Commit 0b92a77c authored by Tom Lane's avatar Tom Lane

Improve user-facing JSON documentation.

I started out with the intention of just fixing the info about the jsonb
operator classes, but soon found myself copy-editing most of the JSON
material.  Hopefully it's more readable now.
parent 0ca6bda8
......@@ -10081,7 +10081,7 @@ table2-mapping
<indexterm zone="functions-json">
<primary>JSON</primary>
<secondary>Functions and operators</secondary>
<secondary>functions and operators</secondary>
</indexterm>
<para>
......@@ -10105,43 +10105,43 @@ table2-mapping
<tbody>
<row>
<entry><literal>-&gt;</literal></entry>
<entry>int</entry>
<entry><type>int</type></entry>
<entry>Get JSON array element</entry>
<entry><literal>'[{"a":"foo"},{"a":"bar"},{"a":"baz"}]'::json-&gt;2</literal></entry>
<entry><literal>{"a":"baz"}</literal></entry>
</row>
<row>
<entry><literal>-&gt;</literal></entry>
<entry>text</entry>
<entry><type>text</type></entry>
<entry>Get JSON object field</entry>
<entry><literal>'{"a": {"b":"foo"}}'::json-&gt;'a'</literal></entry>
<entry><literal>{"b":"foo"}</literal></entry>
</row>
<row>
<entry><literal>-&gt;&gt;</literal></entry>
<entry>int</entry>
<entry>Get JSON array element as text</entry>
<entry><type>int</type></entry>
<entry>Get JSON array element as <type>text</></entry>
<entry><literal>'[1,2,3]'::json-&gt;&gt;2</literal></entry>
<entry><literal>3</literal></entry>
</row>
<row>
<entry><literal>-&gt;&gt;</literal></entry>
<entry>text</entry>
<entry>Get JSON object field as text</entry>
<entry><type>text</type></entry>
<entry>Get JSON object field as <type>text</></entry>
<entry><literal>'{"a":1,"b":2}'::json-&gt;&gt;'b'</literal></entry>
<entry><literal>2</literal></entry>
</row>
<row>
<entry><literal>#&gt;</literal></entry>
<entry>text[]</entry>
<entry><type>text[]</type></entry>
<entry>Get JSON object at specified path</entry>
<entry><literal>'{"a": {"b":{"c": "foo"}}}'::json#&gt;'{a,b}'</literal></entry>
<entry><literal>{"c": "foo"}</literal></entry>
</row>
<row>
<entry><literal>#&gt;&gt;</literal></entry>
<entry>text[]</entry>
<entry>Get JSON object at specified path as text</entry>
<entry><type>text[]</type></entry>
<entry>Get JSON object at specified path as <type>text</></entry>
<entry><literal>'{"a":[1,2,3],"b":[4,5,6]}'::json#&gt;&gt;'{a,2}'</literal></entry>
<entry><literal>3</literal></entry>
</row>
......@@ -10152,14 +10152,17 @@ table2-mapping
<note>
<para>
There are parallel variants of these operators for both the
<type>json</type> and <type>jsonb</type> types. In addition to
those operators common to both types, a further set of operators
exists for <type>jsonb</type> (which comprise the default
<acronym>GIN</acronym> operator class).
<type>json</type> and <type>jsonb</type> types. The operators
return the same type as their left-hand input (either <type>json</type>
or <type>jsonb</type>), except for those specified as
returning <type>text</>, which coerce the value to text.
</para>
</note>
<para>
The following are <type>jsonb</>-only operators, used by
In addition to those operators common to both types, some additional
operators exist only for <type>jsonb</type>, as shown
in <xref linkend="functions-jsonb-op-table">.
Many of these operators can be indexed by
<type>jsonb</> operator classes. For a full description of
<type>jsonb</> containment semantics and nesting, see <xref
linkend="json-containment">. <xref linkend="json-indexing">
......@@ -10167,7 +10170,7 @@ table2-mapping
<type>jsonb</>.
</para>
<table id="functions-jsonb-op-table">
<title>Additonal JSONB Operators</title>
<title>Additional <type>jsonb</> Operators</title>
<tgroup cols="4">
<thead>
<row>
......@@ -10180,37 +10183,38 @@ table2-mapping
<tbody>
<row>
<entry><literal>=</literal></entry>
<entry>jsonb</entry>
<entry>Is the jsonb equal to this jsonb?</entry>
<entry><type>jsonb</type></entry>
<entry>Are the two JSON values equal?</entry>
<entry><literal>'[1,2,3]'::jsonb = '[1,2,3]'::jsonb</literal></entry>
</row>
<row>
<entry><literal>@&gt;</literal></entry>
<entry>jsonb</entry>
<entry>Does the jsonb contain within it this jsonb?</entry>
<entry><type>jsonb</type></entry>
<entry>Does the left JSON value contain within it the right value?</entry>
<entry><literal>'{"a":1, "b":2}'::jsonb &#64;&gt; '{"b":2}'::jsonb</literal></entry>
</row>
<row>
<entry><literal>&lt;@</literal></entry>
<entry>jsonb</entry>
<entry>Does the jsonb have contained within it this jsonb?</entry>
<entry><type>jsonb</type></entry>
<entry>Is the left JSON value contained within the right value?</entry>
<entry><literal>'{"b":2}'::jsonb &lt;@ '{"a":1, "b":2}'::jsonb</literal></entry>
</row>
<row>
<entry><literal>?</literal></entry>
<entry>text</entry>
<entry>Does this key/element <emphasis>string</emphasis> exist?</entry>
<entry><type>text</type></entry>
<entry>Does the key/element <emphasis>string</emphasis> exist within
the JSON value?</entry>
<entry><literal>'{"a":1, "b":2}'::jsonb ? 'b'</literal></entry>
</row>
<row>
<entry><literal>?|</literal></entry>
<entry>text[]</entry>
<entry><type>text[]</type></entry>
<entry>Do any of these key/element <emphasis>strings</emphasis> exist?</entry>
<entry><literal>'{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'c']</literal></entry>
</row>
<row>
<entry><literal>?&amp;</literal></entry>
<entry>text[]</entry>
<entry><type>text[]</type></entry>
<entry>Do all of these key/element <emphasis>strings</emphasis> exist?</entry>
<entry><literal>'["a", "b"]'::jsonb ?&amp; array['a', 'b']</literal></entry>
</row>
......@@ -10218,15 +10222,11 @@ table2-mapping
</tgroup>
</table>
<!--
The release notes contain a reference to "functions-json-table". Since
that table is now split in two, the id has been parked here so we don't
have to change the release notes.
-->
<para id="functions-json-table">
<para>
<xref linkend="functions-json-creation-table"> shows the functions that are
available for creating <type>json</type> values.
(see <xref linkend="datatype-json">)
(Currently, there are no equivalent functions for <type>jsonb</>, but you
can cast the result of one of these functions to <type>jsonb</>.)
</para>
<indexterm>
......@@ -10250,11 +10250,10 @@ table2-mapping
<table id="functions-json-creation-table">
<title>JSON Creation Functions</title>
<tgroup cols="5">
<tgroup cols="4">
<thead>
<row>
<entry>Function</entry>
<entry>Return Type</entry>
<entry>Description</entry>
<entry>Example</entry>
<entry>Example Result</entry>
......@@ -10265,7 +10264,6 @@ table2-mapping
<entry>
<literal>array_to_json(anyarray [, pretty_bool])</literal>
</entry>
<entry><type>json</type></entry>
<entry>
Returns the array as JSON. A PostgreSQL multidimensional array
becomes a JSON array of arrays. Line feeds will be added between
......@@ -10278,7 +10276,6 @@ table2-mapping
<entry>
<literal>row_to_json(record [, pretty_bool])</literal>
</entry>
<entry><type>json</type></entry>
<entry>
Returns the row as JSON. Line feeds will be added between level
1 elements if <parameter>pretty_bool</parameter> is true.
......@@ -10290,7 +10287,6 @@ table2-mapping
<entry>
<literal>to_json(anyelement)</literal>
</entry>
<entry><type>json</type></entry>
<entry>
Returns the value as JSON. If the data type is not built in, and there
is a cast from the type to <type>json</type>, the cast function will be used to
......@@ -10305,43 +10301,29 @@ table2-mapping
<entry>
<literal>json_build_array(VARIADIC "any")</literal>
</entry>
<entry><type>json</type></entry>
<entry>
Builds a heterogeneously-typed json array out of a variadic argument list.
</entry>
<entry><literal>SELECT json_build_array(1,2,'3',4,5);</literal></entry>
<entry>
<programlisting>
json_build_array
-------------------
[1, 2, "3", 4, 5]
</programlisting>
Builds a possibly-heterogeneously-typed JSON array out of a variadic
argument list.
</entry>
<entry><literal>json_build_array(1,2,'3',4,5)</literal></entry>
<entry><literal>[1, 2, "3", 4, 5]</literal></entry>
</row>
<row>
<entry>
<literal>json_build_object(VARIADIC "any")</literal>
</entry>
<entry><type>json</type></entry>
<entry>
Builds a JSON array out of a variadic argument list. By
convention, the object is constructed out of alternating
name/value arguments.
</entry>
<entry><literal>SELECT json_build_object('foo',1,'bar',2);</literal></entry>
<entry>
<programlisting>
json_build_object
------------------------
{"foo" : 1, "bar" : 2}
</programlisting>
Builds a JSON object out of a variadic argument list. By
convention, the argument list consists of alternating
names and values.
</entry>
<entry><literal>json_build_object('foo',1,'bar',2)</literal></entry>
<entry><literal>{"foo" : 1, "bar" : 2}</literal></entry>
</row>
<row>
<entry>
<literal>json_object(text[])</literal>
</entry>
<entry><type>json</type></entry>
<entry>
Builds a JSON object out of a text array. The array must have either
exactly one dimension with an even number of members, in which case
......@@ -10349,42 +10331,28 @@ table2-mapping
such that each inner array has exactly two elements, which
are taken as a name/value pair.
</entry>
<entry><literal>select * from json_object('{a, 1, b, "def", c, 3.5}') or <literal>select json_object('{{a, 1},{b, "def"},{c, 3.5}}')</literal></literal></entry>
<entry>
<programlisting>
json_object
---------------------------------------
{"a" : "1", "b" : "def", "c" : "3.5"}
</programlisting>
</entry>
<entry><para><literal>json_object('{a, 1, b, "def", c, 3.5}')</></para>
<para><literal>json_object('{{a, 1},{b, "def"},{c, 3.5}}')</></para></entry>
<entry><literal>{"a" : "1", "b" : "def", "c" : "3.5"}</literal></entry>
</row>
<row>
<entry>
<literal>json_object(keys text[], values text[])</literal>
</entry>
<entry><type>json</type></entry>
<entry>
The two-argument form of JSON object takes keys and values pairwise from two separate
This form of <function>json_object</> takes keys and values pairwise from two separate
arrays. In all other respects it is identical to the one-argument form.
</entry>
<entry><literal>select json_object('{a, b}', '{1,2}');</literal></entry>
<entry>
<programlisting>
json_object
------------------------
{"a" : "1", "b" : "2"}
</programlisting>
</entry>
<entry><literal>json_object('{a, b}', '{1,2}')</literal></entry>
<entry><literal>{"a" : "1", "b" : "2"}</literal></entry>
</row>
</tbody>
</tgroup>
</table>
<para>
<xref linkend="functions-json-processing-table"> shows the functions that
are available for processing <type>json</type> and <type>jsonb</type> values.
(see <xref linkend="datatype-json">)
</para>
<indexterm>
......@@ -10494,8 +10462,8 @@ table2-mapping
<entry><para><literal>json_each(json)</literal>
</para><para><literal>jsonb_each(jsonb)</literal>
</para></entry>
<entry><para><literal>SETOF key text, value json</literal>
</para><para><literal>SETOF key text, value jsonb</literal>
<entry><para><literal>setof key text, value json</literal>
</para><para><literal>setof key text, value jsonb</literal>
</para></entry>
<entry>
Expands the outermost JSON object into a set of key/value pairs.
......@@ -10514,10 +10482,10 @@ table2-mapping
<entry><para><literal>json_each_text(from_json json)</literal>
</para><para><literal>jsonb_each_text(from_json jsonb)</literal>
</para></entry>
<entry><type>SETOF key text, value text</type></entry>
<entry><type>setof key text, value text</type></entry>
<entry>
Expands the outermost JSON object into a set of key/value pairs. The
returned value will be of type text.
returned value will be of type <type>text</>.
</entry>
<entry><literal>select * from json_each_text('{"a":"foo", "b":"bar"}')</literal></entry>
<entry>
......@@ -10556,7 +10524,7 @@ table2-mapping
<entry><para><literal>json_object_keys(json)</literal>
</para><para><literal>jsonb_object_keys(jsonb)</literal>
</para></entry>
<entry><type>SETOF text</type></entry>
<entry><type>setof text</type></entry>
<entry>
Returns set of keys in the JSON object. Only the <quote>outer</quote> object will be displayed.
</entry>
......@@ -10595,7 +10563,7 @@ table2-mapping
<entry><para><literal>json_populate_recordset(base anyelement, from_json json, [, use_json_as_text bool=false])</literal>
</para><para><literal>jsonb_populate_recordset(base anyelement, from_json jsonb, [, use_json_as_text bool=false])</literal>
</para></entry>
<entry><type>SETOF anyelement</type></entry>
<entry><type>setof anyelement</type></entry>
<entry>
Expands the outermost set of objects in <replaceable>from_json</replaceable> to a set
whose columns match the record type defined by base.
......@@ -10618,13 +10586,13 @@ table2-mapping
<entry><para><literal>json_array_elements(json)</literal>
</para><para><literal>jsonb_array_elements(jsonb)</literal>
</para></entry>
<entry><para><type>SETOF json</type>
</para><para><type>SETOF jsonb</type>
<entry><para><type>setof json</type>
</para><para><type>setof jsonb</type>
</para></entry>
<entry>
Expands a JSON array to a set of JSON values.
</entry>
<entry><literal>SELECT * FROM json_array_elements('[1,true, [2,false]]')</literal></entry>
<entry><literal>select * from json_array_elements('[1,true, [2,false]]')</literal></entry>
<entry>
<programlisting>
value
......@@ -10639,11 +10607,11 @@ table2-mapping
<entry><para><literal>json_array_elements_text(json)</literal>
</para><para><literal>jsonb_array_elements_text(jsonb)</literal>
</para></entry>
<entry><type>SETOF text</type></entry>
<entry><type>setof text</type></entry>
<entry>
Expands a JSON array to a set of text values.
Expands a JSON array to a set of <type>text</> values.
</entry>
<entry><literal>SELECT * FROM json_array_elements_text('["foo", "bar"]')</literal></entry>
<entry><literal>select * from json_array_elements_text('["foo", "bar"]')</literal></entry>
<entry>
<programlisting>
value
......@@ -10674,9 +10642,9 @@ table2-mapping
<entry><type>record</type></entry>
<entry>
Returns an arbitrary record from a JSON object. As with all functions
returning 'record', the caller must explicitly define the structure of the record
returning <type>record</>, the caller must explicitly define the structure of the record
when making the call. The input JSON must be an object, not a scalar or an array.
If nested_as_text is true, the function coerces nested complex elements to text.
If <literal>nested_as_text</> is true, the function coerces nested complex elements to text.
Also, see notes below on columns and types.
</entry>
<entry><literal>select * from json_to_record('{"a":1,"b":[1,2,3],"c":"bar"}',true) as x(a int, b text, d text) </literal></entry>
......@@ -10695,9 +10663,9 @@ table2-mapping
<entry><type>setof record</type></entry>
<entry>
Returns an arbitrary set of records from a JSON object. As with
json_to_record, the structure of the record must be explicitly defined when making the
call. However, with json_to_recordset the input JSON must be an array containing
objects. nested_as_text works as with json_to_record.
<function>json_to_record</>, the structure of the record must be explicitly defined when making the
call. However, with <function>json_to_recordset</> the input JSON must be an array containing
objects. <literal>nested_as_text</> works as with <function>json_to_record</>.
</entry>
<entry><literal>select * from json_to_recordset('[{"a":1,"b":"foo"},{"a":"2","c":"bar"}]',true) as x(a int, b text);</literal></entry>
<entry>
......@@ -10715,56 +10683,60 @@ table2-mapping
<note>
<para>
The <type>json</type> functions and operators can impose stricter validity requirements
than the type's input functions. In particular, they check much more closely that any use
of Unicode surrogate pairs to designate characters outside the Unicode Basic Multilingual
Plane is correct.
The <type>json</type> functions and operators can impose stricter
validity requirements than the JSON types' input functions do. In
particular, they check much more closely that any use of Unicode
surrogate pairs to designate characters outside the Unicode Basic
Multilingual Plane is correct.
</para>
</note>
<note>
<para>
Many of these functions and operators will convert Unicode escapes
in the JSON text to the appropriate UTF8 character when the database encoding is UTF8. In
other encodings the escape sequence must be for an ASCII character, and any other code point
in a Unicode escape sequence will result in an error.
In general, it is best to avoid mixing Unicode escapes in JSON with a non-UTF8 database
encoding, if possible.
Many of these functions and operators will convert Unicode escapes in
the JSON text to the appropriate UTF8 character when the database
encoding is UTF8. In other encodings the escape sequence must be for an
ASCII character, and any other code point in a Unicode escape sequence
will result in an error. In general, it is best to avoid mixing Unicode
escapes in JSON with a non-UTF8 database encoding, if possible.
</para>
</note>
<note>
<para>
In json_to_record and json_to_recordset, type-coercion from the JSON is
"best effort" and may not result in desired values for some types. JSON
elements are matched to identical field names in the record definition,
and elements which do not exist in the JSON will simply be NULL. JSON
elements which are not defined in the record template will
be omitted from the output.
In <function>json_to_record</> and <function>json_to_recordset</>,
type coercion from the JSON is <quote>best effort</> and may not result
in desired values for some types. JSON elements are matched to
identical field names in the record definition, and elements which do
not exist in the JSON will simply be NULL. JSON elements which are not
defined in the record template will be omitted from the output.
</para>
</note>
<note>
<para>
The <xref linkend="hstore"> extension has a cast from <type>hstore</type> to
<type>json</type>, so that converted <type>hstore</type> values are represented as JSON objects,
The <xref linkend="hstore"> extension has a cast
from <type>hstore</type> to <type>json</type>, so that
converted <type>hstore</type> values are represented as JSON objects,
not as string values.
</para>
</note>
<note>
<para>
The <literal>json_typeof</> function's <literal>null</> return value should not be confused
with a SQL NULL. While calling <literal>json_typeof('null'::json)</> will return <literal>null</>,
calling <literal>json_typeof(NULL::json)</> will return a SQL NULL.
The <literal>json_typeof</> function's <literal>null</> return value
should not be confused with a SQL NULL. While
calling <literal>json_typeof('null'::json)</> will
return <literal>null</>, calling <literal>json_typeof(NULL::json)</>
will return a SQL NULL.
</para>
</note>
<para>
See also <xref linkend="functions-aggregate"> about the aggregate
See also <xref linkend="functions-aggregate"> for the aggregate
function <function>json_agg</function> which aggregates record
values as JSON efficiently, and the aggregate function
<function>json_object_agg</function>, which aggregates pairs of values
values as JSON, and the aggregate function
<function>json_object_agg</function> which aggregates pairs of values
into a JSON object.
</para>
</sect1>
......
......@@ -416,7 +416,7 @@
<para>
Of the two operator classes for type <type>jsonb</>, <literal>jsonb_ops</>
is the default. <literal>jsonb_hash_ops</> supports fewer operators but
will work with larger indexed values than <literal>jsonb_ops</> can support.
offers better performance for those operators.
</para>
</sect1>
......
......@@ -15,118 +15,148 @@
JSON data types are for storing JSON (JavaScript Object Notation)
data, as specified in <ulink url="http://rfc7159.net/rfc7159">RFC
7159</ulink>. Such data can also be stored as <type>text</type>, but
both JSON data types have the advantage of enforcing that each
stored value is a valid JSON value. There are also related support
functions available; see <xref linkend="functions-json">.
the JSON data types have the advantage of enforcing that each
stored value is valid according to the JSON rules. There are also
assorted JSON-specific functions available for data stored in these
data types; see <xref linkend="functions-json">.
</para>
<para>
There are two JSON data types: <type>json</> and <type>jsonb</>.
Both accept <emphasis>almost</emphasis> identical sets of values as
They accept <emphasis>almost</> identical sets of values as
input. The major practical difference is one of efficiency. The
<type>json</> data type stores an exact copy of the input text,
which processing functions must continually reparse, while
which processing functions must reparse on each execution; while
<type>jsonb</> data is stored in a decomposed binary format that
makes it slightly less efficient to input due to added serialization
makes it slightly slower to input due to added conversion
overhead, but significantly faster to process, since it never needs
reparsing. <type>jsonb</> also supports advanced
<acronym>GIN</acronym> indexing, which is a further significant
advantage.
reparsing. <type>jsonb</> also supports indexing, which can be a
significant advantage.
</para>
<para>
The other difference between the types is that the <type>json</>
type is guaranteed to contain an exact copy of the input, including
preservation of semantically insignificant white space, and the
order of keys within JSON objects (although <type>jsonb</> will
preserve trailing zeros within a JSON number). Also, because the
exact text is kept, if a JSON object within the value contains the
same key more than once, and has been stored using the <type>json</>
type, all the key/value pairs are kept. In that case, the
processing functions consider the last value as the operative one.
By contrast, <type>jsonb</> does not preserve white space, does not
preserve the order of object keys, and does not keep duplicate
object keys. Only the last value for a key specified in the input
is kept.
Because the <type>json</> type stores an exact copy of the input text, it
will preserve semantically-insignificant white space between tokens, as
well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, all the key/value
pairs are kept. (The processing functions consider the last value as the
operative one.) By contrast, <type>jsonb</> does not preserve white
space, does not preserve the order of object keys, and does not keep
duplicate object keys. Only the last value for a key specified in the
input is kept. <type>jsonb</> will preserve trailing zeros within a JSON
number, even though those are semantically insignificant for purposes such
as equality checks.
</para>
<para>
In general, most applications will prefer to store JSON data as
<type>jsonb</>, unless there are quite specialized needs.
In general, most applications should prefer to store JSON data as
<type>jsonb</>, unless there are quite specialized needs, such as
legacy assumptions about ordering of object keys.
</para>
<para>
<productname>PostgreSQL</productname> allows only one server
<productname>PostgreSQL</productname> allows only one character set
encoding per database. It is therefore not possible for the JSON
types to conform rigidly to the specification unless the server
types to conform rigidly to the JSON specification unless the database
encoding is UTF-8. Attempts to directly include characters which
cannot be represented in the server encoding will fail; conversely,
characters which can be represented in the server encoding but not
cannot be represented in the database encoding will fail; conversely,
characters which can be represented in the database encoding but not
in UTF-8 will be allowed. <literal>\uXXXX</literal> escapes are
allowed regardless of the server encoding, and are checked only for
allowed regardless of the database encoding, and are checked only for
syntactic correctness.
</para>
<sect2 id="json-types">
<title>Mapping of RFC-7159/JSON Primitive Types to <productname>PostgreSQL</productname> Types</title>
<table id="json-type-mapping-table">
<title>Mapping of type correspondence, notes</title>
<title>JSON scalar types and corresponding <productname>PostgreSQL</productname> types</title>
<tgroup cols="3">
<thead>
<row>
<entry><productname>PostgreSQL</productname> type</entry>
<entry>RFC-7159/JSON primitive type</entry>
<entry><productname>PostgreSQL</productname> type</entry>
<entry>Notes</entry>
</row>
</thead>
<tbody>
<row>
<entry><type>text</></entry>
<entry><type>string</></entry>
<entry>See general introductory notes on encoding and JSON</entry>
<entry><type>text</></entry>
<entry>See introductory notes on JSON and encoding</entry>
</row>
<row>
<entry><type>numeric</></entry>
<entry><type>number</></entry>
<entry><type>numeric</></entry>
<entry><literal>NaN</literal> and <literal>infinity</literal> values are disallowed</entry>
</row>
<row>
<entry><type>boolean</></entry>
<entry><type>boolean</></entry>
<entry>Only lowercase <literal>true</literal> and <literal>false</literal> values are accepted</entry>
<entry>Only lowercase <literal>true</literal> and <literal>false</literal> spellings are accepted</entry>
</row>
<row>
<entry><type>unknown</></entry>
<entry><type>null</></entry>
<entry>SQL <literal>NULL</literal> is orthogonal. NULL semantics do not apply.</entry>
<entry>(none)</entry>
<entry>SQL <literal>NULL</literal> is a different concept</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
Primitive types described by <acronym>RFC</> 7159 are effectively
internally mapped onto native
<productname>PostgreSQL</productname> types. Therefore, there are
When converting textual JSON input into <type>jsonb</>,
the primitive types described by <acronym>RFC</> 7159 are effectively
mapped onto native
<productname>PostgreSQL</productname> types, as shown in
<xref linkend="json-type-mapping-table">. Therefore, there are
some very minor additional constraints on what constitutes valid
<type>jsonb</type> that do not apply to the <type>json</type>
type, or to JSON in the abstract, that pertain to limits on what
can be represented by the underlying type system. These
type, nor to JSON in the abstract, corresponding to limits on what
can be represented by the underlying data type. Specifically,
<type>jsonb</> will reject numbers that are outside the range of
the <productname>PostgreSQL</productname> <type>numeric</> data type,
while <type>json</> will not. Such
implementation-defined restrictions are permitted by
<acronym>RFC</> 7159. However, in practice problems are far more
likely to occur in other implementations which internally
<acronym>RFC</> 7159. However, in practice such problems are far more
likely to occur in other implementations, as it is common to
represent the <type>number</> JSON primitive type as IEEE 754
double precision floating point values, which <acronym>RFC</> 7159
explicitly anticipates and allows for. When using JSON as an
double precision floating point (which <acronym>RFC</> 7159
explicitly anticipates and allows for). When using JSON as an
interchange format with such systems, the danger of losing numeric
precision in respect of data originally stored by
precision compared to data originally stored by
<productname>PostgreSQL</productname> should be considered.
</para>
<para>
Conversely, as noted above there are some minor restrictions on
Conversely, as noted in the table there are some minor restrictions on
the input format of JSON primitive types that do not apply to
corresponding <productname>PostgreSQL</productname> types.
the corresponding <productname>PostgreSQL</productname> types.
</para>
</sect2>
<sect2 id="json-keys-elements">
<title><type>jsonb</> Input and Output Syntax</title>
<para>
The input/output syntax for the JSON data types is as specified in
<acronym>RFC</> 7159.
</para>
<para>
The following are all valid <type>json</> (or <type>jsonb</>) expressions:
<programlisting>
-- Simple scalar/primitive value (explicitly required by RFC-7159)
SELECT '5'::json;
-- Array of heterogeneous, primitive-typed elements
SELECT '[1, 2, "foo", null]'::json;
-- Object of heterogeneous key/value pairs of primitive types
-- Note that key values are always strings
SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
</programlisting>
</para>
<para>
Note the distinction between scalar/primitive values as array elements,
keys and values.
</para>
</sect2>
<sect2 id="json-querying">
......@@ -144,46 +174,19 @@
summarize a set of <quote>documents</> (datums) in a table.
</para>
<para>
<type>jsonb</> data is subject to the same concurrency control
<type>json</> data is subject to the same concurrency control
considerations as any other datatype when stored in a table.
Although storing large documents is practicable, in order to ensure
correct behavior row-level locks are, quite naturally, acquired as
rows are updated. Consider keeping <type>jsonb</> documents at a
rows are updated. Consider keeping <type>json</> documents at a
manageable size in order to decrease lock contention among updating
transactions. Ideally, <type>jsonb</> documents should each
transactions. Ideally, <type>json</> documents should each
represent an atomic datum that business rules dictate cannot
reasonably be further subdivided into smaller atomic datums that
can be independently modified.
</para>
</sect2>
<sect2 id="json-keys-elements">
<title><type>jsonb</> Input and Output Syntax</title>
<para>
In effect, <type>jsonb</> has an internal type system whose
implementation is defined in terms of several particular ordinary
<productname>PostgreSQL</productname> types. The SQL parser does
not have direct knowledge of the internal types that constitute a
<type>jsonb</>.
</para>
<para>
The following are all valid <type>jsonb</> expressions:
<programlisting>
-- Simple scalar/primitive value (explicitly required by RFC-7159)
SELECT '5'::jsonb;
-- Array of heterogeneous, primitive-typed elements
SELECT '[1, 2, "foo", null]'::jsonb;
-- Object of heterogeneous key/value pairs of primitive types
-- Note that key values are always strings
SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
</programlisting>
</para>
<para>
Note the distinction between scalar/primitive values as elements,
keys and values.
</para>
</sect2>
<sect2 id="json-containment">
<title><type>jsonb</> containment</title>
<indexterm>
......@@ -199,7 +202,7 @@ SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
technically, top-down, unordered <emphasis>subtree isomorphism</>
may be tested. Containment is conventionally tested using the
<literal>@&gt;</> operator, which is made indexable by various
operator classes discussed later in this section.
operator classes discussed below.
</para>
<programlisting>
-- Simple scalar/primitive values may contain only each other:
......@@ -249,45 +252,47 @@ SELECT '{"p":1, "a":{"b":3, "q":11}, "i":77}'::jsonb @> '{"a":{"b":3}}'::jsonb;
</programlisting>
<para>
The various containment operators, along with all other JSON
operators and support functions are documented fully within <xref
linkend="functions-json">, <xref
linkend="functions-jsonb-op-table">.
operators and support functions are documented in <xref
linkend="functions-json">.
</para>
</sect2>
<sect2 id="json-indexing">
<title><type>jsonb</> GIN Indexing</title>
<title><type>jsonb</> Indexing</title>
<indexterm>
<primary>jsonb</primary>
<secondary>indexes on</secondary>
</indexterm>
<para>
<type>jsonb</> GIN indexes can be used to efficiently search among
more than one possible key/value pair within a single
<type>jsonb</> datum/document, among a large number of such
documents within a column in a table (i.e. among many rows).
<type>jsonb</> GIN indexes can be used to efficiently search for
keys or key/value pairs occurring within a large number of
<type>jsonb</> documents (datums).
Two GIN <quote>operator classes</> are provided, offering different
performance and flexibility tradeoffs.
</para>
<para>
<type>jsonb</> has GIN index support for the <literal>@&gt;</>,
<literal>?</>, <literal>?&amp;</> and <literal>?|</> operators.
The default GIN operator class makes all these operators
indexable:
</para>
The default GIN operator class supports queries with the
<literal>@&gt;</>, <literal>?</>, <literal>?&amp;</> and <literal>?|</>
operators.
(For details of the semantics that these operators
implement, see <xref linkend="functions-jsonb-op-table">.)
An example of creating an index with this operator class is:
<programlisting>
-- GIN index (default opclass)
CREATE INDEX idxgin ON api USING GIN (jdoc);
-- GIN jsonb_hash_ops index
CREATE INDEX idxginh ON api USING GIN (jdoc jsonb_hash_ops);
CREATE INDEX idxgin ON api USING gin (jdoc);
</programlisting>
<para>
The non-default GIN operator class <literal>jsonb_hash_ops</>
supports indexing the <literal>@&gt;</> operator only.
An example of creating an index with this operator class is:
<programlisting>
CREATE INDEX idxginh ON api USING gin (jdoc jsonb_hash_ops);
</programlisting>
</para>
<para>
Consider the example of a table that stores JSON documents
retrieved from a third-party web service, with a documented schema
definition. An example of a document retrieved from this web
service is as follows:
definition. A typical document is:
<programlisting>
{
"guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",
......@@ -305,85 +310,67 @@ CREATE INDEX idxginh ON api USING GIN (jdoc jsonb_hash_ops);
]
}
</programlisting>
If a GIN index is created on the table that stores these
documents, <literal>api</literal>, on its <literal>jdoc</>
<type>jsonb</> column, we can expect that queries like the
following may make use of the index:
We store these documents in a table named <structname>api</>,
in a <type>jsonb</> column named <structfield>jdoc</>.
If a GIN index is created on this column,
queries like the following can make use of the index:
<programlisting>
-- Note that both key and value have been specified
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @&gt; '{"company": "Magnafone"}';
SELECT jdoc-&gt;'guid', jdoc-&gt;'name' FROM api WHERE jdoc @&gt; '{"company": "Magnafone"}';
</programlisting>
However, the index could not be used for queries like the
following, due to the aforementioned nesting restriction:
following, because though the operator <literal>?</> is indexable,
it is not applied directly to the indexed column <structfield>jdoc</>:
<programlisting>
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';
SELECT jdoc-&gt;'guid', jdoc-&gt;'name' FROM api WHERE jdoc -&gt; 'tags' ? 'qui';
</programlisting>
Still, with judicious use of expressional indexing, the above
Still, with judicious use of expression indexes, the above
query can use an index scan. If there is a requirement to find
those records with a particular tag quickly, and the tags have a
high cardinality across all documents, defining an index as
follows is an effective approach to indexing:
<programlisting>
-- Note that the "jsonb -> text" operator can only be called on an
-- object, so as a consequence of creating this index the root "jdoc"
-- datum must be an object. This is enforced during insertion.
CREATE INDEX idxgin ON api USING GIN ((jdoc -> 'tags'));
-- Note that the "jsonb -&gt; text" operator can only be called on an
-- object, so as a consequence of creating this index the root of each
-- "jdoc" value must be an object. This is enforced during insertion.
CREATE INDEX idxgintags ON api USING gin ((jdoc -&gt; 'tags'));
</programlisting>
Now, the <literal>WHERE</> clause <literal>jdoc -&gt; 'tags' ? 'qui'</>
will be recognized as an application of the indexable
operator <literal>?</> to the indexed
expression <literal>jdoc -&gt; 'tags'</>.
(More information on expression indexes can be found in <xref
linkend="indexes-expressional">.)
</para>
<para>
Expressional indexes are discussed in <xref
linkend="indexes-expressional">.
</para>
<para>
For the most flexible approach in terms of what may be indexed,
sophisticated querying on nested structures is possible by
exploiting containment. At the cost of having to create an index
on the entire structure for each row, and not just a nested
subset, we may exploit containment semantics to get an equivalent
result with a non-expressional index on the entire <quote>jdoc</>
column, <emphasis>without</> ever having to create additional
expressional indexes against the document (provided only
containment will be tested). While the index will be considerably
larger than our expression index, it will also be much more
flexible, allowing arbitrary structured searching. Such an index
can generally be expected to help with a query like the following:
</para>
Another approach to querying is to exploit containment, for example:
<programlisting>
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @&gt; '{"tags": ["qui"]}';
SELECT jdoc-&gt;'guid', jdoc-&gt;'name' FROM api WHERE jdoc @&gt; '{"tags": ["qui"]}';
</programlisting>
<para>
For full details of the semantics that these indexable operators
implement, see <xref linkend="functions-json">, <xref
linkend="functions-jsonb-op-table">.
</para>
</sect2>
<sect2 id="json-opclass">
<title><type>jsonb</> non-default GIN operator class</title>
<indexterm>
<primary>jsonb</primary>
<secondary>indexes on</secondary>
</indexterm>
<para>
Although only the <literal>@&gt;</> operator is made indexable, a
<literal>jsonb_hash_ops</literal> operator class GIN index has
some notable advantages over an equivalent GIN index of the
default GIN operator class for <type>jsonb</type>. Search
operations typically perform considerably better, and the on-disk
size of a <literal>jsonb_hash_ops</literal> operator class GIN
index can be much smaller.
This approach uses a single GIN index covering everything in the
<literal>jdoc</> column, whereas our expression index stored only
data found under the <literal>tags</> key. While the single-index
approach is certainly more flexible, targeted expression indexes
are likely to be smaller and faster to search than a single index.
</para>
</sect2>
<sect2 id="json-btree-indexing">
<title><type>jsonb</> B-Tree and hash indexing</title>
<para>
<type>jsonb</type> comparisons and related operations are
<emphasis>type-wise</>, in that the underlying
<productname>PostgreSQL</productname> datatype comparators are
invoked recursively, much like a traditional composite type.
Although the <literal>jsonb_hash_ops</literal> operator class supports
only queries with the <literal>@&gt;</> operator, it has notable
performance advantages over the default operator
class <literal>jsonb_ops</literal>. A <literal>jsonb_hash_ops</literal>
GIN index is usually much smaller than a <literal>jsonb_ops</literal>
index over the same data, and the specificity of searches is better,
particularly when queries contain tags that appear frequently in the
data. Therefore search operations typically perform considerably better
than with the default operator class.
</para>
<para>
<type>jsonb</> also supports <type>btree</> and <type>hash</>
indexes. Ordering between <type>jsonb</> datums is:
<type>jsonb</> also supports <literal>btree</> and <literal>hash</>
indexes. These are usually useful only if it's important to check
equality of complete JSON documents.
The <literal>btree</> ordering for <type>jsonb</> datums is:
<synopsis>
<replaceable>Object</replaceable> > <replaceable>Array</replaceable> > <replaceable>Boolean</replaceable> > <replaceable>Number</replaceable> > <replaceable>String</replaceable> > <replaceable>Null</replaceable>
......@@ -391,23 +378,24 @@ SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @&gt; '{"tags": ["qui"]}';
<replaceable>Array with n elements</replaceable> > <replaceable>array with n - 1 elements</replaceable>
</synopsis>
Subsequently, individual primitive type comparators are invoked.
All comparisons of JSON primitive types occurs using the same
comparison rules as the underlying
<productname>PostgreSQL</productname> types. Strings are
compared lexically, using the default database collation.
Objects with equal numbers of pairs are compared:
Objects with equal numbers of pairs are compared in the order:
<synopsis>
<replaceable>key-1</replaceable>, <replaceable>value-1</replaceable>, <replaceable>key-2</replaceable> ...
</synopsis>
Note however that object keys are compared in their storage order, and in particular,
since shorter keys are stored before longer keys, this can lead to results that might be
unintuitive, such as:
<programlisting>{ "aa": 1, "c": 1} > {"b": 1, "d": 1}</programlisting>
Note however that object keys are compared in their storage order, and
in particular, since shorter keys are stored before longer keys, this
can lead to results that might be unintuitive, such as:
<programlisting>
{ "aa": 1, "c": 1} > {"b": 1, "d": 1}
</programlisting>
Similarly, arrays with equal numbers of elements are compared:
<synopsis>
<replaceable>element-1</replaceable>, <replaceable>element-2</replaceable> ...
</synopsis>
Primitive JSON values are compared using the same
comparison rules as for the underlying
<productname>PostgreSQL</productname> data type. Strings are
compared using the default database collation.
</para>
</sect2>
</sect1>
......@@ -3618,14 +3618,14 @@ ALTER EXTENSION hstore UPDATE;
<listitem>
<para>
Allow <type>JSON</> values to be <link
linkend="functions-json-table">converted into records</link>
linkend="functions-json">converted into records</link>
(Andrew Dunstan)
</para>
</listitem>
<listitem>
<para>
Add <link linkend="functions-json-table">functions</link> to convert
Add <link linkend="functions-json">functions</link> to convert
scalars, records, and <type>hstore</> values to <type>JSON</> (Andrew
Dunstan)
</para>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment