
ch = 0x10000 + hi_surrogate + (ch & 0x3ff);
hi_surrogate = -1;
}
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
/*
* For UTF8, replace the escape sequence by the actual
* utf8 character in lex->strval. Do this also for other
* encodings if the escape designates an ASCII character,
* otherwise raise an error.
*/
if (ch == 0)
{
/* We can't allow this, since our TEXT type doesn't */
ereport(ERROR,
(errcode(ERRCODE_UNTRANSLATABLE_CHARACTER),
errmsg("unsupported Unicode escape sequence"),
errdetail("\\u0000 cannot be converted to text."),
report_json_context(lex)));
}
else if (GetDatabaseEncoding() == PG_UTF8)
{
unicode_to_utf8(ch, (unsigned char *) utf8str);
utf8len = pg_utf_mblen((unsigned char *) utf8str);
appendBinaryStringInfo(lex->strval, utf8str, utf8len);
}
else if (ch <= 0x007f)
{
/*
* This is the only way to designate things like a
* form feed character in JSON, so it's useful in all
* encodings.
*/
appendStringInfoChar(lex->strval, (char) ch);
}
else
{
ereport(ERROR,
(errcode(ERRCODE_UNTRANSLATABLE_CHARACTER),
errmsg("unsupported Unicode escape sequence"),
errdetail("Unicode escape values cannot be used for code point values above 007F when the server encoding is not UTF8."),
report_json_context(lex)));
}
}
}
else if (lex->strval != NULL)
{
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s",
"json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
switch (*s)
{
case '"':
case '\\':
case '/':
appendStringInfoChar(lex->strval, *s);
break;
case 'b':
appendStringInfoChar(lex->strval, '\b');
break;
case 'f':
appendStringInfoChar(lex->strval, '\f');
break;
case 'n':
appendStringInfoChar(lex->strval, '\n');
break;
case 'r':
appendStringInfoChar(lex->strval, '\r');
break;
case 't':
appendStringInfoChar(lex->strval, '\t');
break;
default:
/* Not a valid string escape, so error out. */
lex->token_terminator = s + pg_mblen(s);
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s",
"json"),
errdetail("Escape sequence \"\\%s\" is invalid.",
extract_mb_char(s)),
report_json_context(lex)));
}
}
else if (strchr("\"\\/bfnrt", *s) == NULL)
{
/*
* Simpler processing if we're not bothered about de-escaping
*
* It's very tempting to remove the strchr() call here and
* replace it with a switch statement, but testing so far has
* shown it's not a performance win.
*/
lex->token_terminator = s + pg_mblen(s);
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Escape sequence \"\\%s\" is invalid.",
extract_mb_char(s)),
report_json_context(lex)));
}
}
else if (lex->strval != NULL)
{
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
appendStringInfoChar(lex->strval, *s);
}
}
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
/* Hooray, we found the end of the string! */
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
}
/*
* The next token in the input stream is known to be a number; lex it.
*
* In JSON, a number consists of four parts:
*
* (1) An optional minus sign ('-').
*
* (2) Either a single '0', or a string of one or more digits that does not
* begin with a '0'.
*
* (3) An optional decimal part, consisting of a period ('.') followed by
* one or more digits. (Note: While this part can be omitted
* completely, it's not OK to have only the decimal point without
* any digits afterwards.)
*
* (4) An optional exponent part, consisting of 'e' or 'E', optionally
* followed by '+' or '-', followed by one or more digits. (Note:
* As with the decimal part, if 'e' or 'E' is present, it must be
* followed by at least one digit.)
*
* The 's' argument to this function points to the ostensible beginning
* of part 2 - i.e. the character after any optional minus sign, or the
* first character of the string if there is none.
*
* If num_err is not NULL, we return an error flag to *num_err rather than
* raising an error for a badly-formed number. Also, if total_len is not NULL
* the distance from lex->input to the token end+1 is returned to *total_len.
*/
static inline void
json_lex_number(JsonLexContext *lex, char *s,
bool *num_err, int *total_len)
{
bool error = false;
int len = s - lex->input;
/* Part (1): leading sign indicator. */
/* Caller already did this for us; so do nothing. */
/* Part (2): parse main digit string. */
if (len < lex->input_length && *s == '0')
{
s++;
len++;
}
else if (len < lex->input_length && *s >= '1' && *s <= '9')
{
do
{
s++;
len++;
} while (len < lex->input_length && *s >= '0' && *s <= '9');
}
else
error = true;
/* Part (3): parse optional decimal portion. */
if (len < lex->input_length && *s == '.')
{
s++;
len++;
if (len == lex->input_length || *s < '0' || *s > '9')
error = true;
else
{
do
{
s++;
len++;
} while (len < lex->input_length && *s >= '0' && *s <= '9');
}
}
/* Part (4): parse optional exponent. */
if (len < lex->input_length && (*s == 'e' || *s == 'E'))
{
s++;
len++;
if (len < lex->input_length && (*s == '+' || *s == '-'))
{
s++;
len++;
}
if (len == lex->input_length || *s < '0' || *s > '9')
error = true;
else
{
do
{
s++;
len++;
} while (len < lex->input_length && *s >= '0' && *s <= '9');
}
}
/*
* Check for trailing garbage. As in json_lex(), any alphanumeric stuff
* here should be considered part of the token for error-reporting
* purposes.
*/
for (; len < lex->input_length && JSON_ALPHANUMERIC_CHAR(*s); s++, len++)
error = true;
if (total_len != NULL)
*total_len = len;
if (num_err != NULL)
{
/* let the caller handle any error */
*num_err = error;
}
else
{
/* return token endpoint */
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s;
/* handle error if any */
if (error)
report_invalid_token(lex);
}
}
/*
* Report a parse error.
*
* lex->token_start and lex->token_terminator must identify the current token.
*/
static void
report_parse_error(JsonParseContext ctx, JsonLexContext *lex)
{
char *token;
int toklen;
/* Handle case where the input ended prematurely. */
if (lex->token_start == NULL || lex->token_type == JSON_TOKEN_END)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("The input string ended unexpectedly."),
report_json_context(lex)));
/* Separate out the current token. */
toklen = lex->token_terminator - lex->token_start;
token = palloc(toklen + 1);
memcpy(token, lex->token_start, toklen);
token[toklen] = '\0';
/* Complain, with the appropriate detail message. */
if (ctx == JSON_PARSE_END)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected end of input, but found \"%s\".",
token),
report_json_context(lex)));
else
{
switch (ctx)
{
case JSON_PARSE_VALUE:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected JSON value, but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_STRING:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected string, but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_ARRAY_START:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected array element or \"]\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_ARRAY_NEXT:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected \",\" or \"]\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_OBJECT_START:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected string or \"}\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_OBJECT_LABEL:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected \":\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_OBJECT_NEXT:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected \",\" or \"}\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_OBJECT_COMMA:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected string, but found \"%s\".",
token),
report_json_context(lex)));
break;
default:
elog(ERROR, "unexpected json parse state: %d", ctx);
}
}
}
/*
* Report an invalid input token.
*
* lex->token_start and lex->token_terminator must identify the token.
*/
static void
report_invalid_token(JsonLexContext *lex)
{
char *token;
int toklen;
/* Separate out the offending token. */
toklen = lex->token_terminator - lex->token_start;
token = palloc(toklen + 1);
memcpy(token, lex->token_start, toklen);
token[toklen] = '\0';
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Token \"%s\" is invalid.", token),
report_json_context(lex)));
}
/*
* Report a CONTEXT line for bogus JSON input.
*
* lex->token_terminator must be set to identify the spot where we detected
* the error. Note that lex->token_start might be NULL, in case we recognized
* error at EOF.
*
* The return value isn't meaningful, but we make it non-void so that this
* can be invoked inside ereport().
*/
static int
report_json_context(JsonLexContext *lex)
{
const char *context_start;
const char *context_end;
const char *line_start;
int line_number;
char *ctxt;
int ctxtlen;
const char *prefix;
const char *suffix;
/* Choose boundaries for the part of the input we will display */
context_start = lex->input;
context_end = lex->token_terminator;
line_start = context_start;
line_number = 1;
for (;;)
{
/* Always advance over newlines */
if (context_start < context_end && *context_start == '\n')
{
context_start++;
line_start = context_start;
line_number++;
continue;
}
/* Otherwise, done as soon as we are close enough to context_end */
if (context_end - context_start < 50)
break;
/* Advance to next multibyte character */
if (IS_HIGHBIT_SET(*context_start))
context_start += pg_mblen(context_start);
else
context_start++;
}
/*
* We add "..." to indicate that the excerpt doesn't start at the
* beginning of the line ... but if we're within 3 characters of the
* beginning of the line, we might as well just show the whole line.
*/
if (context_start - line_start <= 3)
context_start = line_start;
/* Get a null-terminated copy of the data to present */
ctxtlen = context_end - context_start;
ctxt = palloc(ctxtlen + 1);
memcpy(ctxt, context_start, ctxtlen);
ctxt[ctxtlen] = '\0';
/*
* Show the context, prefixing "..." if not starting at start of line, and
* suffixing "..." if not ending at end of line.
*/
prefix = (context_start > line_start) ? "..." : "";
suffix = (lex->token_type != JSON_TOKEN_END && context_end - lex->input < lex->input_length && *context_end != '\n' && *context_end != '\r') ? "..." : "";
return errcontext("JSON data, line %d: %s%s%s",
line_number, prefix, ctxt, suffix);
}
/*
* Extract a single, possibly multi-byte char from the input string.
*/
static char *
extract_mb_char(char *s)
{
char *res;
int len;
len = pg_mblen(s);
res = palloc(len + 1);
memcpy(res, s, len);
res[len] = '\0';
return res;
}
/* /*
* Determine how we want to print values of a given type in datum_to_json. * Determine how we want to print values of a given type in datum_to_json.
* *
...@@ -2547,7 +1343,7 @@ json_typeof(PG_FUNCTION_ARGS) ...@@ -2547,7 +1343,7 @@ json_typeof(PG_FUNCTION_ARGS)
/* Lex exactly one token from the input and check its type. */ /* Lex exactly one token from the input and check its type. */
json_lex(lex); json_lex(lex);
tok = lex_peek(lex); tok = lex->token_type;
switch (tok) switch (tok)
{ {
case JSON_TOKEN_OBJECT_START: case JSON_TOKEN_OBJECT_START:
......
/*-------------------------------------------------------------------------
*
* jsonapi.c
* JSON parser and lexer interfaces
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/utils/adt/jsonapi.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "utils/jsonapi.h"
/*
* The context of the parser is maintained by the recursive descent
* mechanism, but is passed explicitly to the error reporting routine
* for better diagnostics.
*/
typedef enum /* contexts of JSON parser */
{
JSON_PARSE_VALUE, /* expecting a value */
JSON_PARSE_STRING, /* expecting a string (for a field name) */
JSON_PARSE_ARRAY_START, /* saw '[', expecting value or ']' */
JSON_PARSE_ARRAY_NEXT, /* saw array element, expecting ',' or ']' */
JSON_PARSE_OBJECT_START, /* saw '{', expecting label or '}' */
JSON_PARSE_OBJECT_LABEL, /* saw object label, expecting ':' */
JSON_PARSE_OBJECT_NEXT, /* saw object value, expecting ',' or '}' */
JSON_PARSE_OBJECT_COMMA, /* saw object ',', expecting next label */
JSON_PARSE_END /* saw the end of a document, expect nothing */
} JsonParseContext;
static inline void json_lex_string(JsonLexContext *lex);
static inline void json_lex_number(JsonLexContext *lex, char *s,
bool *num_err, int *total_len);
static inline void parse_scalar(JsonLexContext *lex, JsonSemAction *sem);
static void parse_object_field(JsonLexContext *lex, JsonSemAction *sem);
static void parse_object(JsonLexContext *lex, JsonSemAction *sem);
static void parse_array_element(JsonLexContext *lex, JsonSemAction *sem);
static void parse_array(JsonLexContext *lex, JsonSemAction *sem);
static void report_parse_error(JsonParseContext ctx, JsonLexContext *lex) pg_attribute_noreturn();
static void report_invalid_token(JsonLexContext *lex) pg_attribute_noreturn();
static int report_json_context(JsonLexContext *lex);
static char *extract_mb_char(char *s);
/* the null action object used for pure validation */
JsonSemAction nullSemAction =
{
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL
};
/* Recursive Descent parser support routines */
/*
* lex_peek
*
* what is the current look_ahead token?
*/
static inline JsonTokenType
lex_peek(JsonLexContext *lex)
{
return lex->token_type;
}
/*
* lex_accept
*
* accept the look_ahead token and move the lexer to the next token if the
* look_ahead token matches the token parameter. In that case, and if required,
* also hand back the de-escaped lexeme.
*
* returns true if the token matched, false otherwise.
*/
static inline bool
lex_accept(JsonLexContext *lex, JsonTokenType token, char **lexeme)
{
if (lex->token_type == token)
{
if (lexeme != NULL)
{
if (lex->token_type == JSON_TOKEN_STRING)
{
if (lex->strval != NULL)
*lexeme = pstrdup(lex->strval->data);
}
else
{
int len = (lex->token_terminator - lex->token_start);
char *tokstr = palloc(len + 1);
memcpy(tokstr, lex->token_start, len);
tokstr[len] = '\0';
*lexeme = tokstr;
}
}
json_lex(lex);
return true;
}
return false;
}
/*
* lex_accept
*
* move the lexer to the next token if the current look_ahead token matches
* the parameter token. Otherwise, report an error.
*/
static inline void
lex_expect(JsonParseContext ctx, JsonLexContext *lex, JsonTokenType token)
{
if (!lex_accept(lex, token, NULL))
report_parse_error(ctx, lex);
}
/* chars to consider as part of an alphanumeric token */
#define JSON_ALPHANUMERIC_CHAR(c) \
(((c) >= 'a' && (c) <= 'z') || \
((c) >= 'A' && (c) <= 'Z') || \
((c) >= '0' && (c) <= '9') || \
(c) == '_' || \
IS_HIGHBIT_SET(c))
/*
* Utility function to check if a string is a valid JSON number.
*
* str is of length len, and need not be null-terminated.
*/
bool
IsValidJsonNumber(const char *str, int len)
{
bool numeric_error;
int total_len;
JsonLexContext dummy_lex;
if (len <= 0)
return false;
/*
* json_lex_number expects a leading '-' to have been eaten already.
*
* having to cast away the constness of str is ugly, but there's not much
* easy alternative.
*/
if (*str == '-')
{
dummy_lex.input = unconstify(char *, str) +1;
dummy_lex.input_length = len - 1;
}
else
{
dummy_lex.input = unconstify(char *, str);
dummy_lex.input_length = len;
}
json_lex_number(&dummy_lex, dummy_lex.input, &numeric_error, &total_len);
return (!numeric_error) && (total_len == dummy_lex.input_length);
}
/*
* makeJsonLexContext
*
* lex constructor, with or without StringInfo object
* for de-escaped lexemes.
*
* Without is better as it makes the processing faster, so only make one
* if really required.
*
* If you already have the json as a text* value, use the first of these
* functions, otherwise use makeJsonLexContextCstringLen().
*/
JsonLexContext *
makeJsonLexContext(text *json, bool need_escapes)
{
return makeJsonLexContextCstringLen(VARDATA_ANY(json),
VARSIZE_ANY_EXHDR(json),
need_escapes);
}
JsonLexContext *
makeJsonLexContextCstringLen(char *json, int len, bool need_escapes)
{
JsonLexContext *lex = palloc0(sizeof(JsonLexContext));
lex->input = lex->token_terminator = lex->line_start = json;
lex->line_number = 1;
lex->input_length = len;
if (need_escapes)
lex->strval = makeStringInfo();
return lex;
}
/*
* pg_parse_json
*
* Publicly visible entry point for the JSON parser.
*
* lex is a lexing context, set up for the json to be processed by calling
* makeJsonLexContext(). sem is a structure of function pointers to semantic
* action routines to be called at appropriate spots during parsing, and a
* pointer to a state object to be passed to those routines.
*/
void
pg_parse_json(JsonLexContext *lex, JsonSemAction *sem)
{
JsonTokenType tok;
/* get the initial token */
json_lex(lex);
tok = lex_peek(lex);
/* parse by recursive descent */
switch (tok)
{
case JSON_TOKEN_OBJECT_START:
parse_object(lex, sem);
break;
case JSON_TOKEN_ARRAY_START:
parse_array(lex, sem);
break;
default:
parse_scalar(lex, sem); /* json can be a bare scalar */
}
lex_expect(JSON_PARSE_END, lex, JSON_TOKEN_END);
}
/*
* json_count_array_elements
*
* Returns number of array elements in lex context at start of array token
* until end of array token at same nesting level.
*
* Designed to be called from array_start routines.
*/
int
json_count_array_elements(JsonLexContext *lex)
{
JsonLexContext copylex;
int count;
/*
* It's safe to do this with a shallow copy because the lexical routines
* don't scribble on the input. They do scribble on the other pointers
* etc, so doing this with a copy makes that safe.
*/
memcpy(&copylex, lex, sizeof(JsonLexContext));
copylex.strval = NULL; /* not interested in values here */
copylex.lex_level++;
count = 0;
lex_expect(JSON_PARSE_ARRAY_START, &copylex, JSON_TOKEN_ARRAY_START);
if (lex_peek(&copylex) != JSON_TOKEN_ARRAY_END)
{
do
{
count++;
parse_array_element(&copylex, &nullSemAction);
}
while (lex_accept(&copylex, JSON_TOKEN_COMMA, NULL));
}
lex_expect(JSON_PARSE_ARRAY_NEXT, &copylex, JSON_TOKEN_ARRAY_END);
return count;
}
/*
* Recursive Descent parse routines. There is one for each structural
* element in a json document:
* - scalar (string, number, true, false, null)
* - array ( [ ] )
* - array element
* - object ( { } )
* - object field
*/
static inline void
parse_scalar(JsonLexContext *lex, JsonSemAction *sem)
{
char *val = NULL;
json_scalar_action sfunc = sem->scalar;
char **valaddr;
JsonTokenType tok = lex_peek(lex);
valaddr = sfunc == NULL ? NULL : &val;
/* a scalar must be a string, a number, true, false, or null */
switch (tok)
{
case JSON_TOKEN_TRUE:
lex_accept(lex, JSON_TOKEN_TRUE, valaddr);
break;
case JSON_TOKEN_FALSE:
lex_accept(lex, JSON_TOKEN_FALSE, valaddr);
break;
case JSON_TOKEN_NULL:
lex_accept(lex, JSON_TOKEN_NULL, valaddr);
break;
case JSON_TOKEN_NUMBER:
lex_accept(lex, JSON_TOKEN_NUMBER, valaddr);
break;
case JSON_TOKEN_STRING:
lex_accept(lex, JSON_TOKEN_STRING, valaddr);
break;
default:
report_parse_error(JSON_PARSE_VALUE, lex);
}
if (sfunc != NULL)
(*sfunc) (sem->semstate, val, tok);
}
static void
parse_object_field(JsonLexContext *lex, JsonSemAction *sem)
{
/*
* An object field is "fieldname" : value where value can be a scalar,
* object or array. Note: in user-facing docs and error messages, we
* generally call a field name a "key".
*/
char *fname = NULL; /* keep compiler quiet */
json_ofield_action ostart = sem->object_field_start;
json_ofield_action oend = sem->object_field_end;
bool isnull;
char **fnameaddr = NULL;
JsonTokenType tok;
if (ostart != NULL || oend != NULL)
fnameaddr = &fname;
if (!lex_accept(lex, JSON_TOKEN_STRING, fnameaddr))
report_parse_error(JSON_PARSE_STRING, lex);
lex_expect(JSON_PARSE_OBJECT_LABEL, lex, JSON_TOKEN_COLON);
tok = lex_peek(lex);
isnull = tok == JSON_TOKEN_NULL;
if (ostart != NULL)
(*ostart) (sem->semstate, fname, isnull);
switch (tok)
{
case JSON_TOKEN_OBJECT_START:
parse_object(lex, sem);
break;
case JSON_TOKEN_ARRAY_START:
parse_array(lex, sem);
break;
default:
parse_scalar(lex, sem);
}
if (oend != NULL)
(*oend) (sem->semstate, fname, isnull);
}
static void
parse_object(JsonLexContext *lex, JsonSemAction *sem)
{
/*
* an object is a possibly empty sequence of object fields, separated by
* commas and surrounded by curly braces.
*/
json_struct_action ostart = sem->object_start;
json_struct_action oend = sem->object_end;
JsonTokenType tok;
check_stack_depth();
if (ostart != NULL)
(*ostart) (sem->semstate);
/*
* Data inside an object is at a higher nesting level than the object
* itself. Note that we increment this after we call the semantic routine
* for the object start and restore it before we call the routine for the
* object end.
*/
lex->lex_level++;
/* we know this will succeed, just clearing the token */
lex_expect(JSON_PARSE_OBJECT_START, lex, JSON_TOKEN_OBJECT_START);
tok = lex_peek(lex);
switch (tok)
{
case JSON_TOKEN_STRING:
parse_object_field(lex, sem);
while (lex_accept(lex, JSON_TOKEN_COMMA, NULL))
parse_object_field(lex, sem);
break;
case JSON_TOKEN_OBJECT_END:
break;
default:
/* case of an invalid initial token inside the object */
report_parse_error(JSON_PARSE_OBJECT_START, lex);
}
lex_expect(JSON_PARSE_OBJECT_NEXT, lex, JSON_TOKEN_OBJECT_END);
lex->lex_level--;
if (oend != NULL)
(*oend) (sem->semstate);
}
static void
parse_array_element(JsonLexContext *lex, JsonSemAction *sem)
{
json_aelem_action astart = sem->array_element_start;
json_aelem_action aend = sem->array_element_end;
JsonTokenType tok = lex_peek(lex);
bool isnull;
isnull = tok == JSON_TOKEN_NULL;
if (astart != NULL)
(*astart) (sem->semstate, isnull);
/* an array element is any object, array or scalar */
switch (tok)
{
case JSON_TOKEN_OBJECT_START:
parse_object(lex, sem);
break;
case JSON_TOKEN_ARRAY_START:
parse_array(lex, sem);
break;
default:
parse_scalar(lex, sem);
}
if (aend != NULL)
(*aend) (sem->semstate, isnull);
}
static void
parse_array(JsonLexContext *lex, JsonSemAction *sem)
{
/*
* an array is a possibly empty sequence of array elements, separated by
* commas and surrounded by square brackets.
*/
json_struct_action astart = sem->array_start;
json_struct_action aend = sem->array_end;
check_stack_depth();
if (astart != NULL)
(*astart) (sem->semstate);
/*
* Data inside an array is at a higher nesting level than the array
* itself. Note that we increment this after we call the semantic routine
* for the array start and restore it before we call the routine for the
* array end.
*/
lex->lex_level++;
lex_expect(JSON_PARSE_ARRAY_START, lex, JSON_TOKEN_ARRAY_START);
if (lex_peek(lex) != JSON_TOKEN_ARRAY_END)
{
parse_array_element(lex, sem);
while (lex_accept(lex, JSON_TOKEN_COMMA, NULL))
parse_array_element(lex, sem);
}
lex_expect(JSON_PARSE_ARRAY_NEXT, lex, JSON_TOKEN_ARRAY_END);
lex->lex_level--;
if (aend != NULL)
(*aend) (sem->semstate);
}
/*
* Lex one token from the input stream.
*/
void
json_lex(JsonLexContext *lex)
{
char *s;
int len;
/* Skip leading whitespace. */
s = lex->token_terminator;
len = s - lex->input;
while (len < lex->input_length &&
(*s == ' ' || *s == '\t' || *s == '\n' || *s == '\r'))
{
if (*s == '\n')
++lex->line_number;
++s;
++len;
}
lex->token_start = s;
/* Determine token type. */
if (len >= lex->input_length)
{
lex->token_start = NULL;
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s;
lex->token_type = JSON_TOKEN_END;
}
else
switch (*s)
{
/* Single-character token, some kind of punctuation mark. */
case '{':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_OBJECT_START;
break;
case '}':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_OBJECT_END;
break;
case '[':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_ARRAY_START;
break;
case ']':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_ARRAY_END;
break;
case ',':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_COMMA;
break;
case ':':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_COLON;
break;
case '"':
/* string */
json_lex_string(lex);
lex->token_type = JSON_TOKEN_STRING;
break;
case '-':
/* Negative number. */
json_lex_number(lex, s + 1, NULL, NULL);
lex->token_type = JSON_TOKEN_NUMBER;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
/* Positive number. */
json_lex_number(lex, s, NULL, NULL);
lex->token_type = JSON_TOKEN_NUMBER;
break;
default:
{
char *p;
/*
* We're not dealing with a string, number, legal
* punctuation mark, or end of string. The only legal
* tokens we might find here are true, false, and null,
* but for error reporting purposes we scan until we see a
* non-alphanumeric character. That way, we can report
* the whole word as an unexpected token, rather than just
* some unintuitive prefix thereof.
*/
for (p = s; p - s < lex->input_length - len && JSON_ALPHANUMERIC_CHAR(*p); p++)
/* skip */ ;
/*
* We got some sort of unexpected punctuation or an
* otherwise unexpected character, so just complain about
* that one character.
*/
if (p == s)
{
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
report_invalid_token(lex);
}
/*
* We've got a real alphanumeric token here. If it
* happens to be true, false, or null, all is well. If
* not, error out.
*/
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = p;
if (p - s == 4)
{
if (memcmp(s, "true", 4) == 0)
lex->token_type = JSON_TOKEN_TRUE;
else if (memcmp(s, "null", 4) == 0)
lex->token_type = JSON_TOKEN_NULL;
else
report_invalid_token(lex);
}
else if (p - s == 5 && memcmp(s, "false", 5) == 0)
lex->token_type = JSON_TOKEN_FALSE;
else
report_invalid_token(lex);
}
} /* end of switch */
}
/*
* The next token in the input stream is known to be a string; lex it.
*/
static inline void
json_lex_string(JsonLexContext *lex)
{
char *s;
int len;
int hi_surrogate = -1;
if (lex->strval != NULL)
resetStringInfo(lex->strval);
Assert(lex->input_length > 0);
s = lex->token_start;
len = lex->token_start - lex->input;
for (;;)
{
s++;
len++;
/* Premature end of the string. */
if (len >= lex->input_length)
{
lex->token_terminator = s;
report_invalid_token(lex);
}
else if (*s == '"')
break;
else if ((unsigned char) *s < 32)
{
/* Per RFC4627, these characters MUST be escaped. */
/* Since *s isn't printable, exclude it from the context string */
lex->token_terminator = s;
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Character with value 0x%02x must be escaped.",
(unsigned char) *s),
report_json_context(lex)));
}
else if (*s == '\\')
{
/* OK, we have an escape character. */
s++;
len++;
if (len >= lex->input_length)
{
lex->token_terminator = s;
report_invalid_token(lex);
}
else if (*s == 'u')
{
int i;
int ch = 0;
for (i = 1; i <= 4; i++)
{
s++;
len++;
if (len >= lex->input_length)
{
lex->token_terminator = s;
report_invalid_token(lex);
}
else if (*s >= '0' && *s <= '9')
ch = (ch * 16) + (*s - '0');
else if (*s >= 'a' && *s <= 'f')
ch = (ch * 16) + (*s - 'a') + 10;
else if (*s >= 'A' && *s <= 'F')
ch = (ch * 16) + (*s - 'A') + 10;
else
{
lex->token_terminator = s + pg_mblen(s);
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s",
"json"),
errdetail("\"\\u\" must be followed by four hexadecimal digits."),
report_json_context(lex)));
}
}
if (lex->strval != NULL)
{
char utf8str[5];
int utf8len;
if (ch >= 0xd800 && ch <= 0xdbff)
{
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s",
"json"),
errdetail("Unicode high surrogate must not follow a high surrogate."),
report_json_context(lex)));
hi_surrogate = (ch & 0x3ff) << 10;
continue;
}
else if (ch >= 0xdc00 && ch <= 0xdfff)
{
if (hi_surrogate == -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
ch = 0x10000 + hi_surrogate + (ch & 0x3ff);
hi_surrogate = -1;
}
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
/*
* For UTF8, replace the escape sequence by the actual
* utf8 character in lex->strval. Do this also for other
* encodings if the escape designates an ASCII character,
* otherwise raise an error.
*/
if (ch == 0)
{
/* We can't allow this, since our TEXT type doesn't */
ereport(ERROR,
(errcode(ERRCODE_UNTRANSLATABLE_CHARACTER),
errmsg("unsupported Unicode escape sequence"),
errdetail("\\u0000 cannot be converted to text."),
report_json_context(lex)));
}
else if (GetDatabaseEncoding() == PG_UTF8)
{
unicode_to_utf8(ch, (unsigned char *) utf8str);
utf8len = pg_utf_mblen((unsigned char *) utf8str);
appendBinaryStringInfo(lex->strval, utf8str, utf8len);
}
else if (ch <= 0x007f)
{
/*
* This is the only way to designate things like a
* form feed character in JSON, so it's useful in all
* encodings.
*/
appendStringInfoChar(lex->strval, (char) ch);
}
else
{
ereport(ERROR,
(errcode(ERRCODE_UNTRANSLATABLE_CHARACTER),
errmsg("unsupported Unicode escape sequence"),
errdetail("Unicode escape values cannot be used for code point values above 007F when the server encoding is not UTF8."),
report_json_context(lex)));
}
}
}
else if (lex->strval != NULL)
{
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s",
"json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
switch (*s)
{
case '"':
case '\\':
case '/':
appendStringInfoChar(lex->strval, *s);
break;
case 'b':
appendStringInfoChar(lex->strval, '\b');
break;
case 'f':
appendStringInfoChar(lex->strval, '\f');
break;
case 'n':
appendStringInfoChar(lex->strval, '\n');
break;
case 'r':
appendStringInfoChar(lex->strval, '\r');
break;
case 't':
appendStringInfoChar(lex->strval, '\t');
break;
default:
/* Not a valid string escape, so error out. */
lex->token_terminator = s + pg_mblen(s);
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s",
"json"),
errdetail("Escape sequence \"\\%s\" is invalid.",
extract_mb_char(s)),
report_json_context(lex)));
}
}
else if (strchr("\"\\/bfnrt", *s) == NULL)
{
/*
* Simpler processing if we're not bothered about de-escaping
*
* It's very tempting to remove the strchr() call here and
* replace it with a switch statement, but testing so far has
* shown it's not a performance win.
*/
lex->token_terminator = s + pg_mblen(s);
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Escape sequence \"\\%s\" is invalid.",
extract_mb_char(s)),
report_json_context(lex)));
}
}
else if (lex->strval != NULL)
{
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
appendStringInfoChar(lex->strval, *s);
}
}
if (hi_surrogate != -1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Unicode low surrogate must follow a high surrogate."),
report_json_context(lex)));
/* Hooray, we found the end of the string! */
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
}
/*
* The next token in the input stream is known to be a number; lex it.
*
* In JSON, a number consists of four parts:
*
* (1) An optional minus sign ('-').
*
* (2) Either a single '0', or a string of one or more digits that does not
* begin with a '0'.
*
* (3) An optional decimal part, consisting of a period ('.') followed by
* one or more digits. (Note: While this part can be omitted
* completely, it's not OK to have only the decimal point without
* any digits afterwards.)
*
* (4) An optional exponent part, consisting of 'e' or 'E', optionally
* followed by '+' or '-', followed by one or more digits. (Note:
* As with the decimal part, if 'e' or 'E' is present, it must be
* followed by at least one digit.)
*
* The 's' argument to this function points to the ostensible beginning
* of part 2 - i.e. the character after any optional minus sign, or the
* first character of the string if there is none.
*
* If num_err is not NULL, we return an error flag to *num_err rather than
* raising an error for a badly-formed number. Also, if total_len is not NULL
* the distance from lex->input to the token end+1 is returned to *total_len.
*/
static inline void
json_lex_number(JsonLexContext *lex, char *s,
bool *num_err, int *total_len)
{
bool error = false;
int len = s - lex->input;
/* Part (1): leading sign indicator. */
/* Caller already did this for us; so do nothing. */
/* Part (2): parse main digit string. */
if (len < lex->input_length && *s == '0')
{
s++;
len++;
}
else if (len < lex->input_length && *s >= '1' && *s <= '9')
{
do
{
s++;
len++;
} while (len < lex->input_length && *s >= '0' && *s <= '9');
}
else
error = true;
/* Part (3): parse optional decimal portion. */
if (len < lex->input_length && *s == '.')
{
s++;
len++;
if (len == lex->input_length || *s < '0' || *s > '9')
error = true;
else
{
do
{
s++;
len++;
} while (len < lex->input_length && *s >= '0' && *s <= '9');
}
}
/* Part (4): parse optional exponent. */
if (len < lex->input_length && (*s == 'e' || *s == 'E'))
{
s++;
len++;
if (len < lex->input_length && (*s == '+' || *s == '-'))
{
s++;
len++;
}
if (len == lex->input_length || *s < '0' || *s > '9')
error = true;
else
{
do
{
s++;
len++;
} while (len < lex->input_length && *s >= '0' && *s <= '9');
}
}
/*
* Check for trailing garbage. As in json_lex(), any alphanumeric stuff
* here should be considered part of the token for error-reporting
* purposes.
*/
for (; len < lex->input_length && JSON_ALPHANUMERIC_CHAR(*s); s++, len++)
error = true;
if (total_len != NULL)
*total_len = len;
if (num_err != NULL)
{
/* let the caller handle any error */
*num_err = error;
}
else
{
/* return token endpoint */
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s;
/* handle error if any */
if (error)
report_invalid_token(lex);
}
}
/*
* Report a parse error.
*
* lex->token_start and lex->token_terminator must identify the current token.
*/
static void
report_parse_error(JsonParseContext ctx, JsonLexContext *lex)
{
char *token;
int toklen;
/* Handle case where the input ended prematurely. */
if (lex->token_start == NULL || lex->token_type == JSON_TOKEN_END)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("The input string ended unexpectedly."),
report_json_context(lex)));
/* Separate out the current token. */
toklen = lex->token_terminator - lex->token_start;
token = palloc(toklen + 1);
memcpy(token, lex->token_start, toklen);
token[toklen] = '\0';
/* Complain, with the appropriate detail message. */
if (ctx == JSON_PARSE_END)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected end of input, but found \"%s\".",
token),
report_json_context(lex)));
else
{
switch (ctx)
{
case JSON_PARSE_VALUE:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected JSON value, but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_STRING:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected string, but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_ARRAY_START:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected array element or \"]\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_ARRAY_NEXT:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected \",\" or \"]\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_OBJECT_START:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected string or \"}\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_OBJECT_LABEL:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected \":\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_OBJECT_NEXT:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected \",\" or \"}\", but found \"%s\".",
token),
report_json_context(lex)));
break;
case JSON_PARSE_OBJECT_COMMA:
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Expected string, but found \"%s\".",
token),
report_json_context(lex)));
break;
default:
elog(ERROR, "unexpected json parse state: %d", ctx);
}
}
}
/*
* Report an invalid input token.
*
* lex->token_start and lex->token_terminator must identify the token.
*/
static void
report_invalid_token(JsonLexContext *lex)
{
char *token;
int toklen;
/* Separate out the offending token. */
toklen = lex->token_terminator - lex->token_start;
token = palloc(toklen + 1);
memcpy(token, lex->token_start, toklen);
token[toklen] = '\0';
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s", "json"),
errdetail("Token \"%s\" is invalid.", token),
report_json_context(lex)));
}
/*
* Report a CONTEXT line for bogus JSON input.
*
* lex->token_terminator must be set to identify the spot where we detected
* the error. Note that lex->token_start might be NULL, in case we recognized
* error at EOF.
*
* The return value isn't meaningful, but we make it non-void so that this
* can be invoked inside ereport().
*/
static int
report_json_context(JsonLexContext *lex)
{
const char *context_start;
const char *context_end;
const char *line_start;
int line_number;
char *ctxt;
int ctxtlen;
const char *prefix;
const char *suffix;
/* Choose boundaries for the part of the input we will display */
context_start = lex->input;
context_end = lex->token_terminator;
line_start = context_start;
line_number = 1;
for (;;)
{
/* Always advance over newlines */
if (context_start < context_end && *context_start == '\n')
{
context_start++;
line_start = context_start;
line_number++;
continue;
}
/* Otherwise, done as soon as we are close enough to context_end */
if (context_end - context_start < 50)
break;
/* Advance to next multibyte character */
if (IS_HIGHBIT_SET(*context_start))
context_start += pg_mblen(context_start);
else
context_start++;
}
/*
* We add "..." to indicate that the excerpt doesn't start at the
* beginning of the line ... but if we're within 3 characters of the
* beginning of the line, we might as well just show the whole line.
*/
if (context_start - line_start <= 3)
context_start = line_start;
/* Get a null-terminated copy of the data to present */
ctxtlen = context_end - context_start;
ctxt = palloc(ctxtlen + 1);
memcpy(ctxt, context_start, ctxtlen);
ctxt[ctxtlen] = '\0';
/*
* Show the context, prefixing "..." if not starting at start of line, and
* suffixing "..." if not ending at end of line.
*/
prefix = (context_start > line_start) ? "..." : "";
suffix = (lex->token_type != JSON_TOKEN_END && context_end - lex->input < lex->input_length && *context_end != '\n' && *context_end != '\r') ? "..." : "";
return errcontext("JSON data, line %d: %s%s%s",
line_number, prefix, ctxt, suffix);
}
/*
* Extract a single, possibly multi-byte char from the input string.
*/
static char *
extract_mb_char(char *s)
{
char *res;
int len;
len = pg_mblen(s);
res = palloc(len + 1);
memcpy(res, s, len);
res[len] = '\0';
return res;
}
...@@ -103,6 +103,9 @@ typedef struct JsonSemAction ...@@ -103,6 +103,9 @@ typedef struct JsonSemAction
*/ */
extern void pg_parse_json(JsonLexContext *lex, JsonSemAction *sem); extern void pg_parse_json(JsonLexContext *lex, JsonSemAction *sem);
/* the null action object used for pure validation */
extern JsonSemAction nullSemAction;
/* /*
* json_count_array_elements performs a fast secondary parse to determine the * json_count_array_elements performs a fast secondary parse to determine the
* number of elements in passed array lex context. It should be called from an * number of elements in passed array lex context. It should be called from an
...@@ -124,6 +127,9 @@ extern JsonLexContext *makeJsonLexContextCstringLen(char *json, ...@@ -124,6 +127,9 @@ extern JsonLexContext *makeJsonLexContextCstringLen(char *json,
int len, int len,
bool need_escapes); bool need_escapes);
/* lex one token */
extern void json_lex(JsonLexContext *lex);
/* /*
* Utility function to check if a string is a valid JSON number. * Utility function to check if a string is a valid JSON number.
* *
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment