Commit ca2b771e authored by Ajinkya Atul's avatar Ajinkya Atul

Complete Xv6 Shell Added

parents
formatting:
need to fix PAGEBREAK mechanism
sh:
can't always runcmd in child -- breaks cd.
maybe should hard-code PATH=/ ?
#include "types.h"
#include "stat.h"
#include "user.h"
#include "fcntl.h"
int main(void)
{
helloWorld();
exit(0);
}
The xv6 software is:
Copyright (c) 2006-2018 Frans Kaashoek, Robert Morris, Russ Cox,
Massachusetts Institute of Technology
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
OBJS = \
bio.o\
console.o\
exec.o\
file.o\
fs.o\
ide.o\
ioapic.o\
kalloc.o\
kbd.o\
lapic.o\
log.o\
main.o\
mp.o\
picirq.o\
pipe.o\
proc.o\
sleeplock.o\
spinlock.o\
string.o\
swtch.o\
syscall.o\
sysfile.o\
sysproc.o\
trapasm.o\
trap.o\
uart.o\
vectors.o\
vm.o\
# Cross-compiling (e.g., on Mac OS X)
# TOOLPREFIX = i386-jos-elf
# Using native tools (e.g., on X86 Linux)
#TOOLPREFIX =
# Try to infer the correct TOOLPREFIX if not set
ifndef TOOLPREFIX
TOOLPREFIX := $(shell if i386-jos-elf-objdump -i 2>&1 | grep '^elf32-i386$$' >/dev/null 2>&1; \
then echo 'i386-jos-elf-'; \
elif objdump -i 2>&1 | grep 'elf32-i386' >/dev/null 2>&1; \
then echo ''; \
else echo "***" 1>&2; \
echo "*** Error: Couldn't find an i386-*-elf version of GCC/binutils." 1>&2; \
echo "*** Is the directory with i386-jos-elf-gcc in your PATH?" 1>&2; \
echo "*** If your i386-*-elf toolchain is installed with a command" 1>&2; \
echo "*** prefix other than 'i386-jos-elf-', set your TOOLPREFIX" 1>&2; \
echo "*** environment variable to that prefix and run 'make' again." 1>&2; \
echo "*** To turn off this error, run 'gmake TOOLPREFIX= ...'." 1>&2; \
echo "***" 1>&2; exit 1; fi)
endif
# If the makefile can't find QEMU, specify its path here
# QEMU = qemu-system-i386
# Try to infer the correct QEMU
ifndef QEMU
QEMU = $(shell if which qemu > /dev/null; \
then echo qemu; exit; \
elif which qemu-system-i386 > /dev/null; \
then echo qemu-system-i386; exit; \
elif which qemu-system-x86_64 > /dev/null; \
then echo qemu-system-x86_64; exit; \
else \
qemu=/Applications/Q.app/Contents/MacOS/i386-softmmu.app/Contents/MacOS/i386-softmmu; \
if test -x $$qemu; then echo $$qemu; exit; fi; fi; \
echo "***" 1>&2; \
echo "*** Error: Couldn't find a working QEMU executable." 1>&2; \
echo "*** Is the directory containing the qemu binary in your PATH" 1>&2; \
echo "*** or have you tried setting the QEMU variable in Makefile?" 1>&2; \
echo "***" 1>&2; exit 1)
endif
CC = $(TOOLPREFIX)gcc
AS = $(TOOLPREFIX)gas
LD = $(TOOLPREFIX)ld
OBJCOPY = $(TOOLPREFIX)objcopy
OBJDUMP = $(TOOLPREFIX)objdump
CFLAGS = -fno-pic -static -fno-builtin -fno-strict-aliasing -O2 -Wall -MD -ggdb -m32 -Werror -fno-omit-frame-pointer
CFLAGS += $(shell $(CC) -fno-stack-protector -E -x c /dev/null >/dev/null 2>&1 && echo -fno-stack-protector)
ASFLAGS = -m32 -gdwarf-2 -Wa,-divide
# FreeBSD ld wants ``elf_i386_fbsd''
LDFLAGS += -m $(shell $(LD) -V | grep elf_i386 2>/dev/null | head -n 1)
# Disable PIE when possible (for Ubuntu 16.10 toolchain)
ifneq ($(shell $(CC) -dumpspecs 2>/dev/null | grep -e '[^f]no-pie'),)
CFLAGS += -fno-pie -no-pie
endif
ifneq ($(shell $(CC) -dumpspecs 2>/dev/null | grep -e '[^f]nopie'),)
CFLAGS += -fno-pie -nopie
endif
xv6.img: bootblock kernel
dd if=/dev/zero of=xv6.img count=10000
dd if=bootblock of=xv6.img conv=notrunc
dd if=kernel of=xv6.img seek=1 conv=notrunc
xv6memfs.img: bootblock kernelmemfs
dd if=/dev/zero of=xv6memfs.img count=10000
dd if=bootblock of=xv6memfs.img conv=notrunc
dd if=kernelmemfs of=xv6memfs.img seek=1 conv=notrunc
bootblock: bootasm.S bootmain.c
$(CC) $(CFLAGS) -fno-pic -O -nostdinc -I. -c bootmain.c
$(CC) $(CFLAGS) -fno-pic -nostdinc -I. -c bootasm.S
$(LD) $(LDFLAGS) -N -e start -Ttext 0x7C00 -o bootblock.o bootasm.o bootmain.o
$(OBJDUMP) -S bootblock.o > bootblock.asm
$(OBJCOPY) -S -O binary -j .text bootblock.o bootblock
./sign.pl bootblock
entryother: entryother.S
$(CC) $(CFLAGS) -fno-pic -nostdinc -I. -c entryother.S
$(LD) $(LDFLAGS) -N -e start -Ttext 0x7000 -o bootblockother.o entryother.o
$(OBJCOPY) -S -O binary -j .text bootblockother.o entryother
$(OBJDUMP) -S bootblockother.o > entryother.asm
initcode: initcode.S
$(CC) $(CFLAGS) -nostdinc -I. -c initcode.S
$(LD) $(LDFLAGS) -N -e start -Ttext 0 -o initcode.out initcode.o
$(OBJCOPY) -S -O binary initcode.out initcode
$(OBJDUMP) -S initcode.o > initcode.asm
kernel: $(OBJS) entry.o entryother initcode kernel.ld
$(LD) $(LDFLAGS) -T kernel.ld -o kernel entry.o $(OBJS) -b binary initcode entryother
$(OBJDUMP) -S kernel > kernel.asm
$(OBJDUMP) -t kernel | sed '1,/SYMBOL TABLE/d; s/ .* / /; /^$$/d' > kernel.sym
# kernelmemfs is a copy of kernel that maintains the
# disk image in memory instead of writing to a disk.
# This is not so useful for testing persistent storage or
# exploring disk buffering implementations, but it is
# great for testing the kernel on real hardware without
# needing a scratch disk.
MEMFSOBJS = $(filter-out ide.o,$(OBJS)) memide.o
kernelmemfs: $(MEMFSOBJS) entry.o entryother initcode kernel.ld fs.img
$(LD) $(LDFLAGS) -T kernel.ld -o kernelmemfs entry.o $(MEMFSOBJS) -b binary initcode entryother fs.img
$(OBJDUMP) -S kernelmemfs > kernelmemfs.asm
$(OBJDUMP) -t kernelmemfs | sed '1,/SYMBOL TABLE/d; s/ .* / /; /^$$/d' > kernelmemfs.sym
tags: $(OBJS) entryother.S _init
etags *.S *.c
vectors.S: vectors.pl
./vectors.pl > vectors.S
ULIB = ulib.o usys.o printf.o umalloc.o
_%: %.o $(ULIB)
$(LD) $(LDFLAGS) -N -e main -Ttext 0 -o $@ $^
$(OBJDUMP) -S $@ > $*.asm
$(OBJDUMP) -t $@ | sed '1,/SYMBOL TABLE/d; s/ .* / /; /^$$/d' > $*.sym
_forktest: forktest.o $(ULIB)
# forktest has less library code linked in - needs to be small
# in order to be able to max out the proc table.
$(LD) $(LDFLAGS) -N -e main -Ttext 0 -o _forktest forktest.o ulib.o usys.o
$(OBJDUMP) -S _forktest > forktest.asm
mkfs: mkfs.c fs.h
gcc -Werror -Wall -o mkfs mkfs.c
# Prevent deletion of intermediate files, e.g. cat.o, after first build, so
# that disk image changes after first build are persistent until clean. More
# details:
# http://www.gnu.org/software/make/manual/html_node/Chained-Rules.html
.PRECIOUS: %.o
UPROGS=\
_cat\
_echo\
_forktest\
_grep\
_init\
_kill\
_ln\
_ls\
_mkdir\
_rm\
_sh\
_stressfs\
_usertests\
_wc\
_zombie\
_testcase\
_testcase_openfiles\
_testcase_mem\
_HelloWorldTestCase\
_shell\
_procinfo\
_ps\
fs.img: mkfs README myfile $(UPROGS)
./mkfs fs.img README myfile $(UPROGS)
-include *.d
clean:
rm -f *.tex *.dvi *.idx *.aux *.log *.ind *.ilg \
*.o *.d *.asm *.sym vectors.S bootblock entryother \
initcode initcode.out kernel xv6.img fs.img kernelmemfs \
xv6memfs.img mkfs .gdbinit \
$(UPROGS)
# make a printout
FILES = $(shell grep -v '^\#' runoff.list)
PRINT = runoff.list runoff.spec README toc.hdr toc.ftr myfile $(FILES)
xv6.pdf: $(PRINT)
./runoff
ls -l xv6.pdf
print: xv6.pdf
# run in emulators
bochs : fs.img xv6.img
if [ ! -e .bochsrc ]; then ln -s dot-bochsrc .bochsrc; fi
bochs -q
# try to generate a unique GDB port
GDBPORT = $(shell expr `id -u` % 5000 + 25000)
# QEMU's gdb stub command line changed in 0.11
QEMUGDB = $(shell if $(QEMU) -help | grep -q '^-gdb'; \
then echo "-gdb tcp::$(GDBPORT)"; \
else echo "-s -p $(GDBPORT)"; fi)
ifndef CPUS
CPUS := 2
endif
QEMUOPTS = -drive file=fs.img,index=1,media=disk,format=raw -drive file=xv6.img,index=0,media=disk,format=raw -smp $(CPUS) -m 512 $(QEMUEXTRA)
qemu: fs.img xv6.img
$(QEMU) -serial mon:stdio $(QEMUOPTS)
qemu-memfs: xv6memfs.img
$(QEMU) -drive file=xv6memfs.img,index=0,media=disk,format=raw -smp $(CPUS) -m 256
qemu-nox: fs.img xv6.img
$(QEMU) -nographic $(QEMUOPTS)
.gdbinit: .gdbinit.tmpl
sed "s/localhost:1234/localhost:$(GDBPORT)/" < $^ > $@
qemu-gdb: fs.img xv6.img .gdbinit
@echo "*** Now run 'gdb'." 1>&2
$(QEMU) -serial mon:stdio $(QEMUOPTS) -S $(QEMUGDB)
qemu-nox-gdb: fs.img xv6.img .gdbinit
@echo "*** Now run 'gdb'." 1>&2
$(QEMU) -nographic $(QEMUOPTS) -S $(QEMUGDB)
# CUT HERE
# prepare dist for students
# after running make dist, probably want to
# rename it to rev0 or rev1 or so on and then
# check in that version.
EXTRA=\
mkfs.c ulib.c user.h cat.c echo.c forktest.c grep.c kill.c\
ln.c ls.c mkdir.c rm.c stressfs.c usertests.c wc.c zombie.c shell.c procinfo.c ps.c\
printf.c umalloc.c testcase.c HelloWorldTestCase.c testcase_mem.c testcase_openfiles.c\
README dot-bochsrc *.pl toc.* runoff runoff1 runoff.list myfile\
.gdbinit.tmpl gdbutil\
dist:
rm -rf dist
mkdir dist
for i in $(FILES); \
do \
grep -v PAGEBREAK $$i >dist/$$i; \
done
sed '/CUT HERE/,$$d' Makefile >dist/Makefile
echo >dist/runoff.spec
cp $(EXTRA) dist
dist-test:
rm -rf dist
make dist
rm -rf dist-test
mkdir dist-test
cp dist/* dist-test
cd dist-test; $(MAKE) print
cd dist-test; $(MAKE) bochs || true
cd dist-test; $(MAKE) qemu
# update this rule (change rev#) when it is time to
# make a new revision.
tar:
rm -rf /tmp/xv6
mkdir -p /tmp/xv6
cp dist/* dist/.gdbinit.tmpl /tmp/xv6
(cd /tmp; tar cf - xv6) | gzip >xv6-rev10.tar.gz # the next one will be 10 (9/17)
.PHONY: dist-test dist
bochs 2.2.6:
./configure --enable-smp --enable-disasm --enable-debugger --enable-all-optimizations --enable-4meg-pages --enable-global-pages --enable-pae --disable-reset-on-triple-fault
bochs CVS after 2.2.6:
./configure --enable-smp --enable-disasm --enable-debugger --enable-all-optimizations --enable-4meg-pages --enable-global-pages --enable-pae
bootmain.c doesn't work right if the ELF sections aren't
sector-aligned. so you can't use ld -N. and the sections may also need
to be non-zero length, only really matters for tiny "kernels".
kernel loaded at 1 megabyte. stack same place that bootasm.S left it.
kinit() should find real mem size
and rescue useable memory below 1 meg
no paging, no use of page table hardware, just segments
no user area: no magic kernel stack mapping
so no copying of kernel stack during fork
though there is a kernel stack page for each process
no kernel malloc(), just kalloc() for user core
user pointers aren't valid in the kernel
are interrupts turned on in the kernel? yes.
pass curproc explicitly, or implicit from cpu #?
e.g. argument to newproc()?
hmm, you need a global curproc[cpu] for trap() &c
no stack expansion
test running out of memory, process slots
we can't really use a separate stack segment, since stack addresses
need to work correctly as ordinary pointers. the same may be true of
data vs text. how can we have a gap between data and stack, so that
both can grow, without committing 4GB of physical memory? does this
mean we need paging?
perhaps have fixed-size stack, put it in the data segment?
oops, if kernel stack is in contiguous user phys mem, then moving
users' memory (e.g. to expand it) will wreck any pointers into the
kernel stack.
do we need to set fs and gs? so user processes can't abuse them?
setupsegs() may modify current segment table, is that legal?
trap() ought to lgdt on return, since currently only done in swtch()
protect hardware interrupt vectors from user INT instructions?
test out-of-fd cases for creating pipe.
test pipe reader closes then write
test two readers, two writers.
test children being inherited by grandparent &c
some sleep()s should be interruptible by kill()
locks
init_lock
sequences CPU startup
proc_table_lock
also protects next_pid
per-fd lock *just* protects count read-modify-write
also maybe freeness?
memory allocator
printf
in general, the table locks protect both free-ness and
public variables of table elements
in many cases you can use table elements w/o a lock
e.g. if you are the process, or you are using an fd
lock order
per-pipe lock
proc_table_lock fd_table_lock kalloc_lock
console_lock
do you have to be holding the mutex in order to call wakeup()? yes
device interrupts don't clear FL_IF
so a recursive timer interrupt is possible
what does inode->busy mean?
might be held across disk reads
no-one is allowed to do anything to the inode
protected by inode_table_lock
inode->count counts in-memory pointers to the struct
prevents inode[] element from being re-used
protected by inode_table_lock
blocks and inodes have ad-hoc sleep-locks
provide a single mechanism?
kalloc() can return 0; do callers handle this right?
test: one process unlinks a file while another links to it
test: one process opens a file while another deletes it
test: deadlock d/.. vs ../d, two processes.
test: dup() shared fd->off
test: does echo foo > x truncate x?
sh: ioredirection incorrect now we have pipes
sh: chain of pipes won't work, also ugly that parent closes fdarray entries too
sh: dynamic memory allocation?
sh: should sh support ; () &
sh: stop stdin on ctrl-d (for cat > y)
really should have bdwrite() for file content
and make some inode updates async
so soft updates make sense
disk scheduling
echo foo > bar should truncate bar
so O_CREATE should not truncate
but O_TRUNC should
make it work on a real machine
release before acquire at end of sleep?
check 2nd disk (i.e. if not in .bochsrc)
NOTE: we have stopped maintaining the x86 version of xv6, and switched
our efforts to the RISC-V version
(https://github.com/mit-pdos/xv6-riscv.git)
xv6 is a re-implementation of Dennis Ritchie's and Ken Thompson's Unix
Version 6 (v6). xv6 loosely follows the structure and style of v6,
but is implemented for a modern x86-based multiprocessor using ANSI C.
ACKNOWLEDGMENTS
xv6 is inspired by John Lions's Commentary on UNIX 6th Edition (Peer
to Peer Communications; ISBN: 1-57398-013-7; 1st edition (June 14,
2000)). See also https://pdos.csail.mit.edu/6.828/, which
provides pointers to on-line resources for v6.
xv6 borrows code from the following sources:
JOS (asm.h, elf.h, mmu.h, bootasm.S, ide.c, console.c, and others)
Plan 9 (entryother.S, mp.h, mp.c, lapic.c)
FreeBSD (ioapic.c)
NetBSD (console.c)
The following people have made contributions: Russ Cox (context switching,
locking), Cliff Frey (MP), Xiao Yu (MP), Nickolai Zeldovich, and Austin
Clements.
We are also grateful for the bug reports and patches contributed by Silas
Boyd-Wickizer, Anton Burtsev, Cody Cutler, Mike CAT, Tej Chajed, eyalz800,
Nelson Elhage, Saar Ettinger, Alice Ferrazzi, Nathaniel Filardo, Peter
Froehlich, Yakir Goaron,Shivam Handa, Bryan Henry, Jim Huang, Alexander
Kapshuk, Anders Kaseorg, kehao95, Wolfgang Keller, Eddie Kohler, Austin
Liew, Imbar Marinescu, Yandong Mao, Matan Shabtay, Hitoshi Mitake, Carmi
Merimovich, Mark Morrissey, mtasm, Joel Nider, Greg Price, Ayan Shafqat,
Eldar Sehayek, Yongming Shen, Cam Tenny, tyfkda, Rafael Ubal, Warren
Toomey, Stephen Tu, Pablo Ventura, Xi Wang, Keiichi Watanabe, Nicolas
Wolovick, wxdao, Grant Wu, Jindong Zhang, Icenowy Zheng, and Zou Chang Wei.
The code in the files that constitute xv6 is
Copyright 2006-2018 Frans Kaashoek, Robert Morris, and Russ Cox.
ERROR REPORTS
We don't process error reports (see note on top of this file).
BUILDING AND RUNNING XV6
To build xv6 on an x86 ELF machine (like Linux or FreeBSD), run
"make". On non-x86 or non-ELF machines (like OS X, even on x86), you
will need to install a cross-compiler gcc suite capable of producing
x86 ELF binaries (see https://pdos.csail.mit.edu/6.828/).
Then run "make TOOLPREFIX=i386-jos-elf-". Now install the QEMU PC
simulator and run "make qemu".
\ No newline at end of file
This file lists subtle things that might not be commented
as well as they should be in the source code and that
might be worth pointing out in a longer explanation or in class.
---
[2009/07/12: No longer relevant; forkret1 changed
and this is now cleaner.]
forkret1 in trapasm.S is called with a tf argument.
In order to use it, forkret1 copies the tf pointer into
%esp and then jumps to trapret, which pops the
register state out of the trap frame. If an interrupt
came in between the mov tf, %esp and the iret that
goes back out to user space, the interrupt stack frame
would end up scribbling over the tf and whatever memory
lay under it.
Why is this safe? Because forkret1 is only called
the first time a process returns to user space, and
at that point, cp->tf is set to point to a trap frame
constructed at the top of cp's kernel stack. So tf
*is* a valid %esp that can hold interrupt state.
If other tf's were used in forkret1, we could add
a cli before the mov tf, %esp.
---
In pushcli, must cli() no matter what. It is not safe to do
if(cpus[cpu()].ncli == 0)
cli();
cpus[cpu()].ncli++;
because if interrupts are off then we might call cpu(), get
rescheduled to a different cpu, look at cpus[oldcpu].ncli,
and wrongly decide not to disable interrupts on the new cpu.
Instead do
cli();
cpus[cpu()].ncli++;
always.
---
There is a (harmless) race in pushcli, which does
eflags = readeflags();
cli();
if(c->ncli++ == 0)
c->intena = eflags & FL_IF;
Consider a bottom-level pushcli.
If interrupts are disabled already, then the right thing
happens: read_eflags finds that FL_IF is not set,
and intena = 0. If interrupts are enabled, then
it is less clear that the right thing happens:
the readeflags can execute, then the process
can get preempted and rescheduled on another cpu,
and then once it starts running, perhaps with
interrupts disabled (can happen since the scheduler
only enables interrupts once per scheduling loop,
not every time it schedules a process), it will
incorrectly record that interrupts *were* enabled.
This doesn't matter, because if it was safe to be
running with interrupts enabled before the context
switch, it is still safe (and arguably more correct)
to run with them enabled after the context switch too.
In fact it would be safe if scheduler always set
c->intena = 1;
before calling swtch, and perhaps it should.
---
The x86's processor-ordering memory model
matches spin locks well, so no explicit memory
synchronization instructions are required in
acquire and release.
Consider two sequences of code on different CPUs:
CPU0
A;
release(lk);
and
CPU1
acquire(lk);
B;
We want to make sure that:
- all reads in B see the effects of writes in A.
- all reads in A do *not* see the effects of writes in B.
The x86 guarantees that writes in A will go out
to memory before the write of lk->locked = 0 in
release(lk). It further guarantees that CPU1
will observe CPU0's write of lk->locked = 0 only
after observing the earlier writes by CPU0.
So any reads in B are guaranteed to observe the
effects of writes in A.
According to the Intel manual behavior spec, the
second condition requires a serialization instruction
in release, to avoid reads in A happening after giving
up lk. No Intel SMP processor in existence actually
moves reads down after writes, but the language in
the spec allows it. There is no telling whether future
processors will need it.
---
The code in fork needs to read np->pid before
setting np->state to RUNNABLE. The following
is not a correct way to do this:
int
fork(void)
{
...
np->state = RUNNABLE;
return np->pid; // oops
}
After setting np->state to RUNNABLE, some other CPU
might run the process, it might exit, and then it might
get reused for a different process (with a new pid), all
before the return statement. So it's not safe to just
"return np->pid". Even saving a copy of np->pid before
setting np->state isn't safe, since the compiler is
allowed to re-order statements.
The real code saves a copy of np->pid, then acquires a lock
around the write to np->state. The acquire() prevents the
compiler from re-ordering.
File added
//
// assembler macros to create x86 segments
//
#define SEG_NULLASM \
.word 0, 0; \
.byte 0, 0, 0, 0
// The 0xC0 means the limit is in 4096-byte units
// and (for executable segments) 32-bit mode.
#define SEG_ASM(type,base,lim) \
.word (((lim) >> 12) & 0xffff), ((base) & 0xffff); \
.byte (((base) >> 16) & 0xff), (0x90 | (type)), \
(0xC0 | (((lim) >> 28) & 0xf)), (((base) >> 24) & 0xff)
#define STA_X 0x8 // Executable segment
#define STA_W 0x2 // Writeable (non-executable segments)
#define STA_R 0x2 // Readable (executable segments)
// Buffer cache.
//
// The buffer cache is a linked list of buf structures holding
// cached copies of disk block contents. Caching disk blocks
// in memory reduces the number of disk reads and also provides
// a synchronization point for disk blocks used by multiple processes.
//
// Interface:
// * To get a buffer for a particular disk block, call bread.
// * After changing buffer data, call bwrite to write it to disk.
// * When done with the buffer, call brelse.
// * Do not use the buffer after calling brelse.
// * Only one process at a time can use a buffer,
// so do not keep them longer than necessary.
//
// The implementation uses two state flags internally:
// * B_VALID: the buffer data has been read from the disk.
// * B_DIRTY: the buffer data has been modified
// and needs to be written to disk.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "fs.h"
#include "buf.h"
struct {
struct spinlock lock;
struct buf buf[NBUF];
// Linked list of all buffers, through prev/next.
// head.next is most recently used.
struct buf head;
} bcache;
void
binit(void)
{
struct buf *b;
initlock(&bcache.lock, "bcache");
//PAGEBREAK!
// Create linked list of buffers
bcache.head.prev = &bcache.head;
bcache.head.next = &bcache.head;
for(b = bcache.buf; b < bcache.buf+NBUF; b++){
b->next = bcache.head.next;
b->prev = &bcache.head;
initsleeplock(&b->lock, "buffer");
bcache.head.next->prev = b;
bcache.head.next = b;
}
}
// Look through buffer cache for block on device dev.
// If not found, allocate a buffer.
// In either case, return locked buffer.
static struct buf*
bget(uint dev, uint blockno)
{
struct buf *b;
acquire(&bcache.lock);
// Is the block already cached?
for(b = bcache.head.next; b != &bcache.head; b = b->next){
if(b->dev == dev && b->blockno == blockno){
b->refcnt++;
release(&bcache.lock);
acquiresleep(&b->lock);
return b;
}
}
// Not cached; recycle an unused buffer.
// Even if refcnt==0, B_DIRTY indicates a buffer is in use
// because log.c has modified it but not yet committed it.
for(b = bcache.head.prev; b != &bcache.head; b = b->prev){
if(b->refcnt == 0 && (b->flags & B_DIRTY) == 0) {
b->dev = dev;
b->blockno = blockno;
b->flags = 0;
b->refcnt = 1;
release(&bcache.lock);
acquiresleep(&b->lock);
return b;
}
}
panic("bget: no buffers");
}
// Return a locked buf with the contents of the indicated block.
struct buf*
bread(uint dev, uint blockno)
{
struct buf *b;
b = bget(dev, blockno);
if((b->flags & B_VALID) == 0) {
iderw(b);
}
return b;
}
// Write b's contents to disk. Must be locked.
void
bwrite(struct buf *b)
{
if(!holdingsleep(&b->lock))
panic("bwrite");
b->flags |= B_DIRTY;
iderw(b);
}
// Release a locked buffer.
// Move to the head of the MRU list.
void
brelse(struct buf *b)
{
if(!holdingsleep(&b->lock))
panic("brelse");
releasesleep(&b->lock);
acquire(&bcache.lock);
b->refcnt--;
if (b->refcnt == 0) {
// no one is waiting for it.
b->next->prev = b->prev;
b->prev->next = b->next;
b->next = bcache.head.next;
b->prev = &bcache.head;
bcache.head.next->prev = b;
bcache.head.next = b;
}
release(&bcache.lock);
}
//PAGEBREAK!
// Blank page.
#include "asm.h"
#include "memlayout.h"
#include "mmu.h"
# Start the first CPU: switch to 32-bit protected mode, jump into C.
# The BIOS loads this code from the first sector of the hard disk into
# memory at physical address 0x7c00 and starts executing in real mode
# with %cs=0 %ip=7c00.
.code16 # Assemble for 16-bit mode
.globl start
start:
cli # BIOS enabled interrupts; disable
# Zero data segment registers DS, ES, and SS.
xorw %ax,%ax # Set %ax to zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment
# Physical address line A20 is tied to zero so that the first PCs
# with 2 MB would run software that assumed 1 MB. Undo that.
seta20.1:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20.1
movb $0xd1,%al # 0xd1 -> port 0x64
outb %al,$0x64
seta20.2:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20.2
movb $0xdf,%al # 0xdf -> port 0x60
outb %al,$0x60
# Switch from real to protected mode. Use a bootstrap GDT that makes
# virtual addresses map directly to physical addresses so that the
# effective memory map doesn't change during the transition.
lgdt gdtdesc
movl %cr0, %eax
orl $CR0_PE, %eax
movl %eax, %cr0
//PAGEBREAK!
# Complete the transition to 32-bit protected mode by using a long jmp
# to reload %cs and %eip. The segment descriptors are set up with no
# translation, so that the mapping is still the identity mapping.
ljmp $(SEG_KCODE<<3), $start32
.code32 # Tell assembler to generate 32-bit code now.
start32:
# Set up the protected-mode data segment registers
movw $(SEG_KDATA<<3), %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %ss # -> SS: Stack Segment
movw $0, %ax # Zero segments not ready for use
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS
# Set up the stack pointer and call into C.
movl $start, %esp
call bootmain
# If bootmain returns (it shouldn't), trigger a Bochs
# breakpoint if running under Bochs, then loop.
movw $0x8a00, %ax # 0x8a00 -> port 0x8a00
movw %ax, %dx
outw %ax, %dx
movw $0x8ae0, %ax # 0x8ae0 -> port 0x8a00
outw %ax, %dx
spin:
jmp spin
# Bootstrap GDT
.p2align 2 # force 4 byte alignment
gdt:
SEG_NULLASM # null seg
SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg
SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg
gdtdesc:
.word (gdtdesc - gdt - 1) # sizeof(gdt) - 1
.long gdt # address gdt
// Boot loader.
//
// Part of the boot block, along with bootasm.S, which calls bootmain().
// bootasm.S has put the processor into protected 32-bit mode.
// bootmain() loads an ELF kernel image from the disk starting at
// sector 1 and then jumps to the kernel entry routine.
#include "types.h"
#include "elf.h"
#include "x86.h"
#include "memlayout.h"
#define SECTSIZE 512
void readseg(uchar*, uint, uint);
void
bootmain(void)
{
struct elfhdr *elf;
struct proghdr *ph, *eph;
void (*entry)(void);
uchar* pa;
elf = (struct elfhdr*)0x10000; // scratch space
// Read 1st page off disk
readseg((uchar*)elf, 4096, 0);
// Is this an ELF executable?
if(elf->magic != ELF_MAGIC)
return; // let bootasm.S handle error
// Load each program segment (ignores ph flags).
ph = (struct proghdr*)((uchar*)elf + elf->phoff);
eph = ph + elf->phnum;
for(; ph < eph; ph++){
pa = (uchar*)ph->paddr;
readseg(pa, ph->filesz, ph->off);
if(ph->memsz > ph->filesz)
stosb(pa + ph->filesz, 0, ph->memsz - ph->filesz);
}
// Call the entry point from the ELF header.
// Does not return!
entry = (void(*)(void))(elf->entry);
entry();
}
void
waitdisk(void)
{
// Wait for disk ready.
while((inb(0x1F7) & 0xC0) != 0x40)
;
}
// Read a single sector at offset into dst.
void
readsect(void *dst, uint offset)
{
// Issue command.
waitdisk();
outb(0x1F2, 1); // count = 1
outb(0x1F3, offset);
outb(0x1F4, offset >> 8);
outb(0x1F5, offset >> 16);
outb(0x1F6, (offset >> 24) | 0xE0);
outb(0x1F7, 0x20); // cmd 0x20 - read sectors
// Read data.
waitdisk();
insl(0x1F0, dst, SECTSIZE/4);
}
// Read 'count' bytes at 'offset' from kernel into physical address 'pa'.
// Might copy more than asked.
void
readseg(uchar* pa, uint count, uint offset)
{
uchar* epa;
epa = pa + count;
// Round down to sector boundary.
pa -= offset % SECTSIZE;
// Translate from bytes to sectors; kernel starts at sector 1.
offset = (offset / SECTSIZE) + 1;
// If this is too slow, we could read lots of sectors at a time.
// We'd write more to memory than asked, but it doesn't matter --
// we load in increasing order.
for(; pa < epa; pa += SECTSIZE, offset++)
readsect(pa, offset);
}
struct buf {
int flags;
uint dev;
uint blockno;
struct sleeplock lock;
uint refcnt;
struct buf *prev; // LRU cache list
struct buf *next;
struct buf *qnext; // disk queue
uchar data[BSIZE];
};
#define B_VALID 0x2 // buffer has been read from disk
#define B_DIRTY 0x4 // buffer needs to be written to disk
#include "types.h"
#include "stat.h"
#include "user.h"
char buf[512];
void
cat(int fd)
{
int n;
while((n = read(fd, buf, sizeof(buf))) > 0) {
if (write(1, buf, n) != n) {
printf(1, "cat: write error\n");
exit(-1);
}
}
if(n < 0){
printf(1, "cat: read error\n");
exit(-1);
}
}
int
main(int argc, char *argv[])
{
int fd, i;
if(argc <= 1){
cat(0);
exit(0);
}
for(i = 1; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){
printf(1, "cat: cannot open %s\n", argv[i]);
exit(-1);
}
cat(fd);
close(fd);
}
exit(0);
}
// Console input and output.
// Input is from the keyboard or serial port.
// Output is written to the screen and serial port.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "traps.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "fs.h"
#include "file.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
static void consputc(int);
static int panicked = 0;
static struct {
struct spinlock lock;
int locking;
} cons;
static void
printint(int xx, int base, int sign)
{
static char digits[] = "0123456789abcdef";
char buf[16];
int i;
uint x;
if(sign && (sign = xx < 0))
x = -xx;
else
x = xx;
i = 0;
do{
buf[i++] = digits[x % base];
}while((x /= base) != 0);
if(sign)
buf[i++] = '-';
while(--i >= 0)
consputc(buf[i]);
}
//PAGEBREAK: 50
// Print to the console. only understands %d, %x, %p, %s.
void
cprintf(char *fmt, ...)
{
int i, c, locking;
uint *argp;
char *s;
locking = cons.locking;
if(locking)
acquire(&cons.lock);
if (fmt == 0)
panic("null fmt");
argp = (uint*)(void*)(&fmt + 1);
for(i = 0; (c = fmt[i] & 0xff) != 0; i++){
if(c != '%'){
consputc(c);
continue;
}
c = fmt[++i] & 0xff;
if(c == 0)
break;
switch(c){
case 'd':
printint(*argp++, 10, 1);
break;
case 'x':
case 'p':
printint(*argp++, 16, 0);
break;
case 's':
if((s = (char*)*argp++) == 0)
s = "(null)";
for(; *s; s++)
consputc(*s);
break;
case '%':
consputc('%');
break;
default:
// Print unknown % sequence to draw attention.
consputc('%');
consputc(c);
break;
}
}
if(locking)
release(&cons.lock);
}
void
panic(char *s)
{
int i;
uint pcs[10];
cli();
cons.locking = 0;
// use lapiccpunum so that we can call panic from mycpu()
cprintf("lapicid %d: panic: ", lapicid());
cprintf(s);
cprintf("\n");
getcallerpcs(&s, pcs);
for(i=0; i<10; i++)
cprintf(" %p", pcs[i]);
panicked = 1; // freeze other CPU
for(;;)
;
}
//PAGEBREAK: 50
#define BACKSPACE 0x100
#define CRTPORT 0x3d4
static ushort *crt = (ushort*)P2V(0xb8000); // CGA memory
static void
cgaputc(int c)
{
int pos;
// Cursor position: col + 80*row.
outb(CRTPORT, 14);
pos = inb(CRTPORT+1) << 8;
outb(CRTPORT, 15);
pos |= inb(CRTPORT+1);
if(c == '\n')
pos += 80 - pos%80;
else if(c == BACKSPACE){
if(pos > 0) --pos;
} else
crt[pos++] = (c&0xff) | 0x0700; // black on white
if(pos < 0 || pos > 25*80)
panic("pos under/overflow");
if((pos/80) >= 24){ // Scroll up.
memmove(crt, crt+80, sizeof(crt[0])*23*80);
pos -= 80;
memset(crt+pos, 0, sizeof(crt[0])*(24*80 - pos));
}
outb(CRTPORT, 14);
outb(CRTPORT+1, pos>>8);
outb(CRTPORT, 15);
outb(CRTPORT+1, pos);
crt[pos] = ' ' | 0x0700;
}
void
consputc(int c)
{
if(panicked){
cli();
for(;;)
;
}
if(c == BACKSPACE){
uartputc('\b'); uartputc(' '); uartputc('\b');
} else
uartputc(c);
cgaputc(c);
}
#define INPUT_BUF 128
struct {
char buf[INPUT_BUF];
uint r; // Read index
uint w; // Write index
uint e; // Edit index
} input;
#define C(x) ((x)-'@') // Control-x
void
consoleintr(int (*getc)(void))
{
int c, doprocdump = 0;
acquire(&cons.lock);
while((c = getc()) >= 0){
switch(c){
case C('P'): // Process listing.
// procdump() locks cons.lock indirectly; invoke later
doprocdump = 1;
break;
case C('U'): // Kill line.
while(input.e != input.w &&
input.buf[(input.e-1) % INPUT_BUF] != '\n'){
input.e--;
consputc(BACKSPACE);
}
break;
case C('H'): case '\x7f': // Backspace
if(input.e != input.w){
input.e--;
consputc(BACKSPACE);
}
break;
default:
if(c != 0 && input.e-input.r < INPUT_BUF){
c = (c == '\r') ? '\n' : c;
input.buf[input.e++ % INPUT_BUF] = c;
consputc(c);
if(c == '\n' || c == C('D') || input.e == input.r+INPUT_BUF){
input.w = input.e;
wakeup(&input.r);
}
}
break;
}
}
release(&cons.lock);
if(doprocdump) {
procdump(); // now call procdump() wo. cons.lock held
}
}
int
consoleread(struct inode *ip, char *dst, int n)
{
uint target;
int c;
iunlock(ip);
target = n;
acquire(&cons.lock);
while(n > 0){
while(input.r == input.w){
if(myproc()->killed){
release(&cons.lock);
ilock(ip);
return -1;
}
sleep(&input.r, &cons.lock);
}
c = input.buf[input.r++ % INPUT_BUF];
if(c == C('D')){ // EOF
if(n < target){
// Save ^D for next time, to make sure
// caller gets a 0-byte result.
input.r--;
}
break;
}
*dst++ = c;
--n;
if(c == '\n')
break;
}
release(&cons.lock);
ilock(ip);
return target - n;
}
int
consolewrite(struct inode *ip, char *buf, int n)
{
int i;
iunlock(ip);
acquire(&cons.lock);
for(i = 0; i < n; i++)
consputc(buf[i] & 0xff);
release(&cons.lock);
ilock(ip);
return n;
}
void
consoleinit(void)
{
initlock(&cons.lock, "console");
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;
cons.locking = 1;
ioapicenable(IRQ_KBD, 0);
}
#!/usr/bin/perl
$| = 1;
sub writefile($@){
my ($file, @lines) = @_;
sleep(1);
open(F, ">$file") || die "open >$file: $!";
print F @lines;
close(F);
}
# Cut out #include lines that don't contribute anything.
for($i=0; $i<@ARGV; $i++){
$file = $ARGV[$i];
if(!open(F, $file)){
print STDERR "open $file: $!\n";
next;
}
@lines = <F>;
close(F);
$obj = "$file.o";
$obj =~ s/\.c\.o$/.o/;
system("touch $file");
if(system("make CC='gcc -Werror' $obj >/dev/null 2>\&1") != 0){
print STDERR "make $obj failed: $rv\n";
next;
}
system("cp $file =$file");
for($j=@lines-1; $j>=0; $j--){
if($lines[$j] =~ /^#include/){
$old = $lines[$j];
$lines[$j] = "/* CUT-H */\n";
writefile($file, @lines);
if(system("make CC='gcc -Werror' $obj >/dev/null 2>\&1") != 0){
$lines[$j] = $old;
}else{
print STDERR "$file $old";
}
}
}
writefile($file, grep {!/CUT-H/} @lines);
system("rm =$file");
}
struct rtcdate {
uint second;
uint minute;
uint hour;
uint day;
uint month;
uint year;
};
struct buf;
struct context;
struct file;
struct inode;
struct pipe;
struct proc;
struct rtcdate;
struct spinlock;
struct sleeplock;
struct stat;
struct superblock;
// bio.c
void binit(void);
struct buf* bread(uint, uint);
void brelse(struct buf*);
void bwrite(struct buf*);
// console.c
void consoleinit(void);
void cprintf(char*, ...);
void consoleintr(int(*)(void));
void panic(char*) __attribute__((noreturn));
// exec.c
int exec(char*, char**);
// file.c
struct file* filealloc(void);
void fileclose(struct file*);
struct file* filedup(struct file*);
void fileinit(void);
int fileread(struct file*, char*, int n);
int filestat(struct file*, struct stat*);
int filewrite(struct file*, char*, int n);
// fs.c
void readsb(int dev, struct superblock *sb);
int dirlink(struct inode*, char*, uint);
struct inode* dirlookup(struct inode*, char*, uint*);
struct inode* ialloc(uint, short);
struct inode* idup(struct inode*);
void iinit(int dev);
void ilock(struct inode*);
void iput(struct inode*);
void iunlock(struct inode*);
void iunlockput(struct inode*);
void iupdate(struct inode*);
int namecmp(const char*, const char*);
struct inode* namei(char*);
struct inode* nameiparent(char*, char*);
int readi(struct inode*, char*, uint, uint);
void stati(struct inode*, struct stat*);
int writei(struct inode*, char*, uint, uint);
// ide.c
void ideinit(void);
void ideintr(void);
void iderw(struct buf*);
// ioapic.c
void ioapicenable(int irq, int cpu);
extern uchar ioapicid;
void ioapicinit(void);
// kalloc.c
char* kalloc(void);
void kfree(char*);
void kinit1(void*, void*);
void kinit2(void*, void*);
// kbd.c
void kbdintr(void);
// lapic.c
void cmostime(struct rtcdate *r);
int lapicid(void);
extern volatile uint* lapic;
void lapiceoi(void);
void lapicinit(void);
void lapicstartap(uchar, uint);
void microdelay(int);
// log.c
void initlog(int dev);
void log_write(struct buf*);
void begin_op();
void end_op();
// mp.c
extern int ismp;
void mpinit(void);
// picirq.c
void picenable(int);
void picinit(void);
// pipe.c
int pipealloc(struct file**, struct file**);
void pipeclose(struct pipe*, int);
int piperead(struct pipe*, char*, int);
int pipewrite(struct pipe*, char*, int);
//PAGEBREAK: 16
// proc.c
int cpuid(void);
void exit(int);
int fork(void);
int growproc(int);
int kill(int);
struct cpu* mycpu(void);
struct proc* myproc();
void pinit(void);
void procdump(void);
void scheduler(void) __attribute__((noreturn));
void sched(void);
void setproc(struct proc*);
void sleep(void*, struct spinlock*);
void userinit(void);
int wait(int *);
void wakeup(void*);
void yield(void);
int helloWorld(void);
int numopenfiles(int pid);
int memalloc(int pid);
int getprocesstimedetails(int pid);
int psinfo(void);
// swtch.S
void swtch(struct context**, struct context*);
// spinlock.c
void acquire(struct spinlock*);
void getcallerpcs(void*, uint*);
int holding(struct spinlock*);
void initlock(struct spinlock*, char*);
void release(struct spinlock*);
void pushcli(void);
void popcli(void);
// sleeplock.c
void acquiresleep(struct sleeplock*);
void releasesleep(struct sleeplock*);
int holdingsleep(struct sleeplock*);
void initsleeplock(struct sleeplock*, char*);
// string.c
int memcmp(const void*, const void*, uint);
void* memmove(void*, const void*, uint);
void* memset(void*, int, uint);
char* safestrcpy(char*, const char*, int);
int strlen(const char*);
int strncmp(const char*, const char*, uint);
char* strncpy(char*, const char*, int);
// syscall.c
int argint(int, int*);
int argptr(int, char**, int);
int argstr(int, char**);
int fetchint(uint, int*);
int fetchstr(uint, char**);
void syscall(void);
// timer.c
void timerinit(void);
// trap.c
void idtinit(void);
extern uint ticks;
void tvinit(void);
extern struct spinlock tickslock;
// uart.c
void uartinit(void);
void uartintr(void);
void uartputc(int);
// vm.c
void seginit(void);
void kvmalloc(void);
pde_t* setupkvm(void);
char* uva2ka(pde_t*, char*);
int allocuvm(pde_t*, uint, uint);
int deallocuvm(pde_t*, uint, uint);
void freevm(pde_t*);
void inituvm(pde_t*, char*, uint);
int loaduvm(pde_t*, char*, struct inode*, uint, uint);
pde_t* copyuvm(pde_t*, uint);
void switchuvm(struct proc*);
void switchkvm(void);
int copyout(pde_t*, uint, void*, uint);
void clearpteu(pde_t *pgdir, char *uva);
// number of elements in fixed-size array
#define NELEM(x) (sizeof(x)/sizeof((x)[0]))
# You may now use double quotes around pathnames, in case
# your pathname includes spaces.
#=======================================================================
# CONFIG_INTERFACE
#
# The configuration interface is a series of menus or dialog boxes that
# allows you to change all the settings that control Bochs's behavior.
# There are two choices of configuration interface: a text mode version
# called "textconfig" and a graphical version called "wx". The text
# mode version uses stdin/stdout and is always compiled in. The graphical
# version is only available when you use "--with-wx" on the configure
# command. If you do not write a config_interface line, Bochs will
# choose a default for you.
#
# NOTE: if you use the "wx" configuration interface, you must also use
# the "wx" display library.
#=======================================================================
#config_interface: textconfig
#config_interface: wx
#=======================================================================
# DISPLAY_LIBRARY
#
# The display library is the code that displays the Bochs VGA screen. Bochs
# has a selection of about 10 different display library implementations for
# different platforms. If you run configure with multiple --with-* options,
# the display_library command lets you choose which one you want to run with.
# If you do not write a display_library line, Bochs will choose a default for
# you.
#
# The choices are:
# x use X windows interface, cross platform
# win32 use native win32 libraries
# carbon use Carbon library (for MacOS X)
# beos use native BeOS libraries
# macintosh use MacOS pre-10
# amigaos use native AmigaOS libraries
# sdl use SDL library, cross platform
# svga use SVGALIB library for Linux, allows graphics without X11
# term text only, uses curses/ncurses library, cross platform
# rfb provides an interface to AT&T's VNC viewer, cross platform
# wx use wxWidgets library, cross platform
# nogui no display at all
#
# NOTE: if you use the "wx" configuration interface, you must also use
# the "wx" display library.
#
# Specific options:
# Some display libraries now support specific option to control their
# behaviour. See the examples below for currently supported options.
#=======================================================================
#display_library: amigaos
#display_library: beos
#display_library: carbon
#display_library: macintosh
#display_library: nogui
#display_library: rfb, options="timeout=60" # time to wait for client
#display_library: sdl, options="fullscreen" # startup in fullscreen mode
#display_library: term
#display_library: win32, options="legacyF12" # use F12 to toggle mouse
#display_library: wx
#display_library: x
#=======================================================================
# ROMIMAGE:
# The ROM BIOS controls what the PC does when it first powers on.
# Normally, you can use a precompiled BIOS in the source or binary
# distribution called BIOS-bochs-latest. The ROM BIOS is usually loaded
# starting at address 0xf0000, and it is exactly 64k long.
# You can also use the environment variable $BXSHARE to specify the
# location of the BIOS.
# The usage of external large BIOS images (up to 512k) at memory top is
# now supported, but we still recommend to use the BIOS distributed with
# Bochs. Now the start address can be calculated from image size.
#=======================================================================
romimage: file=$BXSHARE/BIOS-bochs-latest
#romimage: file=mybios.bin, address=0xfff80000 # 512k at memory top
#romimage: file=mybios.bin # calculate start address from image size
#=======================================================================
# CPU:
# This defines cpu-related parameters inside Bochs:
#
# COUNT:
# Set the number of processors when Bochs is compiled for SMP emulation.
# Bochs currently supports up to 8 processors. If Bochs is compiled
# without SMP support, it won't accept values different from 1.
#
# IPS:
# Emulated Instructions Per Second. This is the number of IPS that bochs
# is capable of running on your machine. You can recompile Bochs with
# --enable-show-ips option enabled, to find your workstation's capability.
# Measured IPS value will then be logged into your log file or status bar
# (if supported by the gui).
#
# IPS is used to calibrate many time-dependent events within the bochs
# simulation. For example, changing IPS affects the frequency of VGA
# updates, the duration of time before a key starts to autorepeat, and
# the measurement of BogoMips and other benchmarks.
#
# Examples:
# Machine Mips
# ________________________________________________________________
# 2.1Ghz Athlon XP with Linux 2.6/g++ 3.4 12 to 15 Mips
# 1.6Ghz Intel P4 with Win2000/g++ 3.3 5 to 7 Mips
# 650Mhz Athlon K-7 with Linux 2.4.4/egcs-2.91.66 2 to 2.5 Mips
# 400Mhz Pentium II with Linux 2.0.36/egcs-1.0.3 1 to 1.8 Mips
#=======================================================================
cpu: count=2, ips=10000000
#=======================================================================
# MEGS
# Set the number of Megabytes of physical memory you want to emulate.
# The default is 32MB, most OS's won't need more than that.
# The maximum amount of memory supported is 2048Mb.
#=======================================================================
#megs: 256
#megs: 128
#megs: 64
megs: 32
#megs: 16
#megs: 8
#=======================================================================
# OPTROMIMAGE[1-4]:
# You may now load up to 4 optional ROM images. Be sure to use a
# read-only area, typically between C8000 and EFFFF. These optional
# ROM images should not overwrite the rombios (located at
# F0000-FFFFF) and the videobios (located at C0000-C7FFF).
# Those ROM images will be initialized by the bios if they contain
# the right signature (0x55AA) and a valid checksum.
# It can also be a convenient way to upload some arbitrary code/data
# in the simulation, that can be retrieved by the boot loader
#=======================================================================
#optromimage1: file=optionalrom.bin, address=0xd0000
#optromimage2: file=optionalrom.bin, address=0xd1000
#optromimage3: file=optionalrom.bin, address=0xd2000
#optromimage4: file=optionalrom.bin, address=0xd3000
#optramimage1: file=/path/file1.img, address=0x0010000
#optramimage2: file=/path/file2.img, address=0x0020000
#optramimage3: file=/path/file3.img, address=0x0030000
#optramimage4: file=/path/file4.img, address=0x0040000
#=======================================================================
# VGAROMIMAGE
# You now need to load a VGA ROM BIOS into C0000.
#=======================================================================
#vgaromimage: file=bios/VGABIOS-elpin-2.40
vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest
#vgaromimage: file=bios/VGABIOS-lgpl-latest-cirrus
#=======================================================================
# VGA:
# Here you can specify the display extension to be used. With the value
# 'none' you can use standard VGA with no extension. Other supported
# values are 'vbe' for Bochs VBE and 'cirrus' for Cirrus SVGA support.
#=======================================================================
#vga: extension=cirrus
#vga: extension=vbe
vga: extension=none
#=======================================================================
# FLOPPYA:
# Point this to pathname of floppy image file or device
# This should be of a bootable floppy(image/device) if you're
# booting from 'a' (or 'floppy').
#
# You can set the initial status of the media to 'ejected' or 'inserted'.
# floppya: 2_88=path, status=ejected (2.88M 3.5" floppy)
# floppya: 1_44=path, status=inserted (1.44M 3.5" floppy)
# floppya: 1_2=path, status=ejected (1.2M 5.25" floppy)
# floppya: 720k=path, status=inserted (720K 3.5" floppy)
# floppya: 360k=path, status=inserted (360K 5.25" floppy)
# floppya: 320k=path, status=inserted (320K 5.25" floppy)
# floppya: 180k=path, status=inserted (180K 5.25" floppy)
# floppya: 160k=path, status=inserted (160K 5.25" floppy)
# floppya: image=path, status=inserted (guess type from image size)
#
# The path should be the name of a disk image file. On Unix, you can use a raw
# device name such as /dev/fd0 on Linux. On win32 platforms, use drive letters
# such as a: or b: as the path. The parameter 'image' works with image files
# only. In that case the size must match one of the supported types.
#=======================================================================
floppya: 1_44=/dev/fd0, status=inserted
#floppya: image=../1.44, status=inserted
#floppya: 1_44=/dev/fd0H1440, status=inserted
#floppya: 1_2=../1_2, status=inserted
#floppya: 1_44=a:, status=inserted
#floppya: 1_44=a.img, status=inserted
#floppya: 1_44=/dev/rfd0a, status=inserted
#=======================================================================
# FLOPPYB:
# See FLOPPYA above for syntax
#=======================================================================
#floppyb: 1_44=b:, status=inserted
floppyb: 1_44=b.img, status=inserted
#=======================================================================
# ATA0, ATA1, ATA2, ATA3
# ATA controller for hard disks and cdroms
#
# ata[0-3]: enabled=[0|1], ioaddr1=addr, ioaddr2=addr, irq=number
#
# These options enables up to 4 ata channels. For each channel
# the two base io addresses and the irq must be specified.
#
# ata0 and ata1 are enabled by default with the values shown below
#
# Examples:
# ata0: enabled=1, ioaddr1=0x1f0, ioaddr2=0x3f0, irq=14
# ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15
# ata2: enabled=1, ioaddr1=0x1e8, ioaddr2=0x3e0, irq=11
# ata3: enabled=1, ioaddr1=0x168, ioaddr2=0x360, irq=9
#=======================================================================
ata0: enabled=1, ioaddr1=0x1f0, ioaddr2=0x3f0, irq=14
ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15
ata2: enabled=0, ioaddr1=0x1e8, ioaddr2=0x3e0, irq=11
ata3: enabled=0, ioaddr1=0x168, ioaddr2=0x360, irq=9
#=======================================================================
# ATA[0-3]-MASTER, ATA[0-3]-SLAVE
#
# This defines the type and characteristics of all attached ata devices:
# type= type of attached device [disk|cdrom]
# mode= only valid for disks [flat|concat|external|dll|sparse|vmware3]
# mode= only valid for disks [undoable|growing|volatile]
# path= path of the image
# cylinders= only valid for disks
# heads= only valid for disks
# spt= only valid for disks
# status= only valid for cdroms [inserted|ejected]
# biosdetect= type of biosdetection [none|auto], only for disks on ata0 [cmos]
# translation=type of translation of the bios, only for disks [none|lba|large|rechs|auto]
# model= string returned by identify device command
# journal= optional filename of the redolog for undoable and volatile disks
#
# Point this at a hard disk image file, cdrom iso file, or physical cdrom
# device. To create a hard disk image, try running bximage. It will help you
# choose the size and then suggest a line that works with it.
#
# In UNIX it may be possible to use a raw device as a Bochs hard disk,
# but WE DON'T RECOMMEND IT. In Windows there is no easy way.
#
# In windows, the drive letter + colon notation should be used for cdroms.
# Depending on versions of windows and drivers, you may only be able to
# access the "first" cdrom in the system. On MacOSX, use path="drive"
# to access the physical drive.
#
# The path is always mandatory. For flat hard disk images created with
# bximage geometry autodetection can be used (cylinders=0 -> cylinders are
# calculated using heads=16 and spt=63). For other hard disk images and modes
# the cylinders, heads, and spt are mandatory.
#
# Default values are:
# mode=flat, biosdetect=auto, translation=auto, model="Generic 1234"
#
# The biosdetect option has currently no effect on the bios
#
# Examples:
# ata0-master: type=disk, mode=flat, path=10M.sample, cylinders=306, heads=4, spt=17
# ata0-slave: type=disk, mode=flat, path=20M.sample, cylinders=615, heads=4, spt=17
# ata1-master: type=disk, mode=flat, path=30M.sample, cylinders=615, heads=6, spt=17
# ata1-slave: type=disk, mode=flat, path=46M.sample, cylinders=940, heads=6, spt=17
# ata2-master: type=disk, mode=flat, path=62M.sample, cylinders=940, heads=8, spt=17
# ata2-slave: type=disk, mode=flat, path=112M.sample, cylinders=900, heads=15, spt=17
# ata3-master: type=disk, mode=flat, path=483M.sample, cylinders=1024, heads=15, spt=63
# ata3-slave: type=cdrom, path=iso.sample, status=inserted
#=======================================================================
ata0-master: type=disk, mode=flat, path="xv6.img", cylinders=100, heads=10, spt=10
ata0-slave: type=disk, mode=flat, path="fs.img", cylinders=1024, heads=1, spt=1
#ata0-slave: type=cdrom, path=D:, status=inserted
#ata0-slave: type=cdrom, path=/dev/cdrom, status=inserted
#ata0-slave: type=cdrom, path="drive", status=inserted
#ata0-slave: type=cdrom, path=/dev/rcd0d, status=inserted
#=======================================================================
# BOOT:
# This defines the boot sequence. Now you can specify up to 3 boot drives.
# You can either boot from 'floppy', 'disk' or 'cdrom'
# legacy 'a' and 'c' are also supported
# Examples:
# boot: floppy
# boot: disk
# boot: cdrom
# boot: c
# boot: a
# boot: cdrom, floppy, disk
#=======================================================================
#boot: floppy
boot: disk
#=======================================================================
# CLOCK:
# This defines the parameters of the clock inside Bochs:
#
# SYNC:
# TO BE COMPLETED (see Greg explanation in feature request #536329)
#
# TIME0:
# Specifies the start (boot) time of the virtual machine. Use a time
# value as returned by the time(2) system call. If no time0 value is
# set or if time0 equal to 1 (special case) or if time0 equal 'local',
# the simulation will be started at the current local host time.
# If time0 equal to 2 (special case) or if time0 equal 'utc',
# the simulation will be started at the current utc time.
#
# Syntax:
# clock: sync=[none|slowdown|realtime|both], time0=[timeValue|local|utc]
#
# Example:
# clock: sync=none, time0=local # Now (localtime)
# clock: sync=slowdown, time0=315529200 # Tue Jan 1 00:00:00 1980
# clock: sync=none, time0=631148400 # Mon Jan 1 00:00:00 1990
# clock: sync=realtime, time0=938581955 # Wed Sep 29 07:12:35 1999
# clock: sync=realtime, time0=946681200 # Sat Jan 1 00:00:00 2000
# clock: sync=none, time0=1 # Now (localtime)
# clock: sync=none, time0=utc # Now (utc/gmt)
#
# Default value are sync=none, time0=local
#=======================================================================
#clock: sync=none, time0=local
#=======================================================================
# FLOPPY_BOOTSIG_CHECK: disabled=[0|1]
# Enables or disables the 0xaa55 signature check on boot floppies
# Defaults to disabled=0
# Examples:
# floppy_bootsig_check: disabled=0
# floppy_bootsig_check: disabled=1
#=======================================================================
#floppy_bootsig_check: disabled=1
floppy_bootsig_check: disabled=0
#=======================================================================
# LOG:
# Give the path of the log file you'd like Bochs debug and misc. verbiage
# to be written to. If you don't use this option or set the filename to
# '-' the output is written to the console. If you really don't want it,
# make it "/dev/null" (Unix) or "nul" (win32). :^(
#
# Examples:
# log: ./bochs.out
# log: /dev/tty
#=======================================================================
#log: /dev/null
log: bochsout.txt
#=======================================================================
# LOGPREFIX:
# This handles the format of the string prepended to each log line.
# You may use those special tokens :
# %t : 11 decimal digits timer tick
# %i : 8 hexadecimal digits of cpu current eip (ignored in SMP configuration)
# %e : 1 character event type ('i'nfo, 'd'ebug, 'p'anic, 'e'rror)
# %d : 5 characters string of the device, between brackets
#
# Default : %t%e%d
# Examples:
# logprefix: %t-%e-@%i-%d
# logprefix: %i%e%d
#=======================================================================
#logprefix: %t%e%d
#=======================================================================
# LOG CONTROLS
#
# Bochs now has four severity levels for event logging.
# panic: cannot proceed. If you choose to continue after a panic,
# don't be surprised if you get strange behavior or crashes.
# error: something went wrong, but it is probably safe to continue the
# simulation.
# info: interesting or useful messages.
# debug: messages useful only when debugging the code. This may
# spit out thousands per second.
#
# For events of each level, you can choose to crash, report, or ignore.
# TODO: allow choice based on the facility: e.g. crash on panics from
# everything except the cdrom, and only report those.
#
# If you are experiencing many panics, it can be helpful to change
# the panic action to report instead of fatal. However, be aware
# that anything executed after a panic is uncharted territory and can
# cause bochs to become unstable. The panic is a "graceful exit," so
# if you disable it you may get a spectacular disaster instead.
#=======================================================================
panic: action=ask
error: action=report
info: action=report
debug: action=ignore
#pass: action=fatal
#=======================================================================
# DEBUGGER_LOG:
# Give the path of the log file you'd like Bochs to log debugger output.
# If you really don't want it, make it /dev/null or '-'. :^(
#
# Examples:
# debugger_log: ./debugger.out
#=======================================================================
#debugger_log: /dev/null
#debugger_log: debugger.out
debugger_log: -
#=======================================================================
# COM1, COM2, COM3, COM4:
# This defines a serial port (UART type 16550A). In the 'term' you can specify
# a device to use as com1. This can be a real serial line, or a pty. To use
# a pty (under X/Unix), create two windows (xterms, usually). One of them will
# run bochs, and the other will act as com1. Find out the tty the com1
# window using the `tty' command, and use that as the `dev' parameter.
# Then do `sleep 1000000' in the com1 window to keep the shell from
# messing with things, and run bochs in the other window. Serial I/O to
# com1 (port 0x3f8) will all go to the other window.
# Other serial modes are 'null' (no input/output), 'file' (output to a file
# specified as the 'dev' parameter), 'raw' (use the real serial port - under
# construction for win32), 'mouse' (standard serial mouse - requires
# mouse option setting 'type=serial' or 'type=serial_wheel') and 'socket'
# (connect a networking socket).
#
# Examples:
# com1: enabled=1, mode=null
# com1: enabled=1, mode=mouse
# com2: enabled=1, mode=file, dev=serial.out
# com3: enabled=1, mode=raw, dev=com1
# com3: enabled=1, mode=socket, dev=localhost:8888
#=======================================================================
#com1: enabled=1, mode=term, dev=/dev/ttyp9
#=======================================================================
# PARPORT1, PARPORT2:
# This defines a parallel (printer) port. When turned on and an output file is
# defined the emulated printer port sends characters printed by the guest OS
# into the output file. On some platforms a device filename can be used to
# send the data to the real parallel port (e.g. "/dev/lp0" on Linux, "lpt1" on
# win32 platforms).
#
# Examples:
# parport1: enabled=1, file="parport.out"
# parport2: enabled=1, file="/dev/lp0"
# parport1: enabled=0
#=======================================================================
parport1: enabled=1, file="/dev/stdout"
#=======================================================================
# SB16:
# This defines the SB16 sound emulation. It can have several of the
# following properties.
# All properties are in the format sb16: property=value
# midi: The filename is where the midi data is sent. This can be a
# device or just a file if you want to record the midi data.
# midimode:
# 0=no data
# 1=output to device (system dependent. midi denotes the device driver)
# 2=SMF file output, including headers
# 3=output the midi data stream to the file (no midi headers and no
# delta times, just command and data bytes)
# wave: This is the device/file where wave output is stored
# wavemode:
# 0=no data
# 1=output to device (system dependent. wave denotes the device driver)
# 2=VOC file output, incl. headers
# 3=output the raw wave stream to the file
# log: The file to write the sb16 emulator messages to.
# loglevel:
# 0=no log
# 1=resource changes, midi program and bank changes
# 2=severe errors
# 3=all errors
# 4=all errors plus all port accesses
# 5=all errors and port accesses plus a lot of extra info
# dmatimer:
# microseconds per second for a DMA cycle. Make it smaller to fix
# non-continuous sound. 750000 is usually a good value. This needs a
# reasonably correct setting for the IPS parameter of the CPU option.
#
# For an example look at the next line:
#=======================================================================
#sb16: midimode=1, midi=/dev/midi00, wavemode=1, wave=/dev/dsp, loglevel=2, log=sb16.log, dmatimer=600000
#=======================================================================
# VGA_UPDATE_INTERVAL:
# Video memory is scanned for updates and screen updated every so many
# virtual seconds. The default is 40000, about 25Hz. Keep in mind that
# you must tweak the 'cpu: ips=N' directive to be as close to the number
# of emulated instructions-per-second your workstation can do, for this
# to be accurate.
#
# Examples:
# vga_update_interval: 250000
#=======================================================================
vga_update_interval: 300000
# using for Winstone '98 tests
#vga_update_interval: 100000
#=======================================================================
# KEYBOARD_SERIAL_DELAY:
# Approximate time in microseconds that it takes one character to
# be transfered from the keyboard to controller over the serial path.
# Examples:
# keyboard_serial_delay: 200
#=======================================================================
keyboard_serial_delay: 250
#=======================================================================
# KEYBOARD_PASTE_DELAY:
# Approximate time in microseconds between attempts to paste
# characters to the keyboard controller. This leaves time for the
# guest os to deal with the flow of characters. The ideal setting
# depends on how your operating system processes characters. The
# default of 100000 usec (.1 seconds) was chosen because it works
# consistently in Windows.
#
# If your OS is losing characters during a paste, increase the paste
# delay until it stops losing characters.
#
# Examples:
# keyboard_paste_delay: 100000
#=======================================================================
keyboard_paste_delay: 100000
#=======================================================================
# MOUSE:
# This option prevents Bochs from creating mouse "events" unless a mouse
# is enabled. The hardware emulation itself is not disabled by this.
# You can turn the mouse on by setting enabled to 1, or turn it off by
# setting enabled to 0. Unless you have a particular reason for enabling
# the mouse by default, it is recommended that you leave it off.
# You can also toggle the mouse usage at runtime (control key + middle
# mouse button on X11, SDL, wxWidgets and Win32).
# With the mouse type option you can select the type of mouse to emulate.
# The default value is 'ps2'. The other choices are 'imps2' (wheel mouse
# on PS/2), 'serial', 'serial_wheel' (one com port requires setting
# 'mode=mouse') and 'usb' (3-button mouse - one of the USB ports must be
# connected with the 'mouse' device - requires PCI and USB support).
#
# Examples:
# mouse: enabled=1
# mouse: enabled=1, type=imps2
# mouse: enabled=1, type=serial
# mouse: enabled=0
#=======================================================================
mouse: enabled=0
#=======================================================================
# private_colormap: Request that the GUI create and use it's own
# non-shared colormap. This colormap will be used
# when in the bochs window. If not enabled, a
# shared colormap scheme may be used. Not implemented
# on all GUI's.
#
# Examples:
# private_colormap: enabled=1
# private_colormap: enabled=0
#=======================================================================
private_colormap: enabled=0
#=======================================================================
# fullscreen: ONLY IMPLEMENTED ON AMIGA
# Request that Bochs occupy the entire screen instead of a
# window.
#
# Examples:
# fullscreen: enabled=0
# fullscreen: enabled=1
#=======================================================================
#fullscreen: enabled=0
#screenmode: name="sample"
#=======================================================================
# ne2k: NE2000 compatible ethernet adapter
#
# Examples:
# ne2k: ioaddr=IOADDR, irq=IRQ, mac=MACADDR, ethmod=MODULE, ethdev=DEVICE, script=SCRIPT
#
# ioaddr, irq: You probably won't need to change ioaddr and irq, unless there
# are IRQ conflicts.
#
# mac: The MAC address MUST NOT match the address of any machine on the net.
# Also, the first byte must be an even number (bit 0 set means a multicast
# address), and you cannot use ff:ff:ff:ff:ff:ff because that's the broadcast
# address. For the ethertap module, you must use fe:fd:00:00:00:01. There may
# be other restrictions too. To be safe, just use the b0:c4... address.
#
# ethdev: The ethdev value is the name of the network interface on your host
# platform. On UNIX machines, you can get the name by running ifconfig. On
# Windows machines, you must run niclist to get the name of the ethdev.
# Niclist source code is in misc/niclist.c and it is included in Windows
# binary releases.
#
# script: The script value is optional, and is the name of a script that
# is executed after bochs initialize the network interface. You can use
# this script to configure this network interface, or enable masquerading.
# This is mainly useful for the tun/tap devices that only exist during
# Bochs execution. The network interface name is supplied to the script
# as first parameter
#
# If you don't want to make connections to any physical networks,
# you can use the following 'ethmod's to simulate a virtual network.
# null: All packets are discarded, but logged to a few files.
# arpback: ARP is simulated. Disabled by default.
# vde: Virtual Distributed Ethernet
# vnet: ARP, ICMP-echo(ping), DHCP and read/write TFTP are simulated.
# The virtual host uses 192.168.10.1.
# DHCP assigns 192.168.10.2 to the guest.
# TFTP uses the ethdev value for the root directory and doesn't
# overwrite files.
#
#=======================================================================
# ne2k: ioaddr=0x240, irq=9, mac=fe:fd:00:00:00:01, ethmod=fbsd, ethdev=en0 #macosx
# ne2k: ioaddr=0x240, irq=9, mac=b0:c4:20:00:00:00, ethmod=fbsd, ethdev=xl0
# ne2k: ioaddr=0x240, irq=9, mac=b0:c4:20:00:00:00, ethmod=linux, ethdev=eth0
# ne2k: ioaddr=0x240, irq=9, mac=b0:c4:20:00:00:01, ethmod=win32, ethdev=MYCARD
# ne2k: ioaddr=0x240, irq=9, mac=fe:fd:00:00:00:01, ethmod=tap, ethdev=tap0
# ne2k: ioaddr=0x240, irq=9, mac=fe:fd:00:00:00:01, ethmod=tuntap, ethdev=/dev/net/tun0, script=./tunconfig
# ne2k: ioaddr=0x240, irq=9, mac=b0:c4:20:00:00:01, ethmod=null, ethdev=eth0
# ne2k: ioaddr=0x240, irq=9, mac=b0:c4:20:00:00:01, ethmod=vde, ethdev="/tmp/vde.ctl"
# ne2k: ioaddr=0x240, irq=9, mac=b0:c4:20:00:00:01, ethmod=vnet, ethdev="c:/temp"
#=======================================================================
# KEYBOARD_MAPPING:
# This enables a remap of a physical localized keyboard to a
# virtualized us keyboard, as the PC architecture expects.
# If enabled, the keymap file must be specified.
#
# Examples:
# keyboard_mapping: enabled=1, map=gui/keymaps/x11-pc-de.map
#=======================================================================
keyboard_mapping: enabled=0, map=
#=======================================================================
# KEYBOARD_TYPE:
# Type of keyboard return by a "identify keyboard" command to the
# keyboard controler. It must be one of "xt", "at" or "mf".
# Defaults to "mf". It should be ok for almost everybody. A known
# exception is french macs, that do have a "at"-like keyboard.
#
# Examples:
# keyboard_type: mf
#=======================================================================
#keyboard_type: mf
#=======================================================================
# USER_SHORTCUT:
# This defines the keyboard shortcut to be sent when you press the "user"
# button in the headerbar. The shortcut string is a combination of maximum
# 3 key names (listed below) separated with a '-' character. The old-style
# syntax (without the '-') still works for the key combinations supported
# in Bochs 2.2.1.
# Valid key names:
# "alt", "bksl", "bksp", "ctrl", "del", "down", "end", "enter", "esc",
# "f1", ... "f12", "home", "ins", "left", "menu", "minus", "pgdwn", "pgup",
# "plus", "right", "shift", "space", "tab", "up", and "win".
#
# Example:
# user_shortcut: keys=ctrl-alt-del
#=======================================================================
#user_shortcut: keys=ctrl-alt-del
#=======================================================================
# I440FXSUPPORT:
# This option controls the presence of the i440FX PCI chipset. You can
# also specify the devices connected to PCI slots. Up to 5 slots are
# available now. These devices are currently supported: ne2k, pcivga,
# pcidev and pcipnic. If Bochs is compiled with Cirrus SVGA support
# you'll have the additional choice 'cirrus'.
#
# Example:
# i440fxsupport: enabled=1, slot1=pcivga, slot2=ne2k
#=======================================================================
#i440fxsupport: enabled=1
#=======================================================================
# USB1:
# This option controls the presence of the USB root hub which is a part
# of the i440FX PCI chipset. With the portX option you can connect devices
# to the hub (currently supported: 'mouse' and 'keypad'). If you connect
# the mouse to one of the ports and use the mouse option 'type=usb' you'll
# have a 3-button USB mouse.
#
# Example:
# usb1: enabled=1, port1=mouse, port2=keypad
#=======================================================================
#usb1: enabled=1
#=======================================================================
# CMOSIMAGE:
# This defines image file that can be loaded into the CMOS RAM at startup.
# The rtc_init parameter controls whether initialize the RTC with values stored
# in the image. By default the time0 argument given to the clock option is used.
# With 'rtc_init=image' the image is the source for the initial time.
#
# Example:
# cmosimage: file=cmos.img, rtc_init=image
#=======================================================================
#cmosimage: file=cmos.img, rtc_init=time0
#=======================================================================
# other stuff
#=======================================================================
#magic_break: enabled=1
#load32bitOSImage: os=nullkernel, path=../kernel.img, iolog=../vga_io.log
#load32bitOSImage: os=linux, path=../linux.img, iolog=../vga_io.log, initrd=../initrd.img
#text_snapshot_check: enable
#-------------------------
# PCI host device mapping
#-------------------------
#pcidev: vendor=0x1234, device=0x5678
#=======================================================================
# GDBSTUB:
# Enable GDB stub. See user documentation for details.
# Default value is enabled=0.
#=======================================================================
#gdbstub: enabled=0, port=1234, text_base=0, data_base=0, bss_base=0
#=======================================================================
# IPS:
# The IPS directive is DEPRECATED. Use the parameter IPS of the CPU
# directive instead.
#=======================================================================
#ips: 10000000
#=======================================================================
# for Macintosh, use the style of pathnames in the following
# examples.
#
# vgaromimage: :bios:VGABIOS-elpin-2.40
# romimage: file=:bios:BIOS-bochs-latest, address=0xf0000
# floppya: 1_44=[fd:], status=inserted
#=======================================================================
#include "types.h"
#include "stat.h"
#include "user.h"
int
main(int argc, char *argv[])
{
int i;
for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");
exit(0);
}
// Format of an ELF executable file
#define ELF_MAGIC 0x464C457FU // "\x7FELF" in little endian
// File header
struct elfhdr {
uint magic; // must equal ELF_MAGIC
uchar elf[12];
ushort type;
ushort machine;
uint version;
uint entry;
uint phoff;
uint shoff;
uint flags;
ushort ehsize;
ushort phentsize;
ushort phnum;
ushort shentsize;
ushort shnum;
ushort shstrndx;
};
// Program section header
struct proghdr {
uint type;
uint off;
uint vaddr;
uint paddr;
uint filesz;
uint memsz;
uint flags;
uint align;
};
// Values for Proghdr type
#define ELF_PROG_LOAD 1
// Flag bits for Proghdr flags
#define ELF_PROG_FLAG_EXEC 1
#define ELF_PROG_FLAG_WRITE 2
#define ELF_PROG_FLAG_READ 4
# The xv6 kernel starts executing in this file. This file is linked with
# the kernel C code, so it can refer to kernel symbols such as main().
# The boot block (bootasm.S and bootmain.c) jumps to entry below.
# Multiboot header, for multiboot boot loaders like GNU Grub.
# http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
#
# Using GRUB 2, you can boot xv6 from a file stored in a
# Linux file system by copying kernel or kernelmemfs to /boot
# and then adding this menu entry:
#
# menuentry "xv6" {
# insmod ext2
# set root='(hd0,msdos1)'
# set kernel='/boot/kernel'
# echo "Loading ${kernel}..."
# multiboot ${kernel} ${kernel}
# boot
# }
#include "asm.h"
#include "memlayout.h"
#include "mmu.h"
#include "param.h"
# Multiboot header. Data to direct multiboot loader.
.p2align 2
.text
.globl multiboot_header
multiboot_header:
#define magic 0x1badb002
#define flags 0
.long magic
.long flags
.long (-magic-flags)
# By convention, the _start symbol specifies the ELF entry point.
# Since we haven't set up virtual memory yet, our entry point is
# the physical address of 'entry'.
.globl _start
_start = V2P_WO(entry)
# Entering xv6 on boot processor, with paging off.
.globl entry
entry:
# Turn on page size extension for 4Mbyte pages
movl %cr4, %eax
orl $(CR4_PSE), %eax
movl %eax, %cr4
# Set page directory
movl $(V2P_WO(entrypgdir)), %eax
movl %eax, %cr3
# Turn on paging.
movl %cr0, %eax
orl $(CR0_PG|CR0_WP), %eax
movl %eax, %cr0
# Set up the stack pointer.
movl $(stack + KSTACKSIZE), %esp
# Jump to main(), and switch to executing at
# high addresses. The indirect call is needed because
# the assembler produces a PC-relative instruction
# for a direct jump.
mov $main, %eax
jmp *%eax
.comm stack, KSTACKSIZE
#include "asm.h"
#include "memlayout.h"
#include "mmu.h"
# Each non-boot CPU ("AP") is started up in response to a STARTUP
# IPI from the boot CPU. Section B.4.2 of the Multi-Processor
# Specification says that the AP will start in real mode with CS:IP
# set to XY00:0000, where XY is an 8-bit value sent with the
# STARTUP. Thus this code must start at a 4096-byte boundary.
#
# Because this code sets DS to zero, it must sit
# at an address in the low 2^16 bytes.
#
# Startothers (in main.c) sends the STARTUPs one at a time.
# It copies this code (start) at 0x7000. It puts the address of
# a newly allocated per-core stack in start-4,the address of the
# place to jump to (mpenter) in start-8, and the physical address
# of entrypgdir in start-12.
#
# This code combines elements of bootasm.S and entry.S.
.code16
.globl start
start:
cli
# Zero data segment registers DS, ES, and SS.
xorw %ax,%ax
movw %ax,%ds
movw %ax,%es
movw %ax,%ss
# Switch from real to protected mode. Use a bootstrap GDT that makes
# virtual addresses map directly to physical addresses so that the
# effective memory map doesn't change during the transition.
lgdt gdtdesc
movl %cr0, %eax
orl $CR0_PE, %eax
movl %eax, %cr0
# Complete the transition to 32-bit protected mode by using a long jmp
# to reload %cs and %eip. The segment descriptors are set up with no
# translation, so that the mapping is still the identity mapping.
ljmpl $(SEG_KCODE<<3), $(start32)
//PAGEBREAK!
.code32 # Tell assembler to generate 32-bit code now.
start32:
# Set up the protected-mode data segment registers
movw $(SEG_KDATA<<3), %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %ss # -> SS: Stack Segment
movw $0, %ax # Zero segments not ready for use
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS
# Turn on page size extension for 4Mbyte pages
movl %cr4, %eax
orl $(CR4_PSE), %eax
movl %eax, %cr4
# Use entrypgdir as our initial page table
movl (start-12), %eax
movl %eax, %cr3
# Turn on paging.
movl %cr0, %eax
orl $(CR0_PE|CR0_PG|CR0_WP), %eax
movl %eax, %cr0
# Switch to the stack allocated by startothers()
movl (start-4), %esp
# Call mpenter()
call *(start-8)
movw $0x8a00, %ax
movw %ax, %dx
outw %ax, %dx
movw $0x8ae0, %ax
outw %ax, %dx
spin:
jmp spin
.p2align 2
gdt:
SEG_NULLASM
SEG_ASM(STA_X|STA_R, 0, 0xffffffff)
SEG_ASM(STA_W, 0, 0xffffffff)
gdtdesc:
.word (gdtdesc - gdt - 1)
.long gdt
#include "types.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "defs.h"
#include "x86.h"
#include "elf.h"
int
exec(char *path, char **argv)
{
char *s, *last;
int i, off;
uint argc, sz, sp, ustack[3+MAXARG+1];
struct elfhdr elf;
struct inode *ip;
struct proghdr ph;
pde_t *pgdir, *oldpgdir;
struct proc *curproc = myproc();
begin_op();
if((ip = namei(path)) == 0){
end_op();
cprintf("exec: fail\n");
return -1;
}
ilock(ip);
pgdir = 0;
// Check ELF header
if(readi(ip, (char*)&elf, 0, sizeof(elf)) != sizeof(elf))
goto bad;
if(elf.magic != ELF_MAGIC)
goto bad;
if((pgdir = setupkvm()) == 0)
goto bad;
// Load program into memory.
sz = 0;
for(i=0, off=elf.phoff; i<elf.phnum; i++, off+=sizeof(ph)){
if(readi(ip, (char*)&ph, off, sizeof(ph)) != sizeof(ph))
goto bad;
if(ph.type != ELF_PROG_LOAD)
continue;
if(ph.memsz < ph.filesz)
goto bad;
if(ph.vaddr + ph.memsz < ph.vaddr)
goto bad;
if((sz = allocuvm(pgdir, sz, ph.vaddr + ph.memsz)) == 0)
goto bad;
if(ph.vaddr % PGSIZE != 0)
goto bad;
if(loaduvm(pgdir, (char*)ph.vaddr, ip, ph.off, ph.filesz) < 0)
goto bad;
}
iunlockput(ip);
end_op();
ip = 0;
// Allocate two pages at the next page boundary.
// Make the first inaccessible. Use the second as the user stack.
sz = PGROUNDUP(sz);
if((sz = allocuvm(pgdir, sz, sz + 2*PGSIZE)) == 0)
goto bad;
clearpteu(pgdir, (char*)(sz - 2*PGSIZE));
sp = sz;
// Push argument strings, prepare rest of stack in ustack.
for(argc = 0; argv[argc]; argc++) {
if(argc >= MAXARG)
goto bad;
sp = (sp - (strlen(argv[argc]) + 1)) & ~3;
if(copyout(pgdir, sp, argv[argc], strlen(argv[argc]) + 1) < 0)
goto bad;
ustack[3+argc] = sp;
}
ustack[3+argc] = 0;
ustack[0] = 0xffffffff; // fake return PC
ustack[1] = argc;
ustack[2] = sp - (argc+1)*4; // argv pointer
sp -= (3+argc+1) * 4;
if(copyout(pgdir, sp, ustack, (3+argc+1)*4) < 0)
goto bad;
// Save program name for debugging.
for(last=s=path; *s; s++)
if(*s == '/')
last = s+1;
safestrcpy(curproc->name, last, sizeof(curproc->name));
// Commit to the user image.
oldpgdir = curproc->pgdir;
curproc->pgdir = pgdir;
curproc->sz = sz;
curproc->tf->eip = elf.entry; // main
curproc->tf->esp = sp;
switchuvm(curproc);
freevm(oldpgdir);
return 0;
bad:
if(pgdir)
freevm(pgdir);
if(ip){
iunlockput(ip);
end_op();
}
return -1;
}
#define O_RDONLY 0x000
#define O_WRONLY 0x001
#define O_RDWR 0x002
#define O_CREATE 0x200
//
// File descriptors
//
#include "types.h"
#include "defs.h"
#include "param.h"
#include "fs.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "file.h"
struct devsw devsw[NDEV];
struct {
struct spinlock lock;
struct file file[NFILE];
} ftable;
void
fileinit(void)
{
initlock(&ftable.lock, "ftable");
}
// Allocate a file structure.
struct file*
filealloc(void)
{
struct file *f;
acquire(&ftable.lock);
for(f = ftable.file; f < ftable.file + NFILE; f++){
if(f->ref == 0){
f->ref = 1;
release(&ftable.lock);
return f;
}
}
release(&ftable.lock);
return 0;
}
// Increment ref count for file f.
struct file*
filedup(struct file *f)
{
acquire(&ftable.lock);
if(f->ref < 1)
panic("filedup");
f->ref++;
release(&ftable.lock);
return f;
}
// Close file f. (Decrement ref count, close when reaches 0.)
void
fileclose(struct file *f)
{
struct file ff;
acquire(&ftable.lock);
if(f->ref < 1)
panic("fileclose");
if(--f->ref > 0){
release(&ftable.lock);
return;
}
ff = *f;
f->ref = 0;
f->type = FD_NONE;
release(&ftable.lock);
if(ff.type == FD_PIPE)
pipeclose(ff.pipe, ff.writable);
else if(ff.type == FD_INODE){
begin_op();
iput(ff.ip);
end_op();
}
}
// Get metadata about file f.
int
filestat(struct file *f, struct stat *st)
{
if(f->type == FD_INODE){
ilock(f->ip);
stati(f->ip, st);
iunlock(f->ip);
return 0;
}
return -1;
}
// Read from file f.
int
fileread(struct file *f, char *addr, int n)
{
int r;
if(f->readable == 0)
return -1;
if(f->type == FD_PIPE)
return piperead(f->pipe, addr, n);
if(f->type == FD_INODE){
ilock(f->ip);
if((r = readi(f->ip, addr, f->off, n)) > 0)
f->off += r;
iunlock(f->ip);
return r;
}
panic("fileread");
}
//PAGEBREAK!
// Write to file f.
int
filewrite(struct file *f, char *addr, int n)
{
int r;
if(f->writable == 0)
return -1;
if(f->type == FD_PIPE)
return pipewrite(f->pipe, addr, n);
if(f->type == FD_INODE){
// write a few blocks at a time to avoid exceeding
// the maximum log transaction size, including
// i-node, indirect block, allocation blocks,
// and 2 blocks of slop for non-aligned writes.
// this really belongs lower down, since writei()
// might be writing a device like the console.
int max = ((MAXOPBLOCKS-1-1-2) / 2) * 512;
int i = 0;
while(i < n){
int n1 = n - i;
if(n1 > max)
n1 = max;
begin_op();
ilock(f->ip);
if ((r = writei(f->ip, addr + i, f->off, n1)) > 0)
f->off += r;
iunlock(f->ip);
end_op();
if(r < 0)
break;
if(r != n1)
panic("short filewrite");
i += r;
}
return i == n ? n : -1;
}
panic("filewrite");
}
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;
};
// in-memory copy of an inode
struct inode {
uint dev; // Device number
uint inum; // Inode number
int ref; // Reference count
struct sleeplock lock; // protects everything below here
int valid; // inode has been read from disk?
short type; // copy of disk inode
short major;
short minor;
short nlink;
uint size;
uint addrs[NDIRECT+1];
};
// table mapping major device number to
// device functions
struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);
};
extern struct devsw devsw[];
#define CONSOLE 1
// Test that fork fails gracefully.
// Tiny executable so that the limit can be filling the proc table.
#include "types.h"
#include "stat.h"
#include "user.h"
#define N 1000
void
printf(int fd, const char *s, ...)
{
write(fd, s, strlen(s));
}
void
forktest(void)
{
int n, pid;
printf(1, "fork test\n");
for(n=0; n<N; n++){
pid = fork();
if(pid < 0)
break;
if(pid == 0)
exit(0);
}
if(n == N){
printf(1, "fork claimed to work N times!\n", N);
exit(0);
}
for(; n > 0; n--){
if(wait(0) < 0){
printf(1, "wait stopped early\n");
exit(-1);
}
}
if(wait(0) != -1){
printf(1, "wait got too many\n");
exit(-1);
}
printf(1, "fork test OK\n");
}
int
main(void)
{
forktest();
exit(0);
}
// File system implementation. Five layers:
// + Blocks: allocator for raw disk blocks.
// + Log: crash recovery for multi-step updates.
// + Files: inode allocator, reading, writing, metadata.
// + Directories: inode with special contents (list of other inodes!)
// + Names: paths like /usr/rtm/xv6/fs.c for convenient naming.
//
// This file contains the low-level file system manipulation
// routines. The (higher-level) system call implementations
// are in sysfile.c.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "stat.h"
#include "mmu.h"
#include "proc.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "fs.h"
#include "buf.h"
#include "file.h"
#define min(a, b) ((a) < (b) ? (a) : (b))
static void itrunc(struct inode*);
// there should be one superblock per disk device, but we run with
// only one device
struct superblock sb;
// Read the super block.
void
readsb(int dev, struct superblock *sb)
{
struct buf *bp;
bp = bread(dev, 1);
memmove(sb, bp->data, sizeof(*sb));
brelse(bp);
}
// Zero a block.
static void
bzero(int dev, int bno)
{
struct buf *bp;
bp = bread(dev, bno);
memset(bp->data, 0, BSIZE);
log_write(bp);
brelse(bp);
}
// Blocks.
// Allocate a zeroed disk block.
static uint
balloc(uint dev)
{
int b, bi, m;
struct buf *bp;
bp = 0;
for(b = 0; b < sb.size; b += BPB){
bp = bread(dev, BBLOCK(b, sb));
for(bi = 0; bi < BPB && b + bi < sb.size; bi++){
m = 1 << (bi % 8);
if((bp->data[bi/8] & m) == 0){ // Is block free?
bp->data[bi/8] |= m; // Mark block in use.
log_write(bp);
brelse(bp);
bzero(dev, b + bi);
return b + bi;
}
}
brelse(bp);
}
panic("balloc: out of blocks");
}
// Free a disk block.
static void
bfree(int dev, uint b)
{
struct buf *bp;
int bi, m;
bp = bread(dev, BBLOCK(b, sb));
bi = b % BPB;
m = 1 << (bi % 8);
if((bp->data[bi/8] & m) == 0)
panic("freeing free block");
bp->data[bi/8] &= ~m;
log_write(bp);
brelse(bp);
}
// Inodes.
//
// An inode describes a single unnamed file.
// The inode disk structure holds metadata: the file's type,
// its size, the number of links referring to it, and the
// list of blocks holding the file's content.
//
// The inodes are laid out sequentially on disk at
// sb.startinode. Each inode has a number, indicating its
// position on the disk.
//
// The kernel keeps a cache of in-use inodes in memory
// to provide a place for synchronizing access
// to inodes used by multiple processes. The cached
// inodes include book-keeping information that is
// not stored on disk: ip->ref and ip->valid.
//
// An inode and its in-memory representation go through a
// sequence of states before they can be used by the
// rest of the file system code.
//
// * Allocation: an inode is allocated if its type (on disk)
// is non-zero. ialloc() allocates, and iput() frees if
// the reference and link counts have fallen to zero.
//
// * Referencing in cache: an entry in the inode cache
// is free if ip->ref is zero. Otherwise ip->ref tracks
// the number of in-memory pointers to the entry (open
// files and current directories). iget() finds or
// creates a cache entry and increments its ref; iput()
// decrements ref.
//
// * Valid: the information (type, size, &c) in an inode
// cache entry is only correct when ip->valid is 1.
// ilock() reads the inode from
// the disk and sets ip->valid, while iput() clears
// ip->valid if ip->ref has fallen to zero.
//
// * Locked: file system code may only examine and modify
// the information in an inode and its content if it
// has first locked the inode.
//
// Thus a typical sequence is:
// ip = iget(dev, inum)
// ilock(ip)
// ... examine and modify ip->xxx ...
// iunlock(ip)
// iput(ip)
//
// ilock() is separate from iget() so that system calls can
// get a long-term reference to an inode (as for an open file)
// and only lock it for short periods (e.g., in read()).
// The separation also helps avoid deadlock and races during
// pathname lookup. iget() increments ip->ref so that the inode
// stays cached and pointers to it remain valid.
//
// Many internal file system functions expect the caller to
// have locked the inodes involved; this lets callers create
// multi-step atomic operations.
//
// The icache.lock spin-lock protects the allocation of icache
// entries. Since ip->ref indicates whether an entry is free,
// and ip->dev and ip->inum indicate which i-node an entry
// holds, one must hold icache.lock while using any of those fields.
//
// An ip->lock sleep-lock protects all ip-> fields other than ref,
// dev, and inum. One must hold ip->lock in order to
// read or write that inode's ip->valid, ip->size, ip->type, &c.
struct {
struct spinlock lock;
struct inode inode[NINODE];
} icache;
void
iinit(int dev)
{
int i = 0;
initlock(&icache.lock, "icache");
for(i = 0; i < NINODE; i++) {
initsleeplock(&icache.inode[i].lock, "inode");
}
readsb(dev, &sb);
cprintf("sb: size %d nblocks %d ninodes %d nlog %d logstart %d\
inodestart %d bmap start %d\n", sb.size, sb.nblocks,
sb.ninodes, sb.nlog, sb.logstart, sb.inodestart,
sb.bmapstart);
}
static struct inode* iget(uint dev, uint inum);
//PAGEBREAK!
// Allocate an inode on device dev.
// Mark it as allocated by giving it type type.
// Returns an unlocked but allocated and referenced inode.
struct inode*
ialloc(uint dev, short type)
{
int inum;
struct buf *bp;
struct dinode *dip;
for(inum = 1; inum < sb.ninodes; inum++){
bp = bread(dev, IBLOCK(inum, sb));
dip = (struct dinode*)bp->data + inum%IPB;
if(dip->type == 0){ // a free inode
memset(dip, 0, sizeof(*dip));
dip->type = type;
log_write(bp); // mark it allocated on the disk
brelse(bp);
return iget(dev, inum);
}
brelse(bp);
}
panic("ialloc: no inodes");
}
// Copy a modified in-memory inode to disk.
// Must be called after every change to an ip->xxx field
// that lives on disk, since i-node cache is write-through.
// Caller must hold ip->lock.
void
iupdate(struct inode *ip)
{
struct buf *bp;
struct dinode *dip;
bp = bread(ip->dev, IBLOCK(ip->inum, sb));
dip = (struct dinode*)bp->data + ip->inum%IPB;
dip->type = ip->type;
dip->major = ip->major;
dip->minor = ip->minor;
dip->nlink = ip->nlink;
dip->size = ip->size;
memmove(dip->addrs, ip->addrs, sizeof(ip->addrs));
log_write(bp);
brelse(bp);
}
// Find the inode with number inum on device dev
// and return the in-memory copy. Does not lock
// the inode and does not read it from disk.
static struct inode*
iget(uint dev, uint inum)
{
struct inode *ip, *empty;
acquire(&icache.lock);
// Is the inode already cached?
empty = 0;
for(ip = &icache.inode[0]; ip < &icache.inode[NINODE]; ip++){
if(ip->ref > 0 && ip->dev == dev && ip->inum == inum){
ip->ref++;
release(&icache.lock);
return ip;
}
if(empty == 0 && ip->ref == 0) // Remember empty slot.
empty = ip;
}
// Recycle an inode cache entry.
if(empty == 0)
panic("iget: no inodes");
ip = empty;
ip->dev = dev;
ip->inum = inum;
ip->ref = 1;
ip->valid = 0;
release(&icache.lock);
return ip;
}
// Increment reference count for ip.
// Returns ip to enable ip = idup(ip1) idiom.
struct inode*
idup(struct inode *ip)
{
acquire(&icache.lock);
ip->ref++;
release(&icache.lock);
return ip;
}
// Lock the given inode.
// Reads the inode from disk if necessary.
void
ilock(struct inode *ip)
{
struct buf *bp;
struct dinode *dip;
if(ip == 0 || ip->ref < 1)
panic("ilock");
acquiresleep(&ip->lock);
if(ip->valid == 0){
bp = bread(ip->dev, IBLOCK(ip->inum, sb));
dip = (struct dinode*)bp->data + ip->inum%IPB;
ip->type = dip->type;
ip->major = dip->major;
ip->minor = dip->minor;
ip->nlink = dip->nlink;
ip->size = dip->size;
memmove(ip->addrs, dip->addrs, sizeof(ip->addrs));
brelse(bp);
ip->valid = 1;
if(ip->type == 0)
panic("ilock: no type");
}
}
// Unlock the given inode.
void
iunlock(struct inode *ip)
{
if(ip == 0 || !holdingsleep(&ip->lock) || ip->ref < 1)
panic("iunlock");
releasesleep(&ip->lock);
}
// Drop a reference to an in-memory inode.
// If that was the last reference, the inode cache entry can
// be recycled.
// If that was the last reference and the inode has no links
// to it, free the inode (and its content) on disk.
// All calls to iput() must be inside a transaction in
// case it has to free the inode.
void
iput(struct inode *ip)
{
acquiresleep(&ip->lock);
if(ip->valid && ip->nlink == 0){
acquire(&icache.lock);
int r = ip->ref;
release(&icache.lock);
if(r == 1){
// inode has no links and no other references: truncate and free.
itrunc(ip);
ip->type = 0;
iupdate(ip);
ip->valid = 0;
}
}
releasesleep(&ip->lock);
acquire(&icache.lock);
ip->ref--;
release(&icache.lock);
}
// Common idiom: unlock, then put.
void
iunlockput(struct inode *ip)
{
iunlock(ip);
iput(ip);
}
//PAGEBREAK!
// Inode content
//
// The content (data) associated with each inode is stored
// in blocks on the disk. The first NDIRECT block numbers
// are listed in ip->addrs[]. The next NINDIRECT blocks are
// listed in block ip->addrs[NDIRECT].
// Return the disk block address of the nth block in inode ip.
// If there is no such block, bmap allocates one.
static uint
bmap(struct inode *ip, uint bn)
{
uint addr, *a;
struct buf *bp;
if(bn < NDIRECT){
if((addr = ip->addrs[bn]) == 0)
ip->addrs[bn] = addr = balloc(ip->dev);
return addr;
}
bn -= NDIRECT;
if(bn < NINDIRECT){
// Load indirect block, allocating if necessary.
if((addr = ip->addrs[NDIRECT]) == 0)
ip->addrs[NDIRECT] = addr = balloc(ip->dev);
bp = bread(ip->dev, addr);
a = (uint*)bp->data;
if((addr = a[bn]) == 0){
a[bn] = addr = balloc(ip->dev);
log_write(bp);
}
brelse(bp);
return addr;
}
panic("bmap: out of range");
}
// Truncate inode (discard contents).
// Only called when the inode has no links
// to it (no directory entries referring to it)
// and has no in-memory reference to it (is
// not an open file or current directory).
static void
itrunc(struct inode *ip)
{
int i, j;
struct buf *bp;
uint *a;
for(i = 0; i < NDIRECT; i++){
if(ip->addrs[i]){
bfree(ip->dev, ip->addrs[i]);
ip->addrs[i] = 0;
}
}
if(ip->addrs[NDIRECT]){
bp = bread(ip->dev, ip->addrs[NDIRECT]);
a = (uint*)bp->data;
for(j = 0; j < NINDIRECT; j++){
if(a[j])
bfree(ip->dev, a[j]);
}
brelse(bp);
bfree(ip->dev, ip->addrs[NDIRECT]);
ip->addrs[NDIRECT] = 0;
}
ip->size = 0;
iupdate(ip);
}
// Copy stat information from inode.
// Caller must hold ip->lock.
void
stati(struct inode *ip, struct stat *st)
{
st->dev = ip->dev;
st->ino = ip->inum;
st->type = ip->type;
st->nlink = ip->nlink;
st->size = ip->size;
}
//PAGEBREAK!
// Read data from inode.
// Caller must hold ip->lock.
int
readi(struct inode *ip, char *dst, uint off, uint n)
{
uint tot, m;
struct buf *bp;
if(ip->type == T_DEV){
if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].read)
return -1;
return devsw[ip->major].read(ip, dst, n);
}
if(off > ip->size || off + n < off)
return -1;
if(off + n > ip->size)
n = ip->size - off;
for(tot=0; tot<n; tot+=m, off+=m, dst+=m){
bp = bread(ip->dev, bmap(ip, off/BSIZE));
m = min(n - tot, BSIZE - off%BSIZE);
memmove(dst, bp->data + off%BSIZE, m);
brelse(bp);
}
return n;
}
// PAGEBREAK!
// Write data to inode.
// Caller must hold ip->lock.
int
writei(struct inode *ip, char *src, uint off, uint n)
{
uint tot, m;
struct buf *bp;
if(ip->type == T_DEV){
if(ip->major < 0 || ip->major >= NDEV || !devsw[ip->major].write)
return -1;
return devsw[ip->major].write(ip, src, n);
}
if(off > ip->size || off + n < off)
return -1;
if(off + n > MAXFILE*BSIZE)
return -1;
for(tot=0; tot<n; tot+=m, off+=m, src+=m){
bp = bread(ip->dev, bmap(ip, off/BSIZE));
m = min(n - tot, BSIZE - off%BSIZE);
memmove(bp->data + off%BSIZE, src, m);
log_write(bp);
brelse(bp);
}
if(n > 0 && off > ip->size){
ip->size = off;
iupdate(ip);
}
return n;
}
//PAGEBREAK!
// Directories
int
namecmp(const char *s, const char *t)
{
return strncmp(s, t, DIRSIZ);
}
// Look for a directory entry in a directory.
// If found, set *poff to byte offset of entry.
struct inode*
dirlookup(struct inode *dp, char *name, uint *poff)
{
uint off, inum;
struct dirent de;
if(dp->type != T_DIR)
panic("dirlookup not DIR");
for(off = 0; off < dp->size; off += sizeof(de)){
if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
panic("dirlookup read");
if(de.inum == 0)
continue;
if(namecmp(name, de.name) == 0){
// entry matches path element
if(poff)
*poff = off;
inum = de.inum;
return iget(dp->dev, inum);
}
}
return 0;
}
// Write a new directory entry (name, inum) into the directory dp.
int
dirlink(struct inode *dp, char *name, uint inum)
{
int off;
struct dirent de;
struct inode *ip;
// Check that name is not present.
if((ip = dirlookup(dp, name, 0)) != 0){
iput(ip);
return -1;
}
// Look for an empty dirent.
for(off = 0; off < dp->size; off += sizeof(de)){
if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
panic("dirlink read");
if(de.inum == 0)
break;
}
strncpy(de.name, name, DIRSIZ);
de.inum = inum;
if(writei(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
panic("dirlink");
return 0;
}
//PAGEBREAK!
// Paths
// Copy the next path element from path into name.
// Return a pointer to the element following the copied one.
// The returned path has no leading slashes,
// so the caller can check *path=='\0' to see if the name is the last one.
// If no name to remove, return 0.
//
// Examples:
// skipelem("a/bb/c", name) = "bb/c", setting name = "a"
// skipelem("///a//bb", name) = "bb", setting name = "a"
// skipelem("a", name) = "", setting name = "a"
// skipelem("", name) = skipelem("////", name) = 0
//
static char*
skipelem(char *path, char *name)
{
char *s;
int len;
while(*path == '/')
path++;
if(*path == 0)
return 0;
s = path;
while(*path != '/' && *path != 0)
path++;
len = path - s;
if(len >= DIRSIZ)
memmove(name, s, DIRSIZ);
else {
memmove(name, s, len);
name[len] = 0;
}
while(*path == '/')
path++;
return path;
}
// Look up and return the inode for a path name.
// If parent != 0, return the inode for the parent and copy the final
// path element into name, which must have room for DIRSIZ bytes.
// Must be called inside a transaction since it calls iput().
static struct inode*
namex(char *path, int nameiparent, char *name)
{
struct inode *ip, *next;
if(*path == '/')
ip = iget(ROOTDEV, ROOTINO);
else
ip = idup(myproc()->cwd);
while((path = skipelem(path, name)) != 0){
ilock(ip);
if(ip->type != T_DIR){
iunlockput(ip);
return 0;
}
if(nameiparent && *path == '\0'){
// Stop one level early.
iunlock(ip);
return ip;
}
if((next = dirlookup(ip, name, 0)) == 0){
iunlockput(ip);
return 0;
}
iunlockput(ip);
ip = next;
}
if(nameiparent){
iput(ip);
return 0;
}
return ip;
}
struct inode*
namei(char *path)
{
char name[DIRSIZ];
return namex(path, 0, name);
}
struct inode*
nameiparent(char *path, char *name)
{
return namex(path, 1, name);
}
// On-disk file system format.
// Both the kernel and user programs use this header file.
#define ROOTINO 1 // root i-number
#define BSIZE 512 // block size
// Disk layout:
// [ boot block | super block | log | inode blocks |
// free bit map | data blocks]
//
// mkfs computes the super block and builds an initial file system. The
// super block describes the disk layout:
struct superblock {
uint size; // Size of file system image (blocks)
uint nblocks; // Number of data blocks
uint ninodes; // Number of inodes.
uint nlog; // Number of log blocks
uint logstart; // Block number of first log block
uint inodestart; // Block number of first inode block
uint bmapstart; // Block number of first free map block
};
#define NDIRECT 12
#define NINDIRECT (BSIZE / sizeof(uint))
#define MAXFILE (NDIRECT + NINDIRECT)
// On-disk inode structure
struct dinode {
short type; // File type
short major; // Major device number (T_DEV only)
short minor; // Minor device number (T_DEV only)
short nlink; // Number of links to inode in file system
uint size; // Size of file (bytes)
uint addrs[NDIRECT+1]; // Data block addresses
};
// Inodes per block.
#define IPB (BSIZE / sizeof(struct dinode))
// Block containing inode i
#define IBLOCK(i, sb) ((i) / IPB + sb.inodestart)
// Bitmap bits per block
#define BPB (BSIZE*8)
// Block of free map containing bit for block b
#define BBLOCK(b, sb) (b/BPB + sb.bmapstart)
// Directory is a file containing a sequence of dirent structures.
#define DIRSIZ 14
struct dirent {
ushort inum;
char name[DIRSIZ];
};
# -*- gdb-script -*-
# Utility functions to pretty-print x86 segment/interrupt descriptors.
# To load this file, run "source gdbutil" in gdb.
# printdesc and printdescs are the main entry points.
# IA32 2007, Volume 3A, Table 3-2
set $STS_T16A = 0x1
set $STS_LDT = 0x2
set $STS_T16B = 0x3
set $STS_CG16 = 0x4
set $STS_TG = 0x5
set $STS_IG16 = 0x6
set $STS_TG16 = 0x7
set $STS_T32A = 0x9
set $STS_T32B = 0xB
set $STS_CG32 = 0xC
set $STS_IG32 = 0xE
set $STS_TG32 = 0xF
define outputsts
while 1
if $arg0 == $STS_T16A
echo STS_T16A
loop_break
end
if $arg0 == $STS_LDT
echo STS_LDT\
loop_break
end
if $arg0 == $STS_T16B
echo STS_T16B
loop_break
end
if $arg0 == $STS_CG16
echo STS_CG16
loop_break
end
if $arg0 == $STS_TG
echo STS_TG\ \
loop_break
end
if $arg0 == $STS_IG16
echo STS_IG16
loop_break
end
if $arg0 == $STS_TG16
echo STS_TG16
loop_break
end
if $arg0 == $STS_T32A
echo STS_T32A
loop_break
end
if $arg0 == $STS_T32B
echo STS_T32B
loop_break
end
if $arg0 == $STS_CG32
echo STS_CG32
loop_break
end
if $arg0 == $STS_IG32
echo STS_IG32
loop_break
end
if $arg0 == $STS_TG32
echo STS_TG32
loop_break
end
echo Reserved
loop_break
end
end
# IA32 2007, Volume 3A, Table 3-1
set $STA_X = 0x8
set $STA_E = 0x4
set $STA_C = 0x4
set $STA_W = 0x2
set $STA_R = 0x2
set $STA_A = 0x1
define outputsta
if $arg0 & $STA_X
# Code segment
echo code
if $arg0 & $STA_C
echo |STA_C
end
if $arg0 & $STA_R
echo |STA_R
end
else
# Data segment
echo data
if $arg0 & $STA_E
echo |STA_E
end
if $arg0 & $STA_W
echo |STA_W
end
end
if $arg0 & $STA_A
echo |STA_A
else
printf " "
end
end
# xv6-specific
set $SEG_KCODE = 1
set $SEG_KDATA = 2
set $SEG_KCPU = 3
set $SEG_UCODE = 4
set $SEG_UDATA = 5
set $SEG_TSS = 6
define outputcs
if ($arg0 & 4) == 0
if $arg0 >> 3 == $SEG_KCODE
printf "SEG_KCODE<<3"
end
if $arg0 >> 3 == $SEG_KDATA
printf "SEG_KDATA<<3"
end
if $arg0 >> 3 == $SEG_KCPU
printf "SEG_KCPU<<3"
end
if $arg0 >> 3 == $SEG_UCODE
printf "SEG_UCODE<<3"
end
if $arg0 >> 3 == $SEG_UDATA
printf "SEG_UDATA<<3"
end
if $arg0 >> 3 == $SEG_TSS
printf "SEG_TSS<<3"
end
if ($arg0 >> 3 < 1) + ($arg0 >> 3 > 6)
printf "GDT[%d]", $arg0 >> 3
end
else
printf "LDT[%d]", $arg0 >> 3
end
if ($arg0 & 3) > 0
printf "|"
outputdpl ($arg0&3)
end
end
define outputdpl
if $arg0 == 0
printf "DPL_KERN"
else
if $arg0 == 3
printf "DPL_USER"
else
printf "DPL%d", $arg0
end
end
end
define printdesc
if $argc != 1
echo Usage: printdesc expr
else
_printdesc ((uint*)&($arg0))[0] ((uint*)&($arg0))[1]
printf "\n"
end
end
document printdesc
Print an x86 segment or gate descriptor.
printdesc EXPR
EXPR must evaluate to a descriptor value. It can be of any C type.
end
define _printdesc
_printdesc1 $arg0 $arg1 ($arg1>>15&1) ($arg1>>13&3) ($arg1>>12&1) ($arg1>>8&15)
end
define _printdesc1
# 2:P 3:DPL 4:S 5:Type
if $arg2 == 0
printf "P = 0 (Not present)"
else
printf "type = "
if $arg4 == 0
# System segment
outputsts $arg5
printf " (0x%x) ", $arg5
_printsysdesc $arg0 $arg1 $arg5
else
# Code/data segment
outputsta $arg5
printf " "
_printsegdesc $arg0 $arg1
end
printf " DPL = "
outputdpl $arg3
printf " (%d)", $arg3
end
end
define _printsysdesc
# 2:Type
# GDB's || is buggy
if ($arg2 == $STS_TG) + (($arg2&7) == $STS_IG16) + (($arg2&7) == $STS_TG16)
# Gate descriptor
_printgate $arg2 ($arg0>>16) ($arg0&0xFFFF) ($arg1>>16)
else
# System segment descriptor
_printsegdesc $arg0 $arg1
end
end
define _printgate
# IA32 2007, Voume 3A, Figure 5-2
# 0:Type 1:CS 2:Offset 15..0 3:Offset 31..16
printf "CS = "
outputcs $arg1
printf " (%d)", $arg1
if (($arg0&7) == $STS_IG16) + (($arg0&7) == $STS_TG16)
printf " Offset = "
output/a $arg3 << 16 | $arg2
end
end
define _printsegdesc
# IA32 20007, Volume 3A, Figure 3-8 and Figure 4-1
_printsegdesc1 ($arg0>>16) ($arg1&0xFF) ($arg1>>24) ($arg0&0xFFFF) ($arg1>>16&15) ($arg1>>23&1)
if ($arg1>>12&1) == 1
printf " AVL = %d", $arg1>>20&1
if ($arg1>>11&1) == 0
# Data segment
if ($arg1>>22&1) == 0
printf " B = small (0) "
else
printf " B = big (1) "
end
else
# Code segment
printf " D = "
if ($arg1>>22&1) == 0
printf "16-bit (0)"
else
printf "32-bit (1)"
end
end
end
end
define _printsegdesc1
# 0:Base 0..15 1:Base 16..23 2:Base 24..32 3:Limit 0..15 4:Limit 16..19 5:G
printf "base = 0x%08x", $arg0 | ($arg1<<16) | ($arg2<<24)
printf " limit = 0x"
if $arg5 == 0
printf "%08x", $arg3 | ($arg4<<16)
else
printf "%08x", (($arg3 | ($arg4<<16)) << 12) | 0xFFF
end
end
define printdescs
if $argc < 1 || $argc > 2
echo Usage: printdescs expr [count]
else
if $argc == 1
_printdescs ($arg0) (sizeof($arg0)/sizeof(($arg0)[0]))
else
_printdescs ($arg0) ($arg1)
end
end
end
document printdescs
Print an array of x86 segment or gate descriptors.
printdescs EXPR [COUNT]
EXPR must evaluate to an array of descriptors.
end
define _printdescs
set $i = 0
while $i < $arg1
printf "[%d] ", $i
printdesc $arg0[$i]
set $i = $i + 1
end
end
// Simple grep. Only supports ^ . * $ operators.
#include "types.h"
#include "stat.h"
#include "user.h"
char buf[1024];
int match(char*, char*);
void
grep(char *pattern, int fd)
{
int n, m;
char *p, *q;
m = 0;
while((n = read(fd, buf+m, sizeof(buf)-m-1)) > 0){
m += n;
buf[m] = '\0';
p = buf;
while((q = strchr(p, '\n')) != 0){
*q = 0;
if(match(pattern, p)){
*q = '\n';
write(1, p, q+1 - p);
}
p = q+1;
}
if(p == buf)
m = 0;
if(m > 0){
m -= p - buf;
memmove(buf, p, m);
}
}
}
int
main(int argc, char *argv[])
{
int fd, i;
char *pattern;
if(argc <= 1){
printf(2, "usage: grep pattern [file ...]\n");
exit(-1);
}
pattern = argv[1];
if(argc <= 2){
grep(pattern, 0);
exit(0);
}
for(i = 2; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){
printf(1, "grep: cannot open %s\n", argv[i]);
exit(-1);
}
grep(pattern, fd);
close(fd);
}
exit(0);
}
// Regexp matcher from Kernighan & Pike,
// The Practice of Programming, Chapter 9.
int matchhere(char*, char*);
int matchstar(int, char*, char*);
int
match(char *re, char *text)
{
if(re[0] == '^')
return matchhere(re+1, text);
do{ // must look at empty string
if(matchhere(re, text))
return 1;
}while(*text++ != '\0');
return 0;
}
// matchhere: search for re at beginning of text
int matchhere(char *re, char *text)
{
if(re[0] == '\0')
return 1;
if(re[1] == '*')
return matchstar(re[0], re+2, text);
if(re[0] == '$' && re[1] == '\0')
return *text == '\0';
if(*text!='\0' && (re[0]=='.' || re[0]==*text))
return matchhere(re+1, text+1);
return 0;
}
// matchstar: search for c*re at beginning of text
int matchstar(int c, char *re, char *text)
{
do{ // a * matches zero or more instances
if(matchhere(re, text))
return 1;
}while(*text!='\0' && (*text++==c || c=='.'));
return 0;
}
// Simple PIO-based (non-DMA) IDE driver code.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
#include "traps.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "fs.h"
#include "buf.h"
#define SECTOR_SIZE 512
#define IDE_BSY 0x80
#define IDE_DRDY 0x40
#define IDE_DF 0x20
#define IDE_ERR 0x01
#define IDE_CMD_READ 0x20
#define IDE_CMD_WRITE 0x30
#define IDE_CMD_RDMUL 0xc4
#define IDE_CMD_WRMUL 0xc5
// idequeue points to the buf now being read/written to the disk.
// idequeue->qnext points to the next buf to be processed.
// You must hold idelock while manipulating queue.
static struct spinlock idelock;
static struct buf *idequeue;
static int havedisk1;
static void idestart(struct buf*);
// Wait for IDE disk to become ready.
static int
idewait(int checkerr)
{
int r;
while(((r = inb(0x1f7)) & (IDE_BSY|IDE_DRDY)) != IDE_DRDY)
;
if(checkerr && (r & (IDE_DF|IDE_ERR)) != 0)
return -1;
return 0;
}
void
ideinit(void)
{
int i;
initlock(&idelock, "ide");
ioapicenable(IRQ_IDE, ncpu - 1);
idewait(0);
// Check if disk 1 is present
outb(0x1f6, 0xe0 | (1<<4));
for(i=0; i<1000; i++){
if(inb(0x1f7) != 0){
havedisk1 = 1;
break;
}
}
// Switch back to disk 0.
outb(0x1f6, 0xe0 | (0<<4));
}
// Start the request for b. Caller must hold idelock.
static void
idestart(struct buf *b)
{
if(b == 0)
panic("idestart");
if(b->blockno >= FSSIZE)
panic("incorrect blockno");
int sector_per_block = BSIZE/SECTOR_SIZE;
int sector = b->blockno * sector_per_block;
int read_cmd = (sector_per_block == 1) ? IDE_CMD_READ : IDE_CMD_RDMUL;
int write_cmd = (sector_per_block == 1) ? IDE_CMD_WRITE : IDE_CMD_WRMUL;
if (sector_per_block > 7) panic("idestart");
idewait(0);
outb(0x3f6, 0); // generate interrupt
outb(0x1f2, sector_per_block); // number of sectors
outb(0x1f3, sector & 0xff);
outb(0x1f4, (sector >> 8) & 0xff);
outb(0x1f5, (sector >> 16) & 0xff);
outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((sector>>24)&0x0f));
if(b->flags & B_DIRTY){
outb(0x1f7, write_cmd);
outsl(0x1f0, b->data, BSIZE/4);
} else {
outb(0x1f7, read_cmd);
}
}
// Interrupt handler.
void
ideintr(void)
{
struct buf *b;
// First queued buffer is the active request.
acquire(&idelock);
if((b = idequeue) == 0){
release(&idelock);
return;
}
idequeue = b->qnext;
// Read data if needed.
if(!(b->flags & B_DIRTY) && idewait(1) >= 0)
insl(0x1f0, b->data, BSIZE/4);
// Wake process waiting for this buf.
b->flags |= B_VALID;
b->flags &= ~B_DIRTY;
wakeup(b);
// Start disk on next buf in queue.
if(idequeue != 0)
idestart(idequeue);
release(&idelock);
}
//PAGEBREAK!
// Sync buf with disk.
// If B_DIRTY is set, write buf to disk, clear B_DIRTY, set B_VALID.
// Else if B_VALID is not set, read buf from disk, set B_VALID.
void
iderw(struct buf *b)
{
struct buf **pp;
if(!holdingsleep(&b->lock))
panic("iderw: buf not locked");
if((b->flags & (B_VALID|B_DIRTY)) == B_VALID)
panic("iderw: nothing to do");
if(b->dev != 0 && !havedisk1)
panic("iderw: ide disk 1 not present");
acquire(&idelock); //DOC:acquire-lock
// Append b to idequeue.
b->qnext = 0;
for(pp=&idequeue; *pp; pp=&(*pp)->qnext) //DOC:insert-queue
;
*pp = b;
// Start disk if necessary.
if(idequeue == b)
idestart(b);
// Wait for request to finish.
while((b->flags & (B_VALID|B_DIRTY)) != B_VALID){
sleep(b, &idelock);
}
release(&idelock);
}
// init: The initial user-level program
#include "types.h"
#include "stat.h"
#include "user.h"
#include "fcntl.h"
char *argv[] = { "sh", 0 };
int
main(void)
{
int pid, wpid;
if(open("console", O_RDWR) < 0){
mknod("console", 1, 1);
open("console", O_RDWR);
}
dup(0); // stdout
dup(0); // stderr
for(;;){
printf(1, "init: starting sh\n");
pid = fork();
if(pid < 0){
printf(1, "init: fork failed\n");
exit(-1);
}
if(pid == 0){
exec("sh", argv);
printf(1, "init: exec sh failed\n");
exit(-1);
}
while((wpid=wait(0)) >= 0 && wpid != pid)
printf(1, "zombie!\n");
}
}
# Initial process execs /init.
# This code runs in user space.
#include "syscall.h"
#include "traps.h"
# exec(init, argv)
.globl start
start:
pushl $argv
pushl $init
pushl $0 // where caller pc would be
movl $SYS_exec, %eax
int $T_SYSCALL
# for(;;) exit(0);
exit:
movl $SYS_exit, %eax
int $T_SYSCALL
jmp exit
# char init[] = "/init\0";
init:
.string "/init\0"
# char *argv[] = { init, 0 };
.p2align 2
argv:
.long init
.long 0
// The I/O APIC manages hardware interrupts for an SMP system.
// http://www.intel.com/design/chipsets/datashts/29056601.pdf
// See also picirq.c.
#include "types.h"
#include "defs.h"
#include "traps.h"
#define IOAPIC 0xFEC00000 // Default physical address of IO APIC
#define REG_ID 0x00 // Register index: ID
#define REG_VER 0x01 // Register index: version
#define REG_TABLE 0x10 // Redirection table base
// The redirection table starts at REG_TABLE and uses
// two registers to configure each interrupt.
// The first (low) register in a pair contains configuration bits.
// The second (high) register contains a bitmask telling which
// CPUs can serve that interrupt.
#define INT_DISABLED 0x00010000 // Interrupt disabled
#define INT_LEVEL 0x00008000 // Level-triggered (vs edge-)
#define INT_ACTIVELOW 0x00002000 // Active low (vs high)
#define INT_LOGICAL 0x00000800 // Destination is CPU id (vs APIC ID)
volatile struct ioapic *ioapic;
// IO APIC MMIO structure: write reg, then read or write data.
struct ioapic {
uint reg;
uint pad[3];
uint data;
};
static uint
ioapicread(int reg)
{
ioapic->reg = reg;
return ioapic->data;
}
static void
ioapicwrite(int reg, uint data)
{
ioapic->reg = reg;
ioapic->data = data;
}
void
ioapicinit(void)
{
int i, id, maxintr;
ioapic = (volatile struct ioapic*)IOAPIC;
maxintr = (ioapicread(REG_VER) >> 16) & 0xFF;
id = ioapicread(REG_ID) >> 24;
if(id != ioapicid)
cprintf("ioapicinit: id isn't equal to ioapicid; not a MP\n");
// Mark all interrupts edge-triggered, active high, disabled,
// and not routed to any CPUs.
for(i = 0; i <= maxintr; i++){
ioapicwrite(REG_TABLE+2*i, INT_DISABLED | (T_IRQ0 + i));
ioapicwrite(REG_TABLE+2*i+1, 0);
}
}
void
ioapicenable(int irq, int cpunum)
{
// Mark interrupt edge-triggered, active high,
// enabled, and routed to the given cpunum,
// which happens to be that cpu's APIC ID.
ioapicwrite(REG_TABLE+2*irq, T_IRQ0 + irq);
ioapicwrite(REG_TABLE+2*irq+1, cpunum << 24);
}
// Physical memory allocator, intended to allocate
// memory for user processes, kernel stacks, page table pages,
// and pipe buffers. Allocates 4096-byte pages.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "spinlock.h"
void freerange(void *vstart, void *vend);
extern char end[]; // first address after kernel loaded from ELF file
// defined by the kernel linker script in kernel.ld
struct run {
struct run *next;
};
struct {
struct spinlock lock;
int use_lock;
struct run *freelist;
} kmem;
// Initialization happens in two phases.
// 1. main() calls kinit1() while still using entrypgdir to place just
// the pages mapped by entrypgdir on free list.
// 2. main() calls kinit2() with the rest of the physical pages
// after installing a full page table that maps them on all cores.
void
kinit1(void *vstart, void *vend)
{
initlock(&kmem.lock, "kmem");
kmem.use_lock = 0;
freerange(vstart, vend);
}
void
kinit2(void *vstart, void *vend)
{
freerange(vstart, vend);
kmem.use_lock = 1;
}
void
freerange(void *vstart, void *vend)
{
char *p;
p = (char*)PGROUNDUP((uint)vstart);
for(; p + PGSIZE <= (char*)vend; p += PGSIZE)
kfree(p);
}
//PAGEBREAK: 21
// Free the page of physical memory pointed at by v,
// which normally should have been returned by a
// call to kalloc(). (The exception is when
// initializing the allocator; see kinit above.)
void
kfree(char *v)
{
struct run *r;
if((uint)v % PGSIZE || v < end || V2P(v) >= PHYSTOP)
panic("kfree");
// Fill with junk to catch dangling refs.
memset(v, 1, PGSIZE);
if(kmem.use_lock)
acquire(&kmem.lock);
r = (struct run*)v;
r->next = kmem.freelist;
kmem.freelist = r;
if(kmem.use_lock)
release(&kmem.lock);
}
// Allocate one 4096-byte page of physical memory.
// Returns a pointer that the kernel can use.
// Returns 0 if the memory cannot be allocated.
char*
kalloc(void)
{
struct run *r;
if(kmem.use_lock)
acquire(&kmem.lock);
r = kmem.freelist;
if(r)
kmem.freelist = r->next;
if(kmem.use_lock)
release(&kmem.lock);
return (char*)r;
}
#include "types.h"
#include "x86.h"
#include "defs.h"
#include "kbd.h"
int
kbdgetc(void)
{
static uint shift;
static uchar *charcode[4] = {
normalmap, shiftmap, ctlmap, ctlmap
};
uint st, data, c;
st = inb(KBSTATP);
if((st & KBS_DIB) == 0)
return -1;
data = inb(KBDATAP);
if(data == 0xE0){
shift |= E0ESC;
return 0;
} else if(data & 0x80){
// Key released
data = (shift & E0ESC ? data : data & 0x7F);
shift &= ~(shiftcode[data] | E0ESC);
return 0;
} else if(shift & E0ESC){
// Last character was an E0 escape; or with 0x80
data |= 0x80;
shift &= ~E0ESC;
}
shift |= shiftcode[data];
shift ^= togglecode[data];
c = charcode[shift & (CTL | SHIFT)][data];
if(shift & CAPSLOCK){
if('a' <= c && c <= 'z')
c += 'A' - 'a';
else if('A' <= c && c <= 'Z')
c += 'a' - 'A';
}
return c;
}
void
kbdintr(void)
{
consoleintr(kbdgetc);
}
// PC keyboard interface constants
#define KBSTATP 0x64 // kbd controller status port(I)
#define KBS_DIB 0x01 // kbd data in buffer
#define KBDATAP 0x60 // kbd data port(I)
#define NO 0
#define SHIFT (1<<0)
#define CTL (1<<1)
#define ALT (1<<2)
#define CAPSLOCK (1<<3)
#define NUMLOCK (1<<4)
#define SCROLLLOCK (1<<5)
#define E0ESC (1<<6)
// Special keycodes
#define KEY_HOME 0xE0
#define KEY_END 0xE1
#define KEY_UP 0xE2
#define KEY_DN 0xE3
#define KEY_LF 0xE4
#define KEY_RT 0xE5
#define KEY_PGUP 0xE6
#define KEY_PGDN 0xE7
#define KEY_INS 0xE8
#define KEY_DEL 0xE9
// C('A') == Control-A
#define C(x) (x - '@')
static uchar shiftcode[256] =
{
[0x1D] CTL,
[0x2A] SHIFT,
[0x36] SHIFT,
[0x38] ALT,
[0x9D] CTL,
[0xB8] ALT
};
static uchar togglecode[256] =
{
[0x3A] CAPSLOCK,
[0x45] NUMLOCK,
[0x46] SCROLLLOCK
};
static uchar normalmap[256] =
{
NO, 0x1B, '1', '2', '3', '4', '5', '6', // 0x00
'7', '8', '9', '0', '-', '=', '\b', '\t',
'q', 'w', 'e', 'r', 't', 'y', 'u', 'i', // 0x10
'o', 'p', '[', ']', '\n', NO, 'a', 's',
'd', 'f', 'g', 'h', 'j', 'k', 'l', ';', // 0x20
'\'', '`', NO, '\\', 'z', 'x', 'c', 'v',
'b', 'n', 'm', ',', '.', '/', NO, '*', // 0x30
NO, ' ', NO, NO, NO, NO, NO, NO,
NO, NO, NO, NO, NO, NO, NO, '7', // 0x40
'8', '9', '-', '4', '5', '6', '+', '1',
'2', '3', '0', '.', NO, NO, NO, NO, // 0x50
[0x9C] '\n', // KP_Enter
[0xB5] '/', // KP_Div
[0xC8] KEY_UP, [0xD0] KEY_DN,
[0xC9] KEY_PGUP, [0xD1] KEY_PGDN,
[0xCB] KEY_LF, [0xCD] KEY_RT,
[0x97] KEY_HOME, [0xCF] KEY_END,
[0xD2] KEY_INS, [0xD3] KEY_DEL
};
static uchar shiftmap[256] =
{
NO, 033, '!', '@', '#', '$', '%', '^', // 0x00
'&', '*', '(', ')', '_', '+', '\b', '\t',
'Q', 'W', 'E', 'R', 'T', 'Y', 'U', 'I', // 0x10
'O', 'P', '{', '}', '\n', NO, 'A', 'S',
'D', 'F', 'G', 'H', 'J', 'K', 'L', ':', // 0x20
'"', '~', NO, '|', 'Z', 'X', 'C', 'V',
'B', 'N', 'M', '<', '>', '?', NO, '*', // 0x30
NO, ' ', NO, NO, NO, NO, NO, NO,
NO, NO, NO, NO, NO, NO, NO, '7', // 0x40
'8', '9', '-', '4', '5', '6', '+', '1',
'2', '3', '0', '.', NO, NO, NO, NO, // 0x50
[0x9C] '\n', // KP_Enter
[0xB5] '/', // KP_Div
[0xC8] KEY_UP, [0xD0] KEY_DN,
[0xC9] KEY_PGUP, [0xD1] KEY_PGDN,
[0xCB] KEY_LF, [0xCD] KEY_RT,
[0x97] KEY_HOME, [0xCF] KEY_END,
[0xD2] KEY_INS, [0xD3] KEY_DEL
};
static uchar ctlmap[256] =
{
NO, NO, NO, NO, NO, NO, NO, NO,
NO, NO, NO, NO, NO, NO, NO, NO,
C('Q'), C('W'), C('E'), C('R'), C('T'), C('Y'), C('U'), C('I'),
C('O'), C('P'), NO, NO, '\r', NO, C('A'), C('S'),
C('D'), C('F'), C('G'), C('H'), C('J'), C('K'), C('L'), NO,
NO, NO, NO, C('\\'), C('Z'), C('X'), C('C'), C('V'),
C('B'), C('N'), C('M'), NO, NO, C('/'), NO, NO,
[0x9C] '\r', // KP_Enter
[0xB5] C('/'), // KP_Div
[0xC8] KEY_UP, [0xD0] KEY_DN,
[0xC9] KEY_PGUP, [0xD1] KEY_PGDN,
[0xCB] KEY_LF, [0xCD] KEY_RT,
[0x97] KEY_HOME, [0xCF] KEY_END,
[0xD2] KEY_INS, [0xD3] KEY_DEL
};
/* Simple linker script for the JOS kernel.
See the GNU ld 'info' manual ("info ld") to learn the syntax. */
OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386")
OUTPUT_ARCH(i386)
ENTRY(_start)
SECTIONS
{
/* Link the kernel at this address: "." means the current address */
/* Must be equal to KERNLINK */
. = 0x80100000;
.text : AT(0x100000) {
*(.text .stub .text.* .gnu.linkonce.t.*)
}
PROVIDE(etext = .); /* Define the 'etext' symbol to this value */
.rodata : {
*(.rodata .rodata.* .gnu.linkonce.r.*)
}
/* Include debugging information in kernel memory */
.stab : {
PROVIDE(__STAB_BEGIN__ = .);
*(.stab);
PROVIDE(__STAB_END__ = .);
}
.stabstr : {
PROVIDE(__STABSTR_BEGIN__ = .);
*(.stabstr);
PROVIDE(__STABSTR_END__ = .);
}
/* Adjust the address for the data segment to the next page */
. = ALIGN(0x1000);
/* Conventionally, Unix linkers provide pseudo-symbols
* etext, edata, and end, at the end of the text, data, and bss.
* For the kernel mapping, we need the address at the beginning
* of the data section, but that's not one of the conventional
* symbols, because the convention started before there was a
* read-only rodata section between text and data. */
PROVIDE(data = .);
/* The data segment */
.data : {
*(.data)
}
PROVIDE(edata = .);
.bss : {
*(.bss)
}
PROVIDE(end = .);
/DISCARD/ : {
*(.eh_frame .note.GNU-stack)
}
}
#include "types.h"
#include "stat.h"
#include "user.h"
int
main(int argc, char **argv)
{
int i;
if(argc < 2){
printf(2, "usage: kill pid...\n");
exit(-1);
}
for(i=1; i<argc; i++)
kill(atoi(argv[i]));
exit(0);
}
// The local APIC manages internal (non-I/O) interrupts.
// See Chapter 8 & Appendix C of Intel processor manual volume 3.
#include "param.h"
#include "types.h"
#include "defs.h"
#include "date.h"
#include "memlayout.h"
#include "traps.h"
#include "mmu.h"
#include "x86.h"
// Local APIC registers, divided by 4 for use as uint[] indices.
#define ID (0x0020/4) // ID
#define VER (0x0030/4) // Version
#define TPR (0x0080/4) // Task Priority
#define EOI (0x00B0/4) // EOI
#define SVR (0x00F0/4) // Spurious Interrupt Vector
#define ENABLE 0x00000100 // Unit Enable
#define ESR (0x0280/4) // Error Status
#define ICRLO (0x0300/4) // Interrupt Command
#define INIT 0x00000500 // INIT/RESET
#define STARTUP 0x00000600 // Startup IPI
#define DELIVS 0x00001000 // Delivery status
#define ASSERT 0x00004000 // Assert interrupt (vs deassert)
#define DEASSERT 0x00000000
#define LEVEL 0x00008000 // Level triggered
#define BCAST 0x00080000 // Send to all APICs, including self.
#define BUSY 0x00001000
#define FIXED 0x00000000
#define ICRHI (0x0310/4) // Interrupt Command [63:32]
#define TIMER (0x0320/4) // Local Vector Table 0 (TIMER)
#define X1 0x0000000B // divide counts by 1
#define PERIODIC 0x00020000 // Periodic
#define PCINT (0x0340/4) // Performance Counter LVT
#define LINT0 (0x0350/4) // Local Vector Table 1 (LINT0)
#define LINT1 (0x0360/4) // Local Vector Table 2 (LINT1)
#define ERROR (0x0370/4) // Local Vector Table 3 (ERROR)
#define MASKED 0x00010000 // Interrupt masked
#define TICR (0x0380/4) // Timer Initial Count
#define TCCR (0x0390/4) // Timer Current Count
#define TDCR (0x03E0/4) // Timer Divide Configuration
volatile uint *lapic; // Initialized in mp.c
//PAGEBREAK!
static void
lapicw(int index, int value)
{
lapic[index] = value;
lapic[ID]; // wait for write to finish, by reading
}
void
lapicinit(void)
{
if(!lapic)
return;
// Enable local APIC; set spurious interrupt vector.
lapicw(SVR, ENABLE | (T_IRQ0 + IRQ_SPURIOUS));
// The timer repeatedly counts down at bus frequency
// from lapic[TICR] and then issues an interrupt.
// If xv6 cared more about precise timekeeping,
// TICR would be calibrated using an external time source.
lapicw(TDCR, X1);
lapicw(TIMER, PERIODIC | (T_IRQ0 + IRQ_TIMER));
lapicw(TICR, 10000000);
// Disable logical interrupt lines.
lapicw(LINT0, MASKED);
lapicw(LINT1, MASKED);
// Disable performance counter overflow interrupts
// on machines that provide that interrupt entry.
if(((lapic[VER]>>16) & 0xFF) >= 4)
lapicw(PCINT, MASKED);
// Map error interrupt to IRQ_ERROR.
lapicw(ERROR, T_IRQ0 + IRQ_ERROR);
// Clear error status register (requires back-to-back writes).
lapicw(ESR, 0);
lapicw(ESR, 0);
// Ack any outstanding interrupts.
lapicw(EOI, 0);
// Send an Init Level De-Assert to synchronise arbitration ID's.
lapicw(ICRHI, 0);
lapicw(ICRLO, BCAST | INIT | LEVEL);
while(lapic[ICRLO] & DELIVS)
;
// Enable interrupts on the APIC (but not on the processor).
lapicw(TPR, 0);
}
int
lapicid(void)
{
if (!lapic)
return 0;
return lapic[ID] >> 24;
}
// Acknowledge interrupt.
void
lapiceoi(void)
{
if(lapic)
lapicw(EOI, 0);
}
// Spin for a given number of microseconds.
// On real hardware would want to tune this dynamically.
void
microdelay(int us)
{
}
#define CMOS_PORT 0x70
#define CMOS_RETURN 0x71
// Start additional processor running entry code at addr.
// See Appendix B of MultiProcessor Specification.
void
lapicstartap(uchar apicid, uint addr)
{
int i;
ushort *wrv;
// "The BSP must initialize CMOS shutdown code to 0AH
// and the warm reset vector (DWORD based at 40:67) to point at
// the AP startup code prior to the [universal startup algorithm]."
outb(CMOS_PORT, 0xF); // offset 0xF is shutdown code
outb(CMOS_PORT+1, 0x0A);
wrv = (ushort*)P2V((0x40<<4 | 0x67)); // Warm reset vector
wrv[0] = 0;
wrv[1] = addr >> 4;
// "Universal startup algorithm."
// Send INIT (level-triggered) interrupt to reset other CPU.
lapicw(ICRHI, apicid<<24);
lapicw(ICRLO, INIT | LEVEL | ASSERT);
microdelay(200);
lapicw(ICRLO, INIT | LEVEL);
microdelay(100); // should be 10ms, but too slow in Bochs!
// Send startup IPI (twice!) to enter code.
// Regular hardware is supposed to only accept a STARTUP
// when it is in the halted state due to an INIT. So the second
// should be ignored, but it is part of the official Intel algorithm.
// Bochs complains about the second one. Too bad for Bochs.
for(i = 0; i < 2; i++){
lapicw(ICRHI, apicid<<24);
lapicw(ICRLO, STARTUP | (addr>>12));
microdelay(200);
}
}
#define CMOS_STATA 0x0a
#define CMOS_STATB 0x0b
#define CMOS_UIP (1 << 7) // RTC update in progress
#define SECS 0x00
#define MINS 0x02
#define HOURS 0x04
#define DAY 0x07
#define MONTH 0x08
#define YEAR 0x09
static uint
cmos_read(uint reg)
{
outb(CMOS_PORT, reg);
microdelay(200);
return inb(CMOS_RETURN);
}
static void
fill_rtcdate(struct rtcdate *r)
{
r->second = cmos_read(SECS);
r->minute = cmos_read(MINS);
r->hour = cmos_read(HOURS);
r->day = cmos_read(DAY);
r->month = cmos_read(MONTH);
r->year = cmos_read(YEAR);
}
// qemu seems to use 24-hour GWT and the values are BCD encoded
void
cmostime(struct rtcdate *r)
{
struct rtcdate t1, t2;
int sb, bcd;
sb = cmos_read(CMOS_STATB);
bcd = (sb & (1 << 2)) == 0;
// make sure CMOS doesn't modify time while we read it
for(;;) {
fill_rtcdate(&t1);
if(cmos_read(CMOS_STATA) & CMOS_UIP)
continue;
fill_rtcdate(&t2);
if(memcmp(&t1, &t2, sizeof(t1)) == 0)
break;
}
// convert
if(bcd) {
#define CONV(x) (t1.x = ((t1.x >> 4) * 10) + (t1.x & 0xf))
CONV(second);
CONV(minute);
CONV(hour );
CONV(day );
CONV(month );
CONV(year );
#undef CONV
}
*r = t1;
r->year += 2000;
}
#include "types.h"
#include "stat.h"
#include "user.h"
int
main(int argc, char *argv[])
{
if(argc != 3){
printf(2, "Usage: ln old new\n");
exit(-1);
}
if(link(argv[1], argv[2]) < 0)
printf(2, "link %s %s: failed\n", argv[1], argv[2]);
exit(0);
}
#include "types.h"
#include "defs.h"
#include "param.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "fs.h"
#include "buf.h"
// Simple logging that allows concurrent FS system calls.
//
// A log transaction contains the updates of multiple FS system
// calls. The logging system only commits when there are
// no FS system calls active. Thus there is never
// any reasoning required about whether a commit might
// write an uncommitted system call's updates to disk.
//
// A system call should call begin_op()/end_op() to mark
// its start and end. Usually begin_op() just increments
// the count of in-progress FS system calls and returns.
// But if it thinks the log is close to running out, it
// sleeps until the last outstanding end_op() commits.
//
// The log is a physical re-do log containing disk blocks.
// The on-disk log format:
// header block, containing block #s for block A, B, C, ...
// block A
// block B
// block C
// ...
// Log appends are synchronous.
// Contents of the header block, used for both the on-disk header block
// and to keep track in memory of logged block# before commit.
struct logheader {
int n;
int block[LOGSIZE];
};
struct log {
struct spinlock lock;
int start;
int size;
int outstanding; // how many FS sys calls are executing.
int committing; // in commit(), please wait.
int dev;
struct logheader lh;
};
struct log log;
static void recover_from_log(void);
static void commit();
void
initlog(int dev)
{
if (sizeof(struct logheader) >= BSIZE)
panic("initlog: too big logheader");
struct superblock sb;
initlock(&log.lock, "log");
readsb(dev, &sb);
log.start = sb.logstart;
log.size = sb.nlog;
log.dev = dev;
recover_from_log();
}
// Copy committed blocks from log to their home location
static void
install_trans(void)
{
int tail;
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *lbuf = bread(log.dev, log.start+tail+1); // read log block
struct buf *dbuf = bread(log.dev, log.lh.block[tail]); // read dst
memmove(dbuf->data, lbuf->data, BSIZE); // copy block to dst
bwrite(dbuf); // write dst to disk
brelse(lbuf);
brelse(dbuf);
}
}
// Read the log header from disk into the in-memory log header
static void
read_head(void)
{
struct buf *buf = bread(log.dev, log.start);
struct logheader *lh = (struct logheader *) (buf->data);
int i;
log.lh.n = lh->n;
for (i = 0; i < log.lh.n; i++) {
log.lh.block[i] = lh->block[i];
}
brelse(buf);
}
// Write in-memory log header to disk.
// This is the true point at which the
// current transaction commits.
static void
write_head(void)
{
struct buf *buf = bread(log.dev, log.start);
struct logheader *hb = (struct logheader *) (buf->data);
int i;
hb->n = log.lh.n;
for (i = 0; i < log.lh.n; i++) {
hb->block[i] = log.lh.block[i];
}
bwrite(buf);
brelse(buf);
}
static void
recover_from_log(void)
{
read_head();
install_trans(); // if committed, copy from log to disk
log.lh.n = 0;
write_head(); // clear the log
}
// called at the start of each FS system call.
void
begin_op(void)
{
acquire(&log.lock);
while(1){
if(log.committing){
sleep(&log, &log.lock);
} else if(log.lh.n + (log.outstanding+1)*MAXOPBLOCKS > LOGSIZE){
// this op might exhaust log space; wait for commit.
sleep(&log, &log.lock);
} else {
log.outstanding += 1;
release(&log.lock);
break;
}
}
}
// called at the end of each FS system call.
// commits if this was the last outstanding operation.
void
end_op(void)
{
int do_commit = 0;
acquire(&log.lock);
log.outstanding -= 1;
if(log.committing)
panic("log.committing");
if(log.outstanding == 0){
do_commit = 1;
log.committing = 1;
} else {
// begin_op() may be waiting for log space,
// and decrementing log.outstanding has decreased
// the amount of reserved space.
wakeup(&log);
}
release(&log.lock);
if(do_commit){
// call commit w/o holding locks, since not allowed
// to sleep with locks.
commit();
acquire(&log.lock);
log.committing = 0;
wakeup(&log);
release(&log.lock);
}
}
// Copy modified blocks from cache to log.
static void
write_log(void)
{
int tail;
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *to = bread(log.dev, log.start+tail+1); // log block
struct buf *from = bread(log.dev, log.lh.block[tail]); // cache block
memmove(to->data, from->data, BSIZE);
bwrite(to); // write the log
brelse(from);
brelse(to);
}
}
static void
commit()
{
if (log.lh.n > 0) {
write_log(); // Write modified blocks from cache to log
write_head(); // Write header to disk -- the real commit
install_trans(); // Now install writes to home locations
log.lh.n = 0;
write_head(); // Erase the transaction from the log
}
}
// Caller has modified b->data and is done with the buffer.
// Record the block number and pin in the cache with B_DIRTY.
// commit()/write_log() will do the disk write.
//
// log_write() replaces bwrite(); a typical use is:
// bp = bread(...)
// modify bp->data[]
// log_write(bp)
// brelse(bp)
void
log_write(struct buf *b)
{
int i;
if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
panic("too big a transaction");
if (log.outstanding < 1)
panic("log_write outside of trans");
acquire(&log.lock);
for (i = 0; i < log.lh.n; i++) {
if (log.lh.block[i] == b->blockno) // log absorbtion
break;
}
log.lh.block[i] = b->blockno;
if (i == log.lh.n)
log.lh.n++;
b->flags |= B_DIRTY; // prevent eviction
release(&log.lock);
}
#include "types.h"
#include "stat.h"
#include "user.h"
#include "fs.h"
char*
fmtname(char *path)
{
static char buf[DIRSIZ+1];
char *p;
// Find first character after last slash.
for(p=path+strlen(path); p >= path && *p != '/'; p--)
;
p++;
// Return blank-padded name.
if(strlen(p) >= DIRSIZ)
return p;
memmove(buf, p, strlen(p));
memset(buf+strlen(p), ' ', DIRSIZ-strlen(p));
return buf;
}
void
ls(char *path)
{
char buf[512], *p;
int fd;
struct dirent de;
struct stat st;
if((fd = open(path, 0)) < 0){
printf(2, "ls: cannot open %s\n", path);
return;
}
if(fstat(fd, &st) < 0){
printf(2, "ls: cannot stat %s\n", path);
close(fd);
return;
}
switch(st.type){
case T_FILE:
printf(1, "%s %d %d %d\n", fmtname(path), st.type, st.ino, st.size);
break;
case T_DIR:
if(strlen(path) + 1 + DIRSIZ + 1 > sizeof buf){
printf(1, "ls: path too long\n");
break;
}
strcpy(buf, path);
p = buf+strlen(buf);
*p++ = '/';
while(read(fd, &de, sizeof(de)) == sizeof(de)){
if(de.inum == 0)
continue;
memmove(p, de.name, DIRSIZ);
p[DIRSIZ] = 0;
if(stat(buf, &st) < 0){
printf(1, "ls: cannot stat %s\n", buf);
continue;
}
printf(1, "%s %d %d %d\n", fmtname(buf), st.type, st.ino, st.size);
}
break;
}
close(fd);
}
int
main(int argc, char *argv[])
{
int i;
if(argc < 2){
ls(".");
exit(0);
}
for(i=1; i<argc; i++)
ls(argv[i]);
exit(0);
}
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
static void startothers(void);
static void mpmain(void) __attribute__((noreturn));
extern pde_t *kpgdir;
extern char end[]; // first address after kernel loaded from ELF file
// Bootstrap processor starts running C code here.
// Allocate a real stack and switch to it, first
// doing some setup required for memory allocator to work.
int
main(void)
{
kinit1(end, P2V(4*1024*1024)); // phys page allocator
kvmalloc(); // kernel page table
mpinit(); // detect other processors
lapicinit(); // interrupt controller
seginit(); // segment descriptors
picinit(); // disable pic
ioapicinit(); // another interrupt controller
consoleinit(); // console hardware
uartinit(); // serial port
pinit(); // process table
tvinit(); // trap vectors
binit(); // buffer cache
fileinit(); // file table
ideinit(); // disk
startothers(); // start other processors
kinit2(P2V(4*1024*1024), P2V(PHYSTOP)); // must come after startothers()
userinit(); // first user process
mpmain(); // finish this processor's setup
}
// Other CPUs jump here from entryother.S.
static void
mpenter(void)
{
switchkvm();
seginit();
lapicinit();
mpmain();
}
// Common CPU setup code.
static void
mpmain(void)
{
cprintf("cpu%d: starting %d\n", cpuid(), cpuid());
idtinit(); // load idt register
xchg(&(mycpu()->started), 1); // tell startothers() we're up
scheduler(); // start running processes
}
pde_t entrypgdir[]; // For entry.S
// Start the non-boot (AP) processors.
static void
startothers(void)
{
extern uchar _binary_entryother_start[], _binary_entryother_size[];
uchar *code;
struct cpu *c;
char *stack;
// Write entry code to unused memory at 0x7000.
// The linker has placed the image of entryother.S in
// _binary_entryother_start.
code = P2V(0x7000);
memmove(code, _binary_entryother_start, (uint)_binary_entryother_size);
for(c = cpus; c < cpus+ncpu; c++){
if(c == mycpu()) // We've started already.
continue;
// Tell entryother.S what stack to use, where to enter, and what
// pgdir to use. We cannot use kpgdir yet, because the AP processor
// is running in low memory, so we use entrypgdir for the APs too.
stack = kalloc();
*(void**)(code-4) = stack + KSTACKSIZE;
*(void(**)(void))(code-8) = mpenter;
*(int**)(code-12) = (void *) V2P(entrypgdir);
lapicstartap(c->apicid, V2P(code));
// wait for cpu to finish mpmain()
while(c->started == 0)
;
}
}
// The boot page table used in entry.S and entryother.S.
// Page directories (and page tables) must start on page boundaries,
// hence the __aligned__ attribute.
// PTE_PS in a page directory entry enables 4Mbyte pages.
__attribute__((__aligned__(PGSIZE)))
pde_t entrypgdir[NPDENTRIES] = {
// Map VA's [0, 4MB) to PA's [0, 4MB)
[0] = (0) | PTE_P | PTE_W | PTE_PS,
// Map VA's [KERNBASE, KERNBASE+4MB) to PA's [0, 4MB)
[KERNBASE>>PDXSHIFT] = (0) | PTE_P | PTE_W | PTE_PS,
};
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.
// Fake IDE disk; stores blocks in memory.
// Useful for running kernel without scratch disk.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
#include "traps.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "fs.h"
#include "buf.h"
extern uchar _binary_fs_img_start[], _binary_fs_img_size[];
static int disksize;
static uchar *memdisk;
void
ideinit(void)
{
memdisk = _binary_fs_img_start;
disksize = (uint)_binary_fs_img_size/BSIZE;
}
// Interrupt handler.
void
ideintr(void)
{
// no-op
}
// Sync buf with disk.
// If B_DIRTY is set, write buf to disk, clear B_DIRTY, set B_VALID.
// Else if B_VALID is not set, read buf from disk, set B_VALID.
void
iderw(struct buf *b)
{
uchar *p;
if(!holdingsleep(&b->lock))
panic("iderw: buf not locked");
if((b->flags & (B_VALID|B_DIRTY)) == B_VALID)
panic("iderw: nothing to do");
if(b->dev != 1)
panic("iderw: request not for disk 1");
if(b->blockno >= disksize)
panic("iderw: block out of range");
p = memdisk + b->blockno*BSIZE;
if(b->flags & B_DIRTY){
b->flags &= ~B_DIRTY;
memmove(p, b->data, BSIZE);
} else
memmove(b->data, p, BSIZE);
b->flags |= B_VALID;
}
// Memory layout
#define EXTMEM 0x100000 // Start of extended memory
#define PHYSTOP 0xE000000 // Top physical memory
#define DEVSPACE 0xFE000000 // Other devices are at high addresses
// Key addresses for address space layout (see kmap in vm.c for layout)
#define KERNBASE 0x80000000 // First kernel virtual address
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked
#define V2P(a) (((uint) (a)) - KERNBASE)
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE))
#define V2P_WO(x) ((x) - KERNBASE) // same as V2P, but without casts
#define P2V_WO(x) ((x) + KERNBASE) // same as P2V, but without casts
#include "types.h"
#include "stat.h"
#include "user.h"
int
main(int argc, char *argv[])
{
int i;
if(argc < 2){
printf(2, "Usage: mkdir files...\n");
exit(-1);
}
for(i = 1; i < argc; i++){
if(mkdir(argv[i]) < 0){
printf(2, "mkdir: %s failed to create\n", argv[i]);
break;
}
}
exit(0);
}
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <assert.h>
#define stat xv6_stat // avoid clash with host struct stat
#include "types.h"
#include "fs.h"
#include "stat.h"
#include "param.h"
#ifndef static_assert
#define static_assert(a, b) do { switch (0) case 0: case (a): ; } while (0)
#endif
#define NINODES 200
// Disk layout:
// [ boot block | sb block | log | inode blocks | free bit map | data blocks ]
int nbitmap = FSSIZE/(BSIZE*8) + 1;
int ninodeblocks = NINODES / IPB + 1;
int nlog = LOGSIZE;
int nmeta; // Number of meta blocks (boot, sb, nlog, inode, bitmap)
int nblocks; // Number of data blocks
int fsfd;
struct superblock sb;
char zeroes[BSIZE];
uint freeinode = 1;
uint freeblock;
void balloc(int);
void wsect(uint, void*);
void winode(uint, struct dinode*);
void rinode(uint inum, struct dinode *ip);
void rsect(uint sec, void *buf);
uint ialloc(ushort type);
void iappend(uint inum, void *p, int n);
// convert to intel byte order
ushort
xshort(ushort x)
{
ushort y;
uchar *a = (uchar*)&y;
a[0] = x;
a[1] = x >> 8;
return y;
}
uint
xint(uint x)
{
uint y;
uchar *a = (uchar*)&y;
a[0] = x;
a[1] = x >> 8;
a[2] = x >> 16;
a[3] = x >> 24;
return y;
}
int
main(int argc, char *argv[])
{
int i, cc, fd;
uint rootino, inum, off;
struct dirent de;
char buf[BSIZE];
struct dinode din;
static_assert(sizeof(int) == 4, "Integers must be 4 bytes!");
if(argc < 2){
fprintf(stderr, "Usage: mkfs fs.img files...\n");
exit(1);
}
assert((BSIZE % sizeof(struct dinode)) == 0);
assert((BSIZE % sizeof(struct dirent)) == 0);
fsfd = open(argv[1], O_RDWR|O_CREAT|O_TRUNC, 0666);
if(fsfd < 0){
perror(argv[1]);
exit(1);
}
// 1 fs block = 1 disk sector
nmeta = 2 + nlog + ninodeblocks + nbitmap;
nblocks = FSSIZE - nmeta;
sb.size = xint(FSSIZE);
sb.nblocks = xint(nblocks);
sb.ninodes = xint(NINODES);
sb.nlog = xint(nlog);
sb.logstart = xint(2);
sb.inodestart = xint(2+nlog);
sb.bmapstart = xint(2+nlog+ninodeblocks);
printf("nmeta %d (boot, super, log blocks %u inode blocks %u, bitmap blocks %u) blocks %d total %d\n",
nmeta, nlog, ninodeblocks, nbitmap, nblocks, FSSIZE);
freeblock = nmeta; // the first free block that we can allocate
for(i = 0; i < FSSIZE; i++)
wsect(i, zeroes);
memset(buf, 0, sizeof(buf));
memmove(buf, &sb, sizeof(sb));
wsect(1, buf);
rootino = ialloc(T_DIR);
assert(rootino == ROOTINO);
bzero(&de, sizeof(de));
de.inum = xshort(rootino);
strcpy(de.name, ".");
iappend(rootino, &de, sizeof(de));
bzero(&de, sizeof(de));
de.inum = xshort(rootino);
strcpy(de.name, "..");
iappend(rootino, &de, sizeof(de));
for(i = 2; i < argc; i++){
assert(index(argv[i], '/') == 0);
if((fd = open(argv[i], 0)) < 0){
perror(argv[i]);
exit(1);
}
// Skip leading _ in name when writing to file system.
// The binaries are named _rm, _cat, etc. to keep the
// build operating system from trying to execute them
// in place of system binaries like rm and cat.
if(argv[i][0] == '_')
++argv[i];
inum = ialloc(T_FILE);
bzero(&de, sizeof(de));
de.inum = xshort(inum);
strncpy(de.name, argv[i], DIRSIZ);
iappend(rootino, &de, sizeof(de));
while((cc = read(fd, buf, sizeof(buf))) > 0)
iappend(inum, buf, cc);
close(fd);
}
// fix size of root inode dir
rinode(rootino, &din);
off = xint(din.size);
off = ((off/BSIZE) + 1) * BSIZE;
din.size = xint(off);
winode(rootino, &din);
balloc(freeblock);
exit(0);
}
void
wsect(uint sec, void *buf)
{
if(lseek(fsfd, sec * BSIZE, 0) != sec * BSIZE){
perror("lseek");
exit(1);
}
if(write(fsfd, buf, BSIZE) != BSIZE){
perror("write");
exit(1);
}
}
void
winode(uint inum, struct dinode *ip)
{
char buf[BSIZE];
uint bn;
struct dinode *dip;
bn = IBLOCK(inum, sb);
rsect(bn, buf);
dip = ((struct dinode*)buf) + (inum % IPB);
*dip = *ip;
wsect(bn, buf);
}
void
rinode(uint inum, struct dinode *ip)
{
char buf[BSIZE];
uint bn;
struct dinode *dip;
bn = IBLOCK(inum, sb);
rsect(bn, buf);
dip = ((struct dinode*)buf) + (inum % IPB);
*ip = *dip;
}
void
rsect(uint sec, void *buf)
{
if(lseek(fsfd, sec * BSIZE, 0) != sec * BSIZE){
perror("lseek");
exit(1);
}
if(read(fsfd, buf, BSIZE) != BSIZE){
perror("read");
exit(1);
}
}
uint
ialloc(ushort type)
{
uint inum = freeinode++;
struct dinode din;
bzero(&din, sizeof(din));
din.type = xshort(type);
din.nlink = xshort(1);
din.size = xint(0);
winode(inum, &din);
return inum;
}
void
balloc(int used)
{
uchar buf[BSIZE];
int i;
printf("balloc: first %d blocks have been allocated\n", used);
assert(used < BSIZE*8);
bzero(buf, BSIZE);
for(i = 0; i < used; i++){
buf[i/8] = buf[i/8] | (0x1 << (i%8));
}
printf("balloc: write bitmap block at sector %d\n", sb.bmapstart);
wsect(sb.bmapstart, buf);
}
#define min(a, b) ((a) < (b) ? (a) : (b))
void
iappend(uint inum, void *xp, int n)
{
char *p = (char*)xp;
uint fbn, off, n1;
struct dinode din;
char buf[BSIZE];
uint indirect[NINDIRECT];
uint x;
rinode(inum, &din);
off = xint(din.size);
// printf("append inum %d at off %d sz %d\n", inum, off, n);
while(n > 0){
fbn = off / BSIZE;
assert(fbn < MAXFILE);
if(fbn < NDIRECT){
if(xint(din.addrs[fbn]) == 0){
din.addrs[fbn] = xint(freeblock++);
}
x = xint(din.addrs[fbn]);
} else {
if(xint(din.addrs[NDIRECT]) == 0){
din.addrs[NDIRECT] = xint(freeblock++);
}
rsect(xint(din.addrs[NDIRECT]), (char*)indirect);
if(indirect[fbn - NDIRECT] == 0){
indirect[fbn - NDIRECT] = xint(freeblock++);
wsect(xint(din.addrs[NDIRECT]), (char*)indirect);
}
x = xint(indirect[fbn-NDIRECT]);
}
n1 = min(n, (fbn + 1) * BSIZE - off);
rsect(x, buf);
bcopy(p, buf + off - (fbn * BSIZE), n1);
wsect(x, buf);
n -= n1;
off += n1;
p += n1;
}
din.size = xint(off);
winode(inum, &din);
}
// This file contains definitions for the
// x86 memory management unit (MMU).
// Eflags register
#define FL_IF 0x00000200 // Interrupt Enable
// Control Register flags
#define CR0_PE 0x00000001 // Protection Enable
#define CR0_WP 0x00010000 // Write Protect
#define CR0_PG 0x80000000 // Paging
#define CR4_PSE 0x00000010 // Page size extension
// various segment selectors.
#define SEG_KCODE 1 // kernel code
#define SEG_KDATA 2 // kernel data+stack
#define SEG_UCODE 3 // user code
#define SEG_UDATA 4 // user data+stack
#define SEG_TSS 5 // this process's task state
// cpu->gdt[NSEGS] holds the above segments.
#define NSEGS 6
#ifndef __ASSEMBLER__
// Segment Descriptor
struct segdesc {
uint lim_15_0 : 16; // Low bits of segment limit
uint base_15_0 : 16; // Low bits of segment base address
uint base_23_16 : 8; // Middle bits of segment base address
uint type : 4; // Segment type (see STS_ constants)
uint s : 1; // 0 = system, 1 = application
uint dpl : 2; // Descriptor Privilege Level
uint p : 1; // Present
uint lim_19_16 : 4; // High bits of segment limit
uint avl : 1; // Unused (available for software use)
uint rsv1 : 1; // Reserved
uint db : 1; // 0 = 16-bit segment, 1 = 32-bit segment
uint g : 1; // Granularity: limit scaled by 4K when set
uint base_31_24 : 8; // High bits of segment base address
};
// Normal segment
#define SEG(type, base, lim, dpl) (struct segdesc) \
{ ((lim) >> 12) & 0xffff, (uint)(base) & 0xffff, \
((uint)(base) >> 16) & 0xff, type, 1, dpl, 1, \
(uint)(lim) >> 28, 0, 0, 1, 1, (uint)(base) >> 24 }
#define SEG16(type, base, lim, dpl) (struct segdesc) \
{ (lim) & 0xffff, (uint)(base) & 0xffff, \
((uint)(base) >> 16) & 0xff, type, 1, dpl, 1, \
(uint)(lim) >> 16, 0, 0, 1, 0, (uint)(base) >> 24 }
#endif
#define DPL_USER 0x3 // User DPL
// Application segment type bits
#define STA_X 0x8 // Executable segment
#define STA_W 0x2 // Writeable (non-executable segments)
#define STA_R 0x2 // Readable (executable segments)
// System segment type bits
#define STS_T32A 0x9 // Available 32-bit TSS
#define STS_IG32 0xE // 32-bit Interrupt Gate
#define STS_TG32 0xF // 32-bit Trap Gate
// A virtual address 'la' has a three-part structure as follows:
//
// +--------10------+-------10-------+---------12----------+
// | Page Directory | Page Table | Offset within Page |
// | Index | Index | |
// +----------------+----------------+---------------------+
// \--- PDX(va) --/ \--- PTX(va) --/
// page directory index
#define PDX(va) (((uint)(va) >> PDXSHIFT) & 0x3FF)
// page table index
#define PTX(va) (((uint)(va) >> PTXSHIFT) & 0x3FF)
// construct virtual address from indexes and offset
#define PGADDR(d, t, o) ((uint)((d) << PDXSHIFT | (t) << PTXSHIFT | (o)))
// Page directory and page table constants.
#define NPDENTRIES 1024 // # directory entries per page directory
#define NPTENTRIES 1024 // # PTEs per page table
#define PGSIZE 4096 // bytes mapped by a page
#define PTXSHIFT 12 // offset of PTX in a linear address
#define PDXSHIFT 22 // offset of PDX in a linear address
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))
// Page table/directory entry flags.
#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PS 0x080 // Page Size
// Address in page table or page directory entry
#define PTE_ADDR(pte) ((uint)(pte) & ~0xFFF)
#define PTE_FLAGS(pte) ((uint)(pte) & 0xFFF)
#ifndef __ASSEMBLER__
typedef uint pte_t;
// Task state segment format
struct taskstate {
uint link; // Old ts selector
uint esp0; // Stack pointers and segment selectors
ushort ss0; // after an increase in privilege level
ushort padding1;
uint *esp1;
ushort ss1;
ushort padding2;
uint *esp2;
ushort ss2;
ushort padding3;
void *cr3; // Page directory base
uint *eip; // Saved state from last task switch
uint eflags;
uint eax; // More saved state (registers)
uint ecx;
uint edx;
uint ebx;
uint *esp;
uint *ebp;
uint esi;
uint edi;
ushort es; // Even more saved state (segment selectors)
ushort padding4;
ushort cs;
ushort padding5;
ushort ss;
ushort padding6;
ushort ds;
ushort padding7;
ushort fs;
ushort padding8;
ushort gs;
ushort padding9;
ushort ldt;
ushort padding10;
ushort t; // Trap on task switch
ushort iomb; // I/O map base address
};
// Gate descriptors for interrupts and traps
struct gatedesc {
uint off_15_0 : 16; // low 16 bits of offset in segment
uint cs : 16; // code segment selector
uint args : 5; // # args, 0 for interrupt/trap gates
uint rsv1 : 3; // reserved(should be zero I guess)
uint type : 4; // type(STS_{IG32,TG32})
uint s : 1; // must be 0 (system)
uint dpl : 2; // descriptor(meaning new) privilege level
uint p : 1; // Present
uint off_31_16 : 16; // high bits of offset in segment
};
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap (= exception) gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \
{ \
(gate).off_15_0 = (uint)(off) & 0xffff; \
(gate).cs = (sel); \
(gate).args = 0; \
(gate).rsv1 = 0; \
(gate).type = (istrap) ? STS_TG32 : STS_IG32; \
(gate).s = 0; \
(gate).dpl = (d); \
(gate).p = 1; \
(gate).off_31_16 = (uint)(off) >> 16; \
}
#endif
// Multiprocessor support
// Search memory for MP description structures.
// http://developer.intel.com/design/pentium/datashts/24201606.pdf
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mp.h"
#include "x86.h"
#include "mmu.h"
#include "proc.h"
struct cpu cpus[NCPU];
int ncpu;
uchar ioapicid;
static uchar
sum(uchar *addr, int len)
{
int i, sum;
sum = 0;
for(i=0; i<len; i++)
sum += addr[i];
return sum;
}
// Look for an MP structure in the len bytes at addr.
static struct mp*
mpsearch1(uint a, int len)
{
uchar *e, *p, *addr;
addr = P2V(a);
e = addr+len;
for(p = addr; p < e; p += sizeof(struct mp))
if(memcmp(p, "_MP_", 4) == 0 && sum(p, sizeof(struct mp)) == 0)
return (struct mp*)p;
return 0;
}
// Search for the MP Floating Pointer Structure, which according to the
// spec is in one of the following three locations:
// 1) in the first KB of the EBDA;
// 2) in the last KB of system base memory;
// 3) in the BIOS ROM between 0xE0000 and 0xFFFFF.
static struct mp*
mpsearch(void)
{
uchar *bda;
uint p;
struct mp *mp;
bda = (uchar *) P2V(0x400);
if((p = ((bda[0x0F]<<8)| bda[0x0E]) << 4)){
if((mp = mpsearch1(p, 1024)))
return mp;
} else {
p = ((bda[0x14]<<8)|bda[0x13])*1024;
if((mp = mpsearch1(p-1024, 1024)))
return mp;
}
return mpsearch1(0xF0000, 0x10000);
}
// Search for an MP configuration table. For now,
// don't accept the default configurations (physaddr == 0).
// Check for correct signature, calculate the checksum and,
// if correct, check the version.
// To do: check extended table checksum.
static struct mpconf*
mpconfig(struct mp **pmp)
{
struct mpconf *conf;
struct mp *mp;
if((mp = mpsearch()) == 0 || mp->physaddr == 0)
return 0;
conf = (struct mpconf*) P2V((uint) mp->physaddr);
if(memcmp(conf, "PCMP", 4) != 0)
return 0;
if(conf->version != 1 && conf->version != 4)
return 0;
if(sum((uchar*)conf, conf->length) != 0)
return 0;
*pmp = mp;
return conf;
}
void
mpinit(void)
{
uchar *p, *e;
int ismp;
struct mp *mp;
struct mpconf *conf;
struct mpproc *proc;
struct mpioapic *ioapic;
if((conf = mpconfig(&mp)) == 0)
panic("Expect to run on an SMP");
ismp = 1;
lapic = (uint*)conf->lapicaddr;
for(p=(uchar*)(conf+1), e=(uchar*)conf+conf->length; p<e; ){
switch(*p){
case MPPROC:
proc = (struct mpproc*)p;
if(ncpu < NCPU) {
cpus[ncpu].apicid = proc->apicid; // apicid may differ from ncpu
ncpu++;
}
p += sizeof(struct mpproc);
continue;
case MPIOAPIC:
ioapic = (struct mpioapic*)p;
ioapicid = ioapic->apicno;
p += sizeof(struct mpioapic);
continue;
case MPBUS:
case MPIOINTR:
case MPLINTR:
p += 8;
continue;
default:
ismp = 0;
break;
}
}
if(!ismp)
panic("Didn't find a suitable machine");
if(mp->imcrp){
// Bochs doesn't support IMCR, so this doesn't run on Bochs.
// But it would on real hardware.
outb(0x22, 0x70); // Select IMCR
outb(0x23, inb(0x23) | 1); // Mask external interrupts.
}
}
// See MultiProcessor Specification Version 1.[14]
struct mp { // floating pointer
uchar signature[4]; // "_MP_"
void *physaddr; // phys addr of MP config table
uchar length; // 1
uchar specrev; // [14]
uchar checksum; // all bytes must add up to 0
uchar type; // MP system config type
uchar imcrp;
uchar reserved[3];
};
struct mpconf { // configuration table header
uchar signature[4]; // "PCMP"
ushort length; // total table length
uchar version; // [14]
uchar checksum; // all bytes must add up to 0
uchar product[20]; // product id
uint *oemtable; // OEM table pointer
ushort oemlength; // OEM table length
ushort entry; // entry count
uint *lapicaddr; // address of local APIC
ushort xlength; // extended table length
uchar xchecksum; // extended table checksum
uchar reserved;
};
struct mpproc { // processor table entry
uchar type; // entry type (0)
uchar apicid; // local APIC id
uchar version; // local APIC verison
uchar flags; // CPU flags
#define MPBOOT 0x02 // This proc is the bootstrap processor.
uchar signature[4]; // CPU signature
uint feature; // feature flags from CPUID instruction
uchar reserved[8];
};
struct mpioapic { // I/O APIC table entry
uchar type; // entry type (2)
uchar apicno; // I/O APIC id
uchar version; // I/O APIC version
uchar flags; // I/O APIC flags
uint *addr; // I/O APIC address
};
// Table entry types
#define MPPROC 0x00 // One per processor
#define MPBUS 0x01 // One per bus
#define MPIOAPIC 0x02 // One per I/O APIC
#define MPIOINTR 0x03 // One per bus interrupt source
#define MPLINTR 0x04 // One per system interrupt source
//PAGEBREAK!
// Blank page.
ls
ps
grep xv6 < README > output
cat < output
procinfo 2
ps;procinfo 2
ps && ls
ps || ls
grep && ls
wc < README && ls
#define NPROC 64 // maximum number of processes
#define KSTACKSIZE 4096 // size of per-process kernel stack
#define NCPU 8 // maximum number of CPUs
#define NOFILE 16 // open files per process
#define NFILE 100 // open files per system
#define NINODE 50 // maximum number of active i-nodes
#define NDEV 10 // maximum major device number
#define ROOTDEV 1 // device number of file system root disk
#define MAXARG 32 // max exec arguments
#define MAXOPBLOCKS 10 // max # of blocks any FS op writes
#define LOGSIZE (MAXOPBLOCKS*3) // max data blocks in on-disk log
#define NBUF (MAXOPBLOCKS*3) // size of disk block cache
#define FSSIZE 1000 // size of file system in blocks
#include "types.h"
#include "x86.h"
#include "traps.h"
// I/O Addresses of the two programmable interrupt controllers
#define IO_PIC1 0x20 // Master (IRQs 0-7)
#define IO_PIC2 0xA0 // Slave (IRQs 8-15)
// Don't use the 8259A interrupt controllers. Xv6 assumes SMP hardware.
void
picinit(void)
{
// mask all interrupts
outb(IO_PIC1+1, 0xFF);
outb(IO_PIC2+1, 0xFF);
}
//PAGEBREAK!
// Blank page.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "mmu.h"
#include "proc.h"
#include "fs.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "file.h"
#define PIPESIZE 512
struct pipe {
struct spinlock lock;
char data[PIPESIZE];
uint nread; // number of bytes read
uint nwrite; // number of bytes written
int readopen; // read fd is still open
int writeopen; // write fd is still open
};
int
pipealloc(struct file **f0, struct file **f1)
{
struct pipe *p;
p = 0;
*f0 = *f1 = 0;
if((*f0 = filealloc()) == 0 || (*f1 = filealloc()) == 0)
goto bad;
if((p = (struct pipe*)kalloc()) == 0)
goto bad;
p->readopen = 1;
p->writeopen = 1;
p->nwrite = 0;
p->nread = 0;
initlock(&p->lock, "pipe");
(*f0)->type = FD_PIPE;
(*f0)->readable = 1;
(*f0)->writable = 0;
(*f0)->pipe = p;
(*f1)->type = FD_PIPE;
(*f1)->readable = 0;
(*f1)->writable = 1;
(*f1)->pipe = p;
return 0;
//PAGEBREAK: 20
bad:
if(p)
kfree((char*)p);
if(*f0)
fileclose(*f0);
if(*f1)
fileclose(*f1);
return -1;
}
void
pipeclose(struct pipe *p, int writable)
{
acquire(&p->lock);
if(writable){
p->writeopen = 0;
wakeup(&p->nread);
} else {
p->readopen = 0;
wakeup(&p->nwrite);
}
if(p->readopen == 0 && p->writeopen == 0){
release(&p->lock);
kfree((char*)p);
} else
release(&p->lock);
}
//PAGEBREAK: 40
int
pipewrite(struct pipe *p, char *addr, int n)
{
int i;
acquire(&p->lock);
for(i = 0; i < n; i++){
while(p->nwrite == p->nread + PIPESIZE){ //DOC: pipewrite-full
if(p->readopen == 0 || myproc()->killed){
release(&p->lock);
return -1;
}
wakeup(&p->nread);
sleep(&p->nwrite, &p->lock); //DOC: pipewrite-sleep
}
p->data[p->nwrite++ % PIPESIZE] = addr[i];
}
wakeup(&p->nread); //DOC: pipewrite-wakeup1
release(&p->lock);
return n;
}
int
piperead(struct pipe *p, char *addr, int n)
{
int i;
acquire(&p->lock);
while(p->nread == p->nwrite && p->writeopen){ //DOC: pipe-empty
if(myproc()->killed){
release(&p->lock);
return -1;
}
sleep(&p->nread, &p->lock); //DOC: piperead-sleep
}
for(i = 0; i < n; i++){ //DOC: piperead-copy
if(p->nread == p->nwrite)
break;
addr[i] = p->data[p->nread++ % PIPESIZE];
}
wakeup(&p->nwrite); //DOC: piperead-wakeup
release(&p->lock);
return i;
}
#!/usr/bin/perl
use POSIX qw(strftime);
if($ARGV[0] eq "-h"){
shift @ARGV;
$h = $ARGV[0];
shift @ARGV;
}else{
$h = $ARGV[0];
}
$page = 0;
$now = strftime "%b %e %H:%M %Y", localtime;
@lines = <>;
for($i=0; $i<@lines; $i+=50){
print "\n\n";
++$page;
print "$now $h Page $page\n";
print "\n\n";
for($j=$i; $j<@lines && $j<$i +50; $j++){
$lines[$j] =~ s!//DOC.*!!;
print $lines[$j];
}
for(; $j<$i+50; $j++){
print "\n";
}
$sheet = "";
if($lines[$i] =~ /^([0-9][0-9])[0-9][0-9] /){
$sheet = "Sheet $1";
}
print "\n\n";
print "$sheet\n";
print "\n\n";
}
#include "types.h"
#include "stat.h"
#include "user.h"
static void
putc(int fd, char c)
{
write(fd, &c, 1);
}
static void
printint(int fd, int xx, int base, int sgn)
{
static char digits[] = "0123456789ABCDEF";
char buf[16];
int i, neg;
uint x;
neg = 0;
if(sgn && xx < 0){
neg = 1;
x = -xx;
} else {
x = xx;
}
i = 0;
do{
buf[i++] = digits[x % base];
}while((x /= base) != 0);
if(neg)
buf[i++] = '-';
while(--i >= 0)
putc(fd, buf[i]);
}
// Print to the given fd. Only understands %d, %x, %p, %s.
void
printf(int fd, const char *fmt, ...)
{
char *s;
int c, i, state;
uint *ap;
state = 0;
ap = (uint*)(void*)&fmt + 1;
for(i = 0; fmt[i]; i++){
c = fmt[i] & 0xff;
if(state == 0){
if(c == '%'){
state = '%';
} else {
putc(fd, c);
}
} else if(state == '%'){
if(c == 'd'){
printint(fd, *ap, 10, 1);
ap++;
} else if(c == 'x' || c == 'p'){
printint(fd, *ap, 16, 0);
ap++;
} else if(c == 's'){
s = (char*)*ap;
ap++;
if(s == 0)
s = "(null)";
while(*s != 0){
putc(fd, *s);
s++;
}
} else if(c == 'c'){
putc(fd, *ap);
ap++;
} else if(c == '%'){
putc(fd, c);
} else {
// Unknown % sequence. Print it to draw attention.
putc(fd, '%');
putc(fd, c);
}
state = 0;
}
}
}
#!/bin/sh
# Decode the symbols from a panic EIP list
# Find a working addr2line
for p in i386-jos-elf-addr2line addr2line; do
if which $p 2>&1 >/dev/null && \
$p -h 2>&1 | grep -q '\belf32-i386\b'; then
break
fi
done
# Enable as much pretty-printing as this addr2line can do
$p $($p -h | grep ' -[aipsf] ' | awk '{print $1}') -e kernel "$@"
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "x86.h"
#include "proc.h"
#include "spinlock.h"
struct {
struct spinlock lock;
struct proc proc[NPROC];
} ptable;
static struct proc *initproc;
int nextpid = 1;
extern void forkret(void);
extern void trapret(void);
static void wakeup1(void *chan);
void
pinit(void)
{
initlock(&ptable.lock, "ptable");
}
// Must be called with interrupts disabled
int
cpuid() {
return mycpu()-cpus;
}
// Must be called with interrupts disabled to avoid the caller being
// rescheduled between reading lapicid and running through the loop.
struct cpu*
mycpu(void)
{
int apicid, i;
if(readeflags()&FL_IF)
panic("mycpu called with interrupts enabled\n");
apicid = lapicid();
// APIC IDs are not guaranteed to be contiguous. Maybe we should have
// a reverse map, or reserve a register to store &cpus[i].
for (i = 0; i < ncpu; ++i) {
if (cpus[i].apicid == apicid)
return &cpus[i];
}
panic("unknown apicid\n");
}
// Disable interrupts so that we are not rescheduled
// while reading proc from the cpu structure
struct proc*
myproc(void) {
struct cpu *c;
struct proc *p;
pushcli();
c = mycpu();
p = c->proc;
popcli();
return p;
}
//PAGEBREAK: 32
// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and initialize
// state required to run in the kernel.
// Otherwise return 0.
static struct proc*
allocproc(void)
{
struct proc *p;
struct rtcdate *d;
char *sp;
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == UNUSED)
goto found;
release(&ptable.lock);
return 0;
found:
p->state = EMBRYO;
p->pid = nextpid++;
p->currentHeapMem = 0;
//Assign time stamp of process creation
d = &(p->procCTS);
cmostime(d);
release(&ptable.lock);
// Allocate kernel stack.
if((p->kstack = kalloc()) == 0){
p->state = UNUSED;
return 0;
}
sp = p->kstack + KSTACKSIZE;
// Leave room for trap frame.
sp -= sizeof *p->tf;
p->tf = (struct trapframe*)sp;
// Set up new context to start executing at forkret,
// which returns to trapret.
sp -= 4;
*(uint*)sp = (uint)trapret;
sp -= sizeof *p->context;
p->context = (struct context*)sp;
memset(p->context, 0, sizeof *p->context);
p->context->eip = (uint)forkret;
return p;
}
//PAGEBREAK: 32
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];
p = allocproc();
initproc = p;
if((p->pgdir = setupkvm()) == 0)
panic("userinit: out of memory?");
inituvm(p->pgdir, _binary_initcode_start, (int)_binary_initcode_size);
p->sz = PGSIZE;
memset(p->tf, 0, sizeof(*p->tf));
p->tf->cs = (SEG_UCODE << 3) | DPL_USER;
p->tf->ds = (SEG_UDATA << 3) | DPL_USER;
p->tf->es = p->tf->ds;
p->tf->ss = p->tf->ds;
p->tf->eflags = FL_IF;
p->tf->esp = PGSIZE;
p->tf->eip = 0; // beginning of initcode.S
safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/");
// this assignment to p->state lets other cores
// run this process. the acquire forces the above
// writes to be visible, and the lock is also needed
// because the assignment might not be atomic.
acquire(&ptable.lock);
p->state = RUNNABLE;
release(&ptable.lock);
}
// Grow current process's memory by n bytes.
// Return 0 on success, -1 on failure.
int
growproc(int n)
{
uint sz;
struct proc *curproc = myproc();
sz = curproc->sz;
if(n > 0){
if((sz = allocuvm(curproc->pgdir, sz, sz + n)) == 0)
return -1;
} else if(n < 0){
if((sz = deallocuvm(curproc->pgdir, sz, sz + n)) == 0)
return -1;
}
curproc->sz = sz;
switchuvm(curproc);
return 0;
}
// Create a new process copying p as the parent.
// Sets up stack to return as if from system call.
// Caller must set state of returned proc to RUNNABLE.
int
fork(void)
{
int i, pid;
struct proc *np;
struct proc *curproc = myproc();
// Allocate process.
if((np = allocproc()) == 0){
return -1;
}
// Copy process state from proc.
if((np->pgdir = copyuvm(curproc->pgdir, curproc->sz)) == 0){
kfree(np->kstack);
np->kstack = 0;
np->state = UNUSED;
return -1;
}
np->sz = curproc->sz;
np->currentHeapMem = curproc->currentHeapMem;
np->parent = curproc;
*np->tf = *curproc->tf;
// Clear %eax so that fork returns 0 in the child.
np->tf->eax = 0;
for(i = 0; i < NOFILE; i++)
if(curproc->ofile[i])
np->ofile[i] = filedup(curproc->ofile[i]);
np->cwd = idup(curproc->cwd);
safestrcpy(np->name, curproc->name, sizeof(curproc->name));
pid = np->pid;
acquire(&ptable.lock);
np->state = RUNNABLE;
release(&ptable.lock);
return pid;
}
// Exit the current process. Does not return.
// An exited process remains in the zombie state
// until its parent calls wait() to find out it exited.
void
exit(int status)
{
struct proc *curproc = myproc();
struct proc *p;
int fd;
if(curproc == initproc)
panic("init exiting");
// Close all open files.
for(fd = 0; fd < NOFILE; fd++){
if(curproc->ofile[fd]){
fileclose(curproc->ofile[fd]);
curproc->ofile[fd] = 0;
}
}
begin_op();
iput(curproc->cwd);
end_op();
curproc->cwd = 0;
acquire(&ptable.lock);
// Parent might be sleeping in wait().
wakeup1(curproc->parent);
// Pass abandoned children to init.
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent == curproc){
p->parent = initproc;
if(p->state == ZOMBIE)
wakeup1(initproc);
}
}
curproc->exitStatus = status;
// Jump into the scheduler, never to return.
curproc->state = ZOMBIE;
sched();
panic("zombie exit");
}
// Wait for a child process to exit and return its pid.
// Return -1 if this process has no children.
int
wait(int *status)
{
struct proc *p;
int havekids, pid;
struct proc *curproc = myproc();
acquire(&ptable.lock);
for(;;){
// Scan through table looking for exited children.
havekids = 0;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent != curproc)
continue;
havekids = 1;
if(p->state == ZOMBIE){
// Found one.
pid = p->pid;
kfree(p->kstack);
p->kstack = 0;
freevm(p->pgdir);
p->pid = 0;
p->parent = 0;
p->name[0] = 0;
p->killed = 0;
p->state = UNUSED;
*status = p->exitStatus;
release(&ptable.lock);
return pid;
}
}
// No point waiting if we don't have any children.
if(!havekids || curproc->killed){
release(&ptable.lock);
return -1;
}
// Wait for children to exit. (See wakeup1 call in proc_exit.)
sleep(curproc, &ptable.lock); //DOC: wait-sleep
}
}
//PAGEBREAK: 42
// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - swtch to start running that process
// - eventually that process transfers control
// via swtch back to the scheduler.
void
scheduler(void)
{
struct proc *p;
struct rtcdate *d;
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
// Enable interrupts on this processor.
sti();
// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c->proc = p;
switchuvm(p);
p->state = RUNNING;
//Assign time stamp of process context swicthing in
d = &(p->procCSITS);
cmostime(d);
swtch(&(c->scheduler), p->context);
switchkvm();
// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;
}
release(&ptable.lock);
}
}
// Enter scheduler. Must hold only ptable.lock
// and have changed proc->state. Saves and restores
// intena because intena is a property of this
// kernel thread, not this CPU. It should
// be proc->intena and proc->ncli, but that would
// break in the few places where a lock is held but
// there's no process.
void
sched(void)
{
int intena;
struct rtcdate *d;
struct proc *p = myproc();
if(!holding(&ptable.lock))
panic("sched ptable.lock");
if(mycpu()->ncli != 1)
panic("sched locks");
if(p->state == RUNNING)
panic("sched running");
if(readeflags()&FL_IF)
panic("sched interruptible");
intena = mycpu()->intena;
swtch(&p->context, mycpu()->scheduler);
mycpu()->intena = intena;
//Assign time stamp of process creation
d = &(p->procCSOTS);
cmostime(d);
}
// Give up the CPU for one scheduling round.
void
yield(void)
{
acquire(&ptable.lock); //DOC: yieldlock
myproc()->state = RUNNABLE;
sched();
release(&ptable.lock);
}
// A fork child's very first scheduling by scheduler()
// will swtch here. "Return" to user space.
void
forkret(void)
{
static int first = 1;
// Still holding ptable.lock from scheduler.
release(&ptable.lock);
if (first) {
// Some initialization functions must be run in the context
// of a regular process (e.g., they call sleep), and thus cannot
// be run from main().
first = 0;
iinit(ROOTDEV);
initlog(ROOTDEV);
}
// Return to "caller", actually trapret (see allocproc).
}
// Atomically release lock and sleep on chan.
// Reacquires lock when awakened.
void
sleep(void *chan, struct spinlock *lk)
{
struct proc *p = myproc();
if(p == 0)
panic("sleep");
if(lk == 0)
panic("sleep without lk");
// Must acquire ptable.lock in order to
// change p->state and then call sched.
// Once we hold ptable.lock, we can be
// guaranteed that we won't miss any wakeup
// (wakeup runs with ptable.lock locked),
// so it's okay to release lk.
if(lk != &ptable.lock){ //DOC: sleeplock0
acquire(&ptable.lock); //DOC: sleeplock1
release(lk);
}
// Go to sleep.
p->chan = chan;
p->state = SLEEPING;
sched();
// Tidy up.
p->chan = 0;
// Reacquire original lock.
if(lk != &ptable.lock){ //DOC: sleeplock2
release(&ptable.lock);
acquire(lk);
}
}
//PAGEBREAK!
// Wake up all processes sleeping on chan.
// The ptable lock must be held.
static void
wakeup1(void *chan)
{
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == SLEEPING && p->chan == chan)
p->state = RUNNABLE;
}
// Wake up all processes sleeping on chan.
void
wakeup(void *chan)
{
acquire(&ptable.lock);
wakeup1(chan);
release(&ptable.lock);
}
// Kill the process with the given pid.
// Process won't exit until it returns
// to user space (see trap in trap.c).
int
kill(int pid)
{
struct proc *p;
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->pid == pid){
p->killed = 1;
// Wake process from sleep if necessary.
if(p->state == SLEEPING)
p->state = RUNNABLE;
release(&ptable.lock);
return 0;
}
}
release(&ptable.lock);
return -1;
}
//PAGEBREAK: 36
// Print a process listing to console. For debugging.
// Runs when user types ^P on console.
// No lock to avoid wedging a stuck machine further.
void
procdump(void)
{
static char *states[] = {
[UNUSED] "unused",
[EMBRYO] "embryo",
[SLEEPING] "sleep ",
[RUNNABLE] "runble",
[RUNNING] "run ",
[ZOMBIE] "zombie"
};
int i;
struct proc *p;
char *state;
uint pc[10];
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state == UNUSED)
continue;
if(p->state >= 0 && p->state < NELEM(states) && states[p->state])
state = states[p->state];
else
state = "???";
cprintf("%d %s %s", p->pid, state, p->name);
if(p->state == SLEEPING){
getcallerpcs((uint*)p->context->ebp+2, pc);
for(i=0; i<10 && pc[i] != 0; i++)
cprintf(" %p", pc[i]);
}
cprintf("\n");
}
}
int
psinfo(void) {
struct proc *p;
char *states[] = {"UNUSED", "EMBRYO", "SLEEPING", "RUNNABLE", "RUNNING", "ZOMBIE"};
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if (p->state == UNUSED) {
continue;
}
else {
cprintf("%d\t%s\t%s\n", p->pid, p->name, states[p->state]);
}
}
return 1;
}
int
numopenfiles(int pid) {
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if (p->pid == pid) {
struct file *fd;
int count = 0;
for (int i=0; i<NOFILE; i++) {
if ((fd=p->ofile[i]) != 0) {
count++;
}
}
cprintf("Number of files opened: %d\n", count);
return 1;
}
}
return -1;
}
int
memalloc(int pid) {
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if (p->pid == pid) {
cprintf("Memory allocated: %d\n", p->currentHeapMem);
return 1;
}
}
return -1;
}
int
getprocesstimedetails(int pid) {
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if (p->pid == pid) {
if (p->procCTS.day != 0 && p->procCSITS.day != 0 && p->procCSOTS.day != 0) {
cprintf("Creation time:%d:%d:%d %d:%d:%d\n", p->procCTS.second, p->procCTS.minute, p->procCTS.hour, p->procCTS.day, p->procCTS.month, p->procCTS.year);
cprintf("Last Context Switched in time:%d:%d:%d %d:%d:%d\n", p->procCSITS.second, p->procCSITS.minute, p->procCSITS.hour, p->procCSITS.day, p->procCSITS.month, p->procCSITS.year);
cprintf("Last Context Switched out time:%d:%d:%d %d:%d:%d\n", p->procCSOTS.second, p->procCSOTS.minute, p->procCSOTS.hour, p->procCSOTS.day, p->procCSOTS.month, p->procCSOTS.year);
return 1;
}
else {
return -1;
}
}
}
return -1;
}
\ No newline at end of file
#include "date.h"
// Per-CPU state
struct cpu {
uchar apicid; // Local APIC ID
struct context *scheduler; // swtch() here to enter scheduler
struct taskstate ts; // Used by x86 to find stack for interrupt
struct segdesc gdt[NSEGS]; // x86 global descriptor table
volatile uint started; // Has the CPU started?
int ncli; // Depth of pushcli nesting.
int intena; // Were interrupts enabled before pushcli?
struct proc *proc; // The process running on this cpu or null
};
extern struct cpu cpus[NCPU];
extern int ncpu;
//PAGEBREAK: 17
// Saved registers for kernel context switches.
// Don't need to save all the segment registers (%cs, etc),
// because they are constant across kernel contexts.
// Don't need to save %eax, %ecx, %edx, because the
// x86 convention is that the caller has saved them.
// Contexts are stored at the bottom of the stack they
// describe; the stack pointer is the address of the context.
// The layout of the context matches the layout of the stack in swtch.S
// at the "Switch stacks" comment. Switch doesn't save eip explicitly,
// but it is on the stack and allocproc() manipulates it.
struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;
};
enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)
int currentHeapMem; // currently allocated heap memory in bytes
struct rtcdate procCTS; // Process creation time stamp
struct rtcdate procCSITS; // Last process context switched in time stamp
struct rtcdate procCSOTS; // Last process context switched out time stamp
int exitStatus; // Exit Status of terminated process
};
// Process memory is laid out contiguously, low addresses first:
// text
// original data and bss
// fixed-size stack
// expandable heap
#include "types.h"
#include "user.h"
#include "fcntl.h"
int
main(int argc, char *argv[])
{
int pid = 0, x, y, z;
if(argc != 2){
printf(1, "Illegal command or arguments.\n Usage procinfo <process_id>\n pid 0 for current process info\n");
exit(-1);
}
pid = atoi(argv[1]);
if (pid == 0) {
printf(1, "No process for such Pid exists\n");
exit(-1);
}
x = numOpenFiles(pid);
if (x == -1){
printf(1, "No process for such Pid exists\n");
exit(-1);
}
y = memAlloc(pid);
if (y == -1) {
printf(1, "No process for such Pid exists\n");
exit(-1);
}
z = getprocesstimedetails(pid);
if(z == -1) {
printf(1, "No process for such Pid exists\n");
exit(-1);
}
exit(0);
}
#include "types.h"
#include "user.h"
#include "fcntl.h"
int
main(int argc, char *argv[])
{
if (argc > 1) {
printf(1, "Illegal command or arguments.\nUsage ps and no arguments\n");
exit(-1);
}
else{
psinfo();
}
exit(0);
}
#include "types.h"
#include "stat.h"
#include "user.h"
int
main(int argc, char *argv[])
{
int i;
if(argc < 2){
printf(2, "Usage: rm files...\n");
exit(-1);
}
for(i = 1; i < argc; i++){
if(unlink(argv[i]) < 0){
printf(2, "rm: %s failed to delete\n", argv[i]);
break;
}
}
exit(0);
}
#!/bin/sh
echo This script takes a minute to run. Be patient. 1>&2
LC_CTYPE=C export LC_CTYPE
# pad stdin to multiple of 120 lines
pad()
{
awk '{print} END{for(; NR%120!=0; NR++) print ""}'
}
# create formatted (numbered) files
mkdir -p fmt
rm -f fmt/*
cp README fmt
echo > fmt/blank
files=`grep -v '^#' runoff.list | awk '{print $1}'`
n=99
for i in $files
do
./runoff1 -n $n $i >fmt/$i
nn=`tail -1 fmt/$i | sed 's/ .*//; s/^0*//'`
if [ "x$nn" != x ]; then
n=$nn
fi
done
# create table of contents
cat toc.hdr >fmt/toc
pr -e8 -t runoff.list | awk '
/^[a-z0-9]/ {
s=$0
f="fmt/"$1
getline<f
close(f)
n=$1
printf("%02d %s\n", n/100, s);
printf("TOC: %04d %s\n", n, s) >"fmt/tocdata"
next
}
{
print
}' | pr -3 -t >>fmt/toc
cat toc.ftr >>fmt/toc
# check for bad alignments
perl -e '
$leftwarn = 0;
while(<>){
chomp;
s!#.*!!;
s!\s+! !g;
s! +$!!;
next if /^$/;
if(/TOC: (\d+) (.*)/){
$toc{$2} = $1;
next;
}
if(/sheet1: (left|right)$/){
print STDERR "assuming that sheet 1 is a $1 page. double-check!\n";
$left = $1 eq "left" ? "13579" : "02468";
$right = $1 eq "left" ? "02468" : "13579";
next;
}
if(/even: (.*)/){
$file = $1;
if(!defined($toc{$file})){
print STDERR "Have no toc for $file\n";
next;
}
if($toc{$file} =~ /^\d\d[^0]/){
print STDERR "$file does not start on a fresh page.\n";
}
next;
}
if(/odd: (.*)/){
$file = $1;
if(!defined($toc{$file})){
print STDERR "Have no toc for $file\n";
next;
}
if($toc{$file} !~ /^\d\d5/){
print STDERR "$file does not start on a second half page.\n";
}
next;
}
if(/(left|right): (.*)/){
$what = $1;
$file = $2;
if(!defined($toc{$file})){
print STDERR "Have no toc for $file\n";
next;
}
if($what eq "left" && !($toc{$file} =~ /^\d[$left][05]/)){
print STDERR "$file does not start on a left page [$toc{$file}]\n";
}
# why does this not work if I inline $x in the if?
$x = ($toc{$file} =~ /^\d[$right][05]/);
if($what eq "right" && !$x){
print STDERR "$file does not start on a right page [$toc{$file}] [$x]\n";
}
next;
}
print STDERR "Unknown spec: $_\n";
}
' fmt/tocdata runoff.spec
# make definition list
cd fmt
perl -e '
while(<>) {
chomp;
s!//.*!!;
s!/\*([^*]|[*][^/])*\*/!!g;
s!\s! !g;
s! +$!!;
# look for declarations like char* x;
if (/^[0-9]+ typedef .* u(int|short|long|char);/) {
next;
}
if (/^[0-9]+ extern/) {
next;
}
if (/^[0-9]+ struct [a-zA-Z0-9_]+;/) {
next;
}
if (/^([0-9]+) #define +([A-za-z0-9_]+) +?\(.*/) {
print "$1 $2\n"
}
elsif (/^([0-9]+) #define +([A-Za-z0-9_]+) +([^ ]+)/) {
print "$1 $2 $3\n";
}
elsif (/^([0-9]+) #define +([A-Za-z0-9_]+)/) {
print "$1 $2\n";
}
if(/^^([0-9]+) \.globl ([a-zA-Z0-9_]+)/){
$isglobl{$2} = 1;
}
if(/^^([0-9]+) ([a-zA-Z0-9_]+):$/ && $isglobl{$2}){
print "$1 $2\n";
}
if (/\(/) {
next;
}
if (/^([0-9]+) (((static|struct|extern|union|enum) +)*([A-Za-z0-9_]+))( .*)? +([A-Za-z_][A-Za-z0-9_]*)(,|;|=| =)/) {
print "$1 $7\n";
}
elsif(/^([0-9]+) (enum|struct|union) +([A-Za-z0-9_]+) +{/){
print "$1 $3\n";
}
# TODO: enum members
}
' $files >defs
(for i in $files
do
case "$i" in
*.S)
cat $i | sed 's;#.*;;; s;//.*;;;'
;;
*)
cat $i | sed 's;//.*;;; s;"([^"\\]|\\.)*";;;'
esac
done
) >alltext
perl -n -e 'print if s/^([0-9]+ [a-zA-Z0-9_]+)\(.*$/\1/;' alltext |
egrep -v ' (STUB|usage|main|if|for)$' >>defs
#perl -n -e 'print if s/^([0-9]+) STUB\(([a-zA-Z0-9_]+)\)$/\1 \2/;' alltext \
# >>defs
(
>s.defs
# make reference list
for i in `awk '{print $2}' defs | sort -f | uniq`
do
defs=`egrep '^[0-9]+ '$i'( |$)' defs | awk '{print $1}'`
echo $i $defs >>s.defs
uses=`egrep -h '([^a-zA-Z_0-9])'$i'($|[^a-zA-Z_0-9])' alltext | awk '{print $1}'`
if [ "x$defs" != "x$uses" ]; then
echo $i $defs
echo $uses |fmt -29 | sed 's/^/ /'
# else
# echo $i defined but not used >&2
fi
done
) >refs
# build defs list
awk '
{
printf("%04d %s\n", $2, $1);
for(i=3; i<=NF; i++)
printf("%04d \" \n", $i);
}
' s.defs > t.defs
# format the whole thing
(
../pr.pl README
../pr.pl -h "table of contents" toc
# pr -t -2 t.defs | ../pr.pl -h "definitions" | pad
pr -t -l50 -2 refs | ../pr.pl -h "cross-references" | pad
# pr.pl -h "definitions" -2 t.defs | pad
# pr.pl -h "cross-references" -2 refs | pad
../pr.pl blank # make sheet 1 start on left page
../pr.pl blank
for i in $files
do
../pr.pl -h "xv6/$i" $i
done
) | mpage -m50t50b -o -bLetter -T -t -2 -FCourier -L60 >all.ps
grep Pages: all.ps
# if we have the nice font, use it
nicefont=LucidaSans-Typewriter83
if [ ! -f ../$nicefont ]
then
if git cat-file blob font:$nicefont > ../$nicefont~; then
mv ../$nicefont~ ../$nicefont
fi
fi
if [ -f ../$nicefont ]
then
echo nicefont
(sed 1q all.ps; cat ../$nicefont; sed "1d; s/Courier/$nicefont/" all.ps) >allf.ps
else
echo ugly font!
cp all.ps allf.ps
fi
ps2pdf allf.ps ../xv6.pdf
# cd ..
# pdftops xv6.pdf xv6.ps
# basic headers
types.h
param.h
memlayout.h
defs.h
x86.h
asm.h
mmu.h
elf.h
date.h
# entering xv6
entry.S
entryother.S
main.c
# locks
spinlock.h
spinlock.c
# processes
vm.c
proc.h
proc.c
swtch.S
kalloc.c
# system calls
traps.h
vectors.pl
trapasm.S
trap.c
syscall.h
syscall.c
sysproc.c
# file system
buf.h
sleeplock.h
fcntl.h
stat.h
fs.h
file.h
ide.c
bio.c
sleeplock.c
log.c
fs.c
file.c
sysfile.c
exec.c
# pipes
pipe.c
# string operations
string.c
# low-level hardware
mp.h
mp.c
lapic.c
ioapic.c
kbd.h
kbd.c
console.c
uart.c
# user-level
initcode.S
usys.S
init.c
sh.c
# bootloader
bootasm.S
bootmain.c
# link
kernel.ld
# Is sheet 01 (after the TOC) a left sheet or a right sheet?
sheet1: left
# "left" and "right" specify which page of a two-page spread a file
# must start on. "left" means that a file must start on the first of
# the two pages. "right" means it must start on the second of the two
# pages. The file may start in either column.
#
# "even" and "odd" specify which column a file must start on. "even"
# means it must start in the left of the two columns (00). "odd" means it
# must start in the right of the two columns (50).
#
# You'd think these would be the other way around.
# types.h either
# param.h either
# defs.h either
# x86.h either
# asm.h either
# mmu.h either
# elf.h either
# mp.h either
even: entry.S # mild preference
even: entryother.S # mild preference
even: main.c
# mp.c don't care at all
# even: initcode.S
# odd: init.c
left: spinlock.h
even: spinlock.h
# This gets struct proc and allocproc on the same spread
left: proc.h
even: proc.h
# goal is to have two action-packed 2-page spreads,
# one with
# userinit growproc fork exit wait
# and another with
# scheduler sched yield forkret sleep wakeup1 wakeup
right: proc.c # VERY important
even: proc.c # VERY important
# A few more action packed spreads
# page table creation and process loading
# walkpgdir mappages setupkvm switch[ku]vm inituvm (loaduvm)
# process memory management
# allocuvm deallocuvm freevm
left: vm.c
even: kalloc.c # mild preference
# syscall.h either
# trapasm.S either
# traps.h either
# even: trap.c
# vectors.pl either
# syscall.c either
# sysproc.c either
# buf.h either
# dev.h either
# fcntl.h either
# stat.h either
# file.h either
# fs.h either
# fsvar.h either
# left: ide.c # mild preference
even: ide.c
# odd: bio.c
# log.c fits nicely in a spread
even: log.c
left: log.c
# with fs.c starting on 2nd column of a left page, we get these 2-page spreads:
# ialloc iupdate iget idup ilock iunlock iput iunlockput
# bmap itrunc stati readi writei
# namecmp dirlookup dirlink skipelem namex namei
# fileinit filealloc filedup fileclose filestat fileread filewrite
# starting on 2nd column of a right page is not terrible either
odd: fs.c # VERY important
left: fs.c # mild preference
# file.c either
# exec.c either
# sysfile.c either
# Mild preference, but makes spreads of mp.c, lapic.c, and ioapic.c+picirq.c
even: mp.c
left: mp.c
# even: pipe.c # mild preference
# string.c either
# left: kbd.h # mild preference
even: kbd.h
even: console.c
odd: sh.c
even: bootasm.S # mild preference
even: bootmain.c # mild preference
#!/usr/bin/perl
$n = 0;
$v = 0;
if($ARGV[0] eq "-v") {
$v = 1;
shift @ARGV;
}
if($ARGV[0] eq "-n") {
$n = $ARGV[1];
shift @ARGV;
shift @ARGV;
}
$n = int(($n+49)/50)*50 - 1;
$file = $ARGV[0];
@lines = <>;
$linenum = 0;
foreach (@lines) {
$linenum++;
chomp;
s/\s+$//;
if(length() >= 75){
print STDERR "$file:$linenum: line too long\n";
}
}
@outlines = ();
$nextout = 0;
for($i=0; $i<@lines; ){
# Skip leading blank lines.
$i++ while $i<@lines && $lines[$i] =~ /^$/;
last if $i>=@lines;
# If the rest of the file fits, use the whole thing.
if(@lines <= $i+50 && !grep { /PAGEBREAK/ } @lines){
$breakbefore = @lines;
}else{
# Find a good next page break;
# Hope for end of function.
# but settle for a blank line (but not first blank line
# in function, which comes after variable declarations).
$breakbefore = $i;
$lastblank = $i;
$sawbrace = 0;
$breaksize = 15; # 15 lines to get to function
for($j=$i; $j<$i+50 && $j < @lines; $j++){
if($lines[$j] =~ /PAGEBREAK!/){
$lines[$j] = "";
$breakbefore = $j;
$breaksize = 100;
last;
}
if($lines[$j] =~ /PAGEBREAK:\s*([0-9]+)/){
$breaksize = $1;
$breakbefore = $j;
$lines[$j] = "";
}
if($lines[$j] =~ /^};?$/){
$breakbefore = $j+1;
$breaksize = 15;
}
if($lines[$j] =~ /^{$/){
$sawbrace = 1;
}
if($lines[$j] =~ /^$/){
if($sawbrace){
$sawbrace = 0;
}else{
$lastblank = $j;
}
}
}
if($j<@lines && $lines[$j] =~ /^$/){
$lastblank = $j;
}
# If we are not putting enough on a page, try a blank line.
if($breakbefore - $i < 50 - $breaksize && $lastblank > $breakbefore && $lastblank >= $i+50 - 5){
if($v){
print STDERR "breakbefore $breakbefore i $i breaksize $breaksize\n";
}
$breakbefore = $lastblank;
$breaksize = 5; # only 5 lines to get to blank line
}
# If we are not putting enough on a page, force a full page.
if($breakbefore - $i < 50 - $breaksize && $breakbefore != @lines){
$breakbefore = $i + 50;
$breakbefore = @lines if @lines < $breakbefore;
}
if($breakbefore < $i+2){
$breakbefore = $i+2;
}
}
# Emit the page.
$i50 = $i + 50;
for(; $i<$breakbefore; $i++){
printf "%04d %s\n", ++$n, $lines[$i];
}
# Finish page
for($j=$i; $j<$i50; $j++){
printf "%04d \n", ++$n;
}
}
// Shell.
#include "types.h"
#include "user.h"
#include "fcntl.h"
// Parsed command representation
#define EXEC 1
#define REDIR 2
#define PIPE 3
#define LIST 4
#define BACK 5
#define MAXARGS 10
struct cmd {
int type;
};
struct execcmd {
int type;
char *argv[MAXARGS];
char *eargv[MAXARGS];
};
struct redircmd {
int type;
struct cmd *cmd;
char *file;
char *efile;
int mode;
int fd;
};
struct pipecmd {
int type;
struct cmd *left;
struct cmd *right;
};
struct listcmd {
int type;
struct cmd *left;
struct cmd *right;
};
struct backcmd {
int type;
struct cmd *cmd;
};
int fork1(void); // Fork but panics on failure.
void panic(char*);
struct cmd *parsecmd(char*);
// Execute cmd. Never returns.
void
runcmd(struct cmd *cmd)
{
int p[2];
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
struct redircmd *rcmd;
if(cmd == 0)
exit(-1);
switch(cmd->type){
default:
panic("runcmd");
case EXEC:
ecmd = (struct execcmd*)cmd;
if(ecmd->argv[0] == 0)
exit(-1);
exec(ecmd->argv[0], ecmd->argv);
printf(2, "exec %s failed\n", ecmd->argv[0]);
break;
case REDIR:
rcmd = (struct redircmd*)cmd;
close(rcmd->fd);
if(open(rcmd->file, rcmd->mode) < 0){
printf(2, "open %s failed\n", rcmd->file);
exit(-1);
}
runcmd(rcmd->cmd);
break;
case LIST:
lcmd = (struct listcmd*)cmd;
if(fork1() == 0)
runcmd(lcmd->left);
wait(0);
runcmd(lcmd->right);
break;
case PIPE:
pcmd = (struct pipecmd*)cmd;
if(pipe(p) < 0)
panic("pipe");
if(fork1() == 0){
close(1);
dup(p[1]);
close(p[0]);
close(p[1]);
runcmd(pcmd->left);
}
if(fork1() == 0){
close(0);
dup(p[0]);
close(p[0]);
close(p[1]);
runcmd(pcmd->right);
}
close(p[0]);
close(p[1]);
wait(0);
wait(0);
break;
case BACK:
bcmd = (struct backcmd*)cmd;
if(fork1() == 0)
runcmd(bcmd->cmd);
break;
}
exit(0);
}
int
getcmd(char *buf, int nbuf)
{
printf(2, "$ ");
memset(buf, 0, nbuf);
gets(buf, nbuf);
if(buf[0] == 0) // EOF
return -1;
return 0;
}
int
main(void)
{
static char buf[100];
int fd;
// Ensure that three file descriptors are open.
while((fd = open("console", O_RDWR)) >= 0){
if(fd >= 3){
close(fd);
break;
}
}
// Read and run input commands.
while(getcmd(buf, sizeof(buf)) >= 0){
if(buf[0] == 'c' && buf[1] == 'd' && buf[2] == ' '){
// Chdir must be called by the parent, not the child.
buf[strlen(buf)-1] = 0; // chop \n
if(chdir(buf+3) < 0)
printf(2, "cannot cd %s\n", buf+3);
continue;
}
if(fork1() == 0)
runcmd(parsecmd(buf));
wait(0);
}
exit(0);
}
void
panic(char *s)
{
printf(2, "%s\n", s);
exit(-1);
}
int
fork1(void)
{
int pid;
pid = fork();
if(pid == -1)
panic("fork");
return pid;
}
//PAGEBREAK!
// Constructors
struct cmd*
execcmd(void)
{
struct execcmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = EXEC;
return (struct cmd*)cmd;
}
struct cmd*
redircmd(struct cmd *subcmd, char *file, char *efile, int mode, int fd)
{
struct redircmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = REDIR;
cmd->cmd = subcmd;
cmd->file = file;
cmd->efile = efile;
cmd->mode = mode;
cmd->fd = fd;
return (struct cmd*)cmd;
}
struct cmd*
pipecmd(struct cmd *left, struct cmd *right)
{
struct pipecmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = PIPE;
cmd->left = left;
cmd->right = right;
return (struct cmd*)cmd;
}
struct cmd*
listcmd(struct cmd *left, struct cmd *right)
{
struct listcmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = LIST;
cmd->left = left;
cmd->right = right;
return (struct cmd*)cmd;
}
struct cmd*
backcmd(struct cmd *subcmd)
{
struct backcmd *cmd;
cmd = malloc(sizeof(*cmd));
memset(cmd, 0, sizeof(*cmd));
cmd->type = BACK;
cmd->cmd = subcmd;
return (struct cmd*)cmd;
}
//PAGEBREAK!
// Parsing
char whitespace[] = " \t\r\n\v";
char symbols[] = "<|>&;()";
int
gettoken(char **ps, char *es, char **q, char **eq)
{
char *s;
int ret;
s = *ps;
while(s < es && strchr(whitespace, *s))
s++;
if(q)
*q = s;
ret = *s;
switch(*s){
case 0:
break;
case '|':
case '(':
case ')':
case ';':
case '&':
case '<':
s++;
break;
case '>':
s++;
if(*s == '>'){
ret = '+';
s++;
}
break;
default:
ret = 'a';
while(s < es && !strchr(whitespace, *s) && !strchr(symbols, *s))
s++;
break;
}
if(eq)
*eq = s;
while(s < es && strchr(whitespace, *s))
s++;
*ps = s;
return ret;
}
int
peek(char **ps, char *es, char *toks)
{
char *s;
s = *ps;
while(s < es && strchr(whitespace, *s))
s++;
*ps = s;
return *s && strchr(toks, *s);
}
struct cmd *parseline(char**, char*);
struct cmd *parsepipe(char**, char*);
struct cmd *parseexec(char**, char*);
struct cmd *nulterminate(struct cmd*);
struct cmd*
parsecmd(char *s)
{
char *es;
struct cmd *cmd;
es = s + strlen(s);
cmd = parseline(&s, es);
peek(&s, es, "");
if(s != es){
printf(2, "leftovers: %s\n", s);
panic("syntax");
}
nulterminate(cmd);
return cmd;
}
struct cmd*
parseline(char **ps, char *es)
{
struct cmd *cmd;
cmd = parsepipe(ps, es);
while(peek(ps, es, "&")){
gettoken(ps, es, 0, 0);
cmd = backcmd(cmd);
}
if(peek(ps, es, ";")){
gettoken(ps, es, 0, 0);
cmd = listcmd(cmd, parseline(ps, es));
}
return cmd;
}
struct cmd*
parsepipe(char **ps, char *es)
{
struct cmd *cmd;
cmd = parseexec(ps, es);
if(peek(ps, es, "|")){
gettoken(ps, es, 0, 0);
cmd = pipecmd(cmd, parsepipe(ps, es));
}
return cmd;
}
struct cmd*
parseredirs(struct cmd *cmd, char **ps, char *es)
{
int tok;
char *q, *eq;
while(peek(ps, es, "<>")){
tok = gettoken(ps, es, 0, 0);
if(gettoken(ps, es, &q, &eq) != 'a')
panic("missing file for redirection");
switch(tok){
case '<':
cmd = redircmd(cmd, q, eq, O_RDONLY, 0);
break;
case '>':
cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE, 1);
break;
case '+': // >>
cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE, 1);
break;
}
}
return cmd;
}
struct cmd*
parseblock(char **ps, char *es)
{
struct cmd *cmd;
if(!peek(ps, es, "("))
panic("parseblock");
gettoken(ps, es, 0, 0);
cmd = parseline(ps, es);
if(!peek(ps, es, ")"))
panic("syntax - missing )");
gettoken(ps, es, 0, 0);
cmd = parseredirs(cmd, ps, es);
return cmd;
}
struct cmd*
parseexec(char **ps, char *es)
{
char *q, *eq;
int tok, argc;
struct execcmd *cmd;
struct cmd *ret;
if(peek(ps, es, "("))
return parseblock(ps, es);
ret = execcmd();
cmd = (struct execcmd*)ret;
argc = 0;
ret = parseredirs(ret, ps, es);
while(!peek(ps, es, "|)&;")){
if((tok=gettoken(ps, es, &q, &eq)) == 0)
break;
if(tok != 'a')
panic("syntax");
cmd->argv[argc] = q;
cmd->eargv[argc] = eq;
argc++;
if(argc >= MAXARGS)
panic("too many args");
ret = parseredirs(ret, ps, es);
}
cmd->argv[argc] = 0;
cmd->eargv[argc] = 0;
return ret;
}
// NUL-terminate all the counted strings.
struct cmd*
nulterminate(struct cmd *cmd)
{
int i;
struct backcmd *bcmd;
struct execcmd *ecmd;
struct listcmd *lcmd;
struct pipecmd *pcmd;
struct redircmd *rcmd;
if(cmd == 0)
return 0;
switch(cmd->type){
case EXEC:
ecmd = (struct execcmd*)cmd;
for(i=0; ecmd->argv[i]; i++)
*ecmd->eargv[i] = 0;
break;
case REDIR:
rcmd = (struct redircmd*)cmd;
nulterminate(rcmd->cmd);
*rcmd->efile = 0;
break;
case PIPE:
pcmd = (struct pipecmd*)cmd;
nulterminate(pcmd->left);
nulterminate(pcmd->right);
break;
case LIST:
lcmd = (struct listcmd*)cmd;
nulterminate(lcmd->left);
nulterminate(lcmd->right);
break;
case BACK:
bcmd = (struct backcmd*)cmd;
nulterminate(bcmd->cmd);
break;
}
return cmd;
}
#include "types.h"
#include "stat.h"
#include "user.h"
#include "fcntl.h"
#define INPUT_SIZE 1024
#define TOKEN_SIZE 64
#define NUM_TOKENS 64
#define FILE_INPUT 4096
struct twoCmd {
char **cmd1;
char **cmd2;
};
char **tokenCreator(char *);
char **fileCommandSeparator(char *);
void exeCmd(char **);
void exePs(char **);
void exeProcInfo(char **);
void exeExit(char **);
void executeCommand(char **);
void succOrParser(struct twoCmd *);
void succAndParser(struct twoCmd *);
void parallelParser(struct twoCmd *);
void pipeParser(struct twoCmd *);
void commandChecker(char *);
void cmdSeperator1 (char *, int);
void cmdSeperator2 (char *, int);
char **fileCommandSeparator(char *fileContent) {
char **fileCommandArray = (char **)malloc(sizeof(char *));
int k = 0, i, j = -1;
for (i=0; i<strlen(fileContent); i++) {
if ((fileContent[i] == '\n') && j != -1) {
char temp[100]; int l = 0;
while (j<i) {
temp[l++] = fileContent[j++];
}
temp[l] = '\0';
fileCommandArray[k] = (char *)malloc(TOKEN_SIZE * sizeof(char));
strcpy(fileCommandArray[k++], temp);
j = -1;
}
else if (fileContent[i] != '\n' && j == -1) {
j = i;
}
}
fileCommandArray[k] = 0;
return fileCommandArray;
}
void cmdSeperator1 (char *cmd, int index) {
struct twoCmd *commands = (struct twoCmd *)malloc(sizeof(struct twocmd *));
char *temp1 = (char *)malloc(INPUT_SIZE * sizeof(char));
char *temp2 = (char *)malloc(INPUT_SIZE * sizeof(char));
int ind1 = 0, ind2 = 0;
for (int j=0; j<index; j++) {
temp1[ind1++] = cmd[j];
}
temp1[ind1] = '\n';
for (int j=index+1; j<strlen(cmd); j++) {
temp2[ind2++] = cmd[j];
}
temp2[ind2] = '\n';
commands->cmd1 = tokenCreator(temp1);
commands->cmd2 = tokenCreator(temp2);
free(temp1); free(temp2);
if (cmd[index] == '|') pipeParser(commands);
else if (cmd[index] == ';') parallelParser(commands);
}
void cmdSeperator2 (char *cmd, int index) {
struct twoCmd *commands = (struct twoCmd *)malloc(sizeof(struct twocmd *));
char *temp1 = (char *)malloc(INPUT_SIZE * sizeof(char));
char *temp2 = (char *)malloc(INPUT_SIZE * sizeof(char));
int ind1 = 0, ind2 = 0;
for (int j=0; j<index; j++) {
temp1[ind1++] = cmd[j];
}
temp1[ind1] = '\n';
for (int j=index+2; j<strlen(cmd); j++) {
temp2[ind2++] = cmd[j];
}
temp2[ind2] = '\n';
commands->cmd1 = tokenCreator(temp1);
commands->cmd2 = tokenCreator(temp2);
free(temp1); free(temp2);
if (cmd[index] == '|') succOrParser(commands);
else if (cmd[index] == '&') succAndParser(commands);
}
void commandChecker(char *cmd) {
int i = 0;
char **tokenArray;
for (i=0; i<strlen(cmd); i++) {
if (cmd[i] == '|' && cmd[i+1] != '|' ) {
cmdSeperator1(cmd, i);
break;
}
else if (cmd[i] == '|' && cmd[i+1] == '|') {
cmdSeperator2(cmd, i);
break;
}
else if (cmd[i] == '&') {
cmdSeperator2(cmd, i);
break;
}
else if (cmd[i] == ';') {
cmdSeperator1(cmd, i);
break;
}
}
if (i == strlen(cmd)) {
cmd[strlen(cmd)] = '\n';
tokenArray = tokenCreator(cmd);
executeCommand(tokenArray);
}
}
void pipeParser(struct twoCmd *cmds) {
int status1, status2, pipefd[2];
for (int i=0; cmds->cmd1[i]!=0; i++) {
if (!strcmp(cmds->cmd1[i], ">")) {
printf(1, "Illegal command or arguments.\n");
return;
}
}
for (int i=0; cmds->cmd2[i]!=0; i++) {
if (!strcmp(cmds->cmd2[i], "<")) {
printf(1, "Illegal command or arguments.\n");
return;
}
}
pipe(pipefd);
int cid1 = fork();
if (cid1 == -1) {
return;
}
else if (cid1 == 0) {
close(1);
dup(pipefd[1]);
close(pipefd[0]);
close(pipefd[1]);
//exec(cmd1[0], cmd1);
executeCommand(cmds->cmd1);
exit(0);
}
int cid2 = fork();
if (cid2 == -1) {
exit(-1);
}
else if (cid2 == 0) {
close(0);
dup(pipefd[0]);
close(pipefd[0]);
close(pipefd[1]);
//exec(cmd2[0], cmd2);
executeCommand(cmds->cmd2);
exit(0);
}
close(pipefd[0]); close(pipefd[1]);
wait(&status1); wait(&status2);
}
void succOrParser(struct twoCmd *commands) {
int status1, status2;
int cid1 = fork();
if (cid1 == -1) {
return;
}
else if (cid1 == 0) {
exeCmd(commands->cmd1);
exit(0);
}
else {
wait(&status1);
}
if (status1 == -1) {
int cid2 = fork();
if (cid2 == -1) {
exit(-1);
}
else if (cid2 == 0) {
exeCmd(commands->cmd2);
exit(0);
}
else {
wait(&status2);
}
}
else {
return;
}
}
void succAndParser(struct twoCmd *commands) {
int status1, status2;
int cid1 = fork();
if (cid1 == -1) {
return;
}
else if (cid1 == 0) {
//exec(cmd1[0], cmd1);
exeCmd(commands->cmd1);
exit(0);
}
else {
wait(&status1);
}
if (status1 == 0) {
int cid2 = fork();
if (cid2 == -1) {
exit(-1);
}
else if (cid2 == 0) {
//exec(cmd2[0], cmd2);
exeCmd(commands->cmd2);
exit(0);
}
else {
wait(&status2);
}
}
else {
return;
}
}
void parallelParser(struct twoCmd *cmds) {
int status1, status2;
int cid1 = fork();
if (cid1 == -1) return;
else if (cid1 == 0) {
exeCmd(cmds->cmd1);
exeCmd(cmds->cmd2);
exit(0);
}
int cid2 = fork();
if (cid2 == -1) return;
if (cid2 == 0) {
exeCmd(cmds->cmd2);
exeCmd(cmds->cmd1);
exit(0);
}
int pid1 = wait(&status1); int pid2 = wait(&status2);
if ((pid1 == cid1 || pid1 == cid2) && (pid2 == cid1 || pid2 == cid2)) {
return;
}
else {
wait(0);wait(0);
}
return;
}
char **tokenCreator(char *cmd) {
char **finalTokenArray = (char **)malloc(20 * sizeof(char*));
int k = 0, i, j = -1;
for (i=0; i<strlen(cmd); i++) {
if ((cmd[i] == ' ' || cmd[i] == '\0' || cmd[i] == '\n') && j != -1) {
char temp[20]; int l = 0;
while (j<i) {
temp[l++] = cmd[j++];
}
temp[l] = '\0';
finalTokenArray[k] = (char *)malloc(TOKEN_SIZE * sizeof(char));
strcpy(finalTokenArray[k++], temp);
j = -1;
}
else if ((cmd[i] != ' ' && cmd[i] != '\0' && cmd[i] != '\n') && j == -1) {
j = i;
}
}
finalTokenArray[k] = 0;
return finalTokenArray;
}
void executeCommand(char **cmd) {
if (!strcmp(cmd[0], "ls") || !strcmp(cmd[0], "echo") || !strcmp(cmd[0], "grep") || !strcmp(cmd[0], "cat") || \
!strcmp(cmd[0], "wc") || !strcmp(cmd[0], "ps") || !strcmp(cmd[0], "procinfo")) {
int i = fork(), status;
if (i == 0) {
exeCmd(cmd);
exit(0);
}
else {
wait(&status);
}
}
else if (!strcmp(cmd[0], "exit")) {
wait(0);
exit(0);
}
else {
printf(1, "Illegal command or arguments\n");
return;
}
}
void exeCmd(char **cmd) {
char **actualCMD = (char **)malloc(NUM_TOKENS * sizeof(char *));
int inputFD = -1, outputFD = -1;
for (int j=0; cmd[j]!=0; j++) {
if (!strcmp(cmd[j], "<") || !strcmp(cmd[j], ">")) break;
else {
actualCMD[j] = cmd[j];
}
}
for (int j=0; cmd[j]!=0; j++) {
if (!strcmp(cmd[j],">")) {
close(1);
unlink(cmd[j+1]);
outputFD = open(cmd[j+1], O_WRONLY | O_CREATE);
}
if (!strcmp(cmd[j],"<")) {
close(0);
inputFD = open(cmd[j+1], O_RDONLY);
}
}
exec(actualCMD[0], actualCMD);
if (inputFD >= 0) close(inputFD);
if (outputFD >= 0) close(outputFD);
}
int main(void) {
static char input[INPUT_SIZE];
char **tokenArray;
while (1) {
printf(1, "MyShell>");
memset(input, 0, sizeof(input));
gets(input, sizeof(input));
int fd;
fd = open("console", O_RDWR);
while (fd > 2) {
close(fd);
fd--;
}
if (input[0] == 'e' && input[1] == 'x' && input[2] == 'e' && input[3] == 'c' && input[4] == 'u' && input[5] == 't' && input[6] == 'e' && \
input[7] == 'C' && input[8] == 'o' && input[9] == 'm' && input[10] == 'm' && input[11] == 'a' && input[12] == 'n' && input[13] == 'd' && input[14] == 's') {
tokenArray = tokenCreator(input);
static char fileContent[FILE_INPUT];
if (tokenArray[2] != 0 || tokenArray[1] == 0) {
printf(1, "Illegal command or arguments\n");
continue;
}
int fd = open(tokenArray[1], O_RDONLY | O_CREATE);
read(fd, fileContent, 1000);
//printf(1, "%s", fileContent);
fileContent[strlen(fileContent)] = '\n';
char **fileCommands = fileCommandSeparator(fileContent);
for (int j=0; fileCommands[j]!=0; j++) {
//printf(1, "%s", fileCommands[j]);
commandChecker(fileCommands[j]);
}
free(input);
}
else {
commandChecker(input);
}
}
exit(0);
}
\ No newline at end of file
#!/bin/sh
runoff1 "$@" | pr.pl -h "xv6/$@" | mpage -m50t50b -o -bLetter -T -t -2 -FLucidaSans-Typewriter83 -L60 >x.ps; gv --swap x.ps
#!/usr/bin/perl
open(SIG, $ARGV[0]) || die "open $ARGV[0]: $!";
$n = sysread(SIG, $buf, 1000);
if($n > 510){
print STDERR "boot block too large: $n bytes (max 510)\n";
exit 1;
}
print STDERR "boot block is $n bytes (max 510)\n";
$buf .= "\0" x (510-$n);
$buf .= "\x55\xAA";
open(SIG, ">$ARGV[0]") || die "open >$ARGV[0]: $!";
print SIG $buf;
close SIG;
/*
This file defines a Promela model for xv6's
acquire, release, sleep, and wakeup, along with
a model of a simple producer/consumer queue.
To run:
spinp sleep1.p
(You may need to install Spin, available at http://spinroot.com/.)
After a successful run spin prints something like:
unreached in proctype consumer
(0 of 37 states)
unreached in proctype producer
(0 of 23 states)
After an unsuccessful run, the spinp script prints
an execution trace that causes a deadlock.
The safe body of producer reads:
acquire(lk);
x = value; value = x + 1; x = 0;
wakeup(0);
release(lk);
i = i + 1;
If this is changed to:
x = value; value = x + 1; x = 0;
acquire(lk);
wakeup(0);
release(lk);
i = i + 1;
then a deadlock can happen, because the non-atomic
increment of value conflicts with the non-atomic
decrement in consumer, causing value to have a bad value.
Try this.
If it is changed to:
acquire(lk);
x = value; value = x + 1; x = 0;
release(lk);
wakeup(0);
i = i + 1;
then nothing bad happens: it is okay to wakeup after release
instead of before, although it seems morally wrong.
*/
#define ITER 4
#define N 2
bit lk;
byte value;
bit sleeping[N];
inline acquire(x)
{
atomic { x == 0; x = 1 }
}
inline release(x)
{
assert x==1;
x = 0
}
inline sleep(cond, lk)
{
assert !sleeping[_pid];
if
:: cond ->
skip
:: else ->
atomic { release(lk); sleeping[_pid] = 1 };
sleeping[_pid] == 0;
acquire(lk)
fi
}
inline wakeup()
{
w = 0;
do
:: w < N ->
sleeping[w] = 0;
w = w + 1
:: else ->
break
od
}
active[N] proctype consumer()
{
byte i, x;
i = 0;
do
:: i < ITER ->
acquire(lk);
sleep(value > 0, lk);
x = value; value = x - 1; x = 0;
release(lk);
i = i + 1;
:: else ->
break
od;
i = 0;
skip
}
active[N] proctype producer()
{
byte i, x, w;
i = 0;
do
:: i < ITER ->
acquire(lk);
x = value; value = x + 1; x = 0;
release(lk);
wakeup();
i = i + 1;
:: else ->
break
od;
i = 0;
skip
}
// Sleeping locks
#include "types.h"
#include "defs.h"
#include "param.h"
#include "x86.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "spinlock.h"
#include "sleeplock.h"
void
initsleeplock(struct sleeplock *lk, char *name)
{
initlock(&lk->lk, "sleep lock");
lk->name = name;
lk->locked = 0;
lk->pid = 0;
}
void
acquiresleep(struct sleeplock *lk)
{
acquire(&lk->lk);
while (lk->locked) {
sleep(lk, &lk->lk);
}
lk->locked = 1;
lk->pid = myproc()->pid;
release(&lk->lk);
}
void
releasesleep(struct sleeplock *lk)
{
acquire(&lk->lk);
lk->locked = 0;
lk->pid = 0;
wakeup(lk);
release(&lk->lk);
}
int
holdingsleep(struct sleeplock *lk)
{
int r;
acquire(&lk->lk);
r = lk->locked && (lk->pid == myproc()->pid);
release(&lk->lk);
return r;
}
// Long-term locks for processes
struct sleeplock {
uint locked; // Is the lock held?
struct spinlock lk; // spinlock protecting this sleep lock
// For debugging:
char *name; // Name of lock.
int pid; // Process holding lock
};
// Mutual exclusion spin locks.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "x86.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "spinlock.h"
void
initlock(struct spinlock *lk, char *name)
{
lk->name = name;
lk->locked = 0;
lk->cpu = 0;
}
// Acquire the lock.
// Loops (spins) until the lock is acquired.
// Holding a lock for a long time may cause
// other CPUs to waste time spinning to acquire it.
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
if(holding(lk))
panic("acquire");
// The xchg is atomic.
while(xchg(&lk->locked, 1) != 0)
;
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
// Record info about lock acquisition for debugging.
lk->cpu = mycpu();
getcallerpcs(&lk, lk->pcs);
}
// Release the lock.
void
release(struct spinlock *lk)
{
if(!holding(lk))
panic("release");
lk->pcs[0] = 0;
lk->cpu = 0;
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();
// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk->locked) : );
popcli();
}
// Record the current call stack in pcs[] by following the %ebp chain.
void
getcallerpcs(void *v, uint pcs[])
{
uint *ebp;
int i;
ebp = (uint*)v - 2;
for(i = 0; i < 10; i++){
if(ebp == 0 || ebp < (uint*)KERNBASE || ebp == (uint*)0xffffffff)
break;
pcs[i] = ebp[1]; // saved %eip
ebp = (uint*)ebp[0]; // saved %ebp
}
for(; i < 10; i++)
pcs[i] = 0;
}
// Check whether this cpu is holding the lock.
int
holding(struct spinlock *lock)
{
int r;
pushcli();
r = lock->locked && lock->cpu == mycpu();
popcli();
return r;
}
// Pushcli/popcli are like cli/sti except that they are matched:
// it takes two popcli to undo two pushcli. Also, if interrupts
// are off, then pushcli, popcli leaves them off.
void
pushcli(void)
{
int eflags;
eflags = readeflags();
cli();
if(mycpu()->ncli == 0)
mycpu()->intena = eflags & FL_IF;
mycpu()->ncli += 1;
}
void
popcli(void)
{
if(readeflags()&FL_IF)
panic("popcli - interruptible");
if(--mycpu()->ncli < 0)
panic("popcli");
if(mycpu()->ncli == 0 && mycpu()->intena)
sti();
}
// Mutual exclusion lock.
struct spinlock {
uint locked; // Is the lock held?
// For debugging:
char *name; // Name of lock.
struct cpu *cpu; // The cpu holding the lock.
uint pcs[10]; // The call stack (an array of program counters)
// that locked the lock.
};
#!/bin/sh
if [ $# != 1 ] || [ ! -f "$1" ]; then
echo 'usage: spinp file.p' 1>&2
exit 1
fi
rm -f $1.trail
spin -a $1 || exit 1
cc -DSAFETY -DREACH -DMEMLIM=500 -o pan pan.c
pan -i
rm pan.* pan
if [ -f $1.trail ]; then
spin -t -p $1
fi
#define T_DIR 1 // Directory
#define T_FILE 2 // File
#define T_DEV 3 // Device
struct stat {
short type; // Type of file
int dev; // File system's disk device
uint ino; // Inode number
short nlink; // Number of links to file
uint size; // Size of file in bytes
};
// Demonstrate that moving the "acquire" in iderw after the loop that
// appends to the idequeue results in a race.
// For this to work, you should also add a spin within iderw's
// idequeue traversal loop. Adding the following demonstrated a panic
// after about 5 runs of stressfs in QEMU on a 2.1GHz CPU:
// for (i = 0; i < 40000; i++)
// asm volatile("");
#include "types.h"
#include "stat.h"
#include "user.h"
#include "fs.h"
#include "fcntl.h"
int
main(int argc, char *argv[])
{
int fd, i;
char path[] = "stressfs0";
char data[512];
printf(1, "stressfs starting\n");
memset(data, 'a', sizeof(data));
for(i = 0; i < 4; i++)
if(fork() > 0)
break;
printf(1, "write %d\n", i);
path[8] += i;
fd = open(path, O_CREATE | O_RDWR);
for(i = 0; i < 20; i++)
// printf(fd, "%d\n", i);
write(fd, data, sizeof(data));
close(fd);
printf(1, "read\n");
fd = open(path, O_RDONLY);
for (i = 0; i < 20; i++)
read(fd, data, sizeof(data));
close(fd);
wait(0);
exit(0);
}
#include "types.h"
#include "x86.h"
void*
memset(void *dst, int c, uint n)
{
if ((int)dst%4 == 0 && n%4 == 0){
c &= 0xFF;
stosl(dst, (c<<24)|(c<<16)|(c<<8)|c, n/4);
} else
stosb(dst, c, n);
return dst;
}
int
memcmp(const void *v1, const void *v2, uint n)
{
const uchar *s1, *s2;
s1 = v1;
s2 = v2;
while(n-- > 0){
if(*s1 != *s2)
return *s1 - *s2;
s1++, s2++;
}
return 0;
}
void*
memmove(void *dst, const void *src, uint n)
{
const char *s;
char *d;
s = src;
d = dst;
if(s < d && s + n > d){
s += n;
d += n;
while(n-- > 0)
*--d = *--s;
} else
while(n-- > 0)
*d++ = *s++;
return dst;
}
// memcpy exists to placate GCC. Use memmove.
void*
memcpy(void *dst, const void *src, uint n)
{
return memmove(dst, src, n);
}
int
strncmp(const char *p, const char *q, uint n)
{
while(n > 0 && *p && *p == *q)
n--, p++, q++;
if(n == 0)
return 0;
return (uchar)*p - (uchar)*q;
}
char*
strncpy(char *s, const char *t, int n)
{
char *os;
os = s;
while(n-- > 0 && (*s++ = *t++) != 0)
;
while(n-- > 0)
*s++ = 0;
return os;
}
// Like strncpy but guaranteed to NUL-terminate.
char*
safestrcpy(char *s, const char *t, int n)
{
char *os;
os = s;
if(n <= 0)
return os;
while(--n > 0 && (*s++ = *t++) != 0)
;
*s = 0;
return os;
}
int
strlen(const char *s)
{
int n;
for(n = 0; s[n]; n++)
;
return n;
}
# Context switch
#
# void swtch(struct context **old, struct context *new);
#
# Save the current registers on the stack, creating
# a struct context, and save its address in *old.
# Switch stacks to new and pop previously-saved registers.
.globl swtch
swtch:
movl 4(%esp), %eax
movl 8(%esp), %edx
# Save old callee-saved registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi
# Switch stacks
movl %esp, (%eax)
movl %edx, %esp
# Load new callee-saved registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
#include "syscall.h"
// User code makes a system call with INT T_SYSCALL.
// System call number in %eax.
// Arguments on the stack, from the user call to the C
// library system call function. The saved user %esp points
// to a saved program counter, and then the first argument.
// Fetch the int at addr from the current process.
int
fetchint(uint addr, int *ip)
{
struct proc *curproc = myproc();
if(addr >= curproc->sz || addr+4 > curproc->sz)
return -1;
*ip = *(int*)(addr);
return 0;
}
// Fetch the nul-terminated string at addr from the current process.
// Doesn't actually copy the string - just sets *pp to point at it.
// Returns length of string, not including nul.
int
fetchstr(uint addr, char **pp)
{
char *s, *ep;
struct proc *curproc = myproc();
if(addr >= curproc->sz)
return -1;
*pp = (char*)addr;
ep = (char*)curproc->sz;
for(s = *pp; s < ep; s++){
if(*s == 0)
return s - *pp;
}
return -1;
}
// Fetch the nth 32-bit system call argument.
int
argint(int n, int *ip)
{
return fetchint((myproc()->tf->esp) + 4 + 4*n, ip);
}
// Fetch the nth word-sized system call argument as a pointer
// to a block of memory of size bytes. Check that the pointer
// lies within the process address space.
int
argptr(int n, char **pp, int size)
{
int i;
struct proc *curproc = myproc();
if(argint(n, &i) < 0)
return -1;
if(size < 0 || (uint)i >= curproc->sz || (uint)i+size > curproc->sz)
return -1;
*pp = (char*)i;
return 0;
}
// Fetch the nth word-sized system call argument as a string pointer.
// Check that the pointer is valid and the string is nul-terminated.
// (There is no shared writable memory, so the string can't change
// between this check and being used by the kernel.)
int
argstr(int n, char **pp)
{
int addr;
if(argint(n, &addr) < 0)
return -1;
return fetchstr(addr, pp);
}
extern int sys_chdir(void);
extern int sys_close(void);
extern int sys_dup(void);
extern int sys_exec(void);
extern int sys_exit(void);
extern int sys_fork(void);
extern int sys_fstat(void);
extern int sys_getpid(void);
extern int sys_kill(void);
extern int sys_link(void);
extern int sys_mkdir(void);
extern int sys_mknod(void);
extern int sys_open(void);
extern int sys_pipe(void);
extern int sys_read(void);
extern int sys_sbrk(void);
extern int sys_sleep(void);
extern int sys_unlink(void);
extern int sys_wait(void);
extern int sys_write(void);
extern int sys_uptime(void);
extern int sys_helloWorld(void);
extern int sys_numopenfiles(void);
extern int sys_memalloc(void);
extern int sys_getprocesstimedetails(void);
extern int sys_psinfo(void);
static int (*syscalls[])(void) = {
[SYS_fork] sys_fork,
[SYS_exit] sys_exit,
[SYS_wait] sys_wait,
[SYS_pipe] sys_pipe,
[SYS_read] sys_read,
[SYS_kill] sys_kill,
[SYS_exec] sys_exec,
[SYS_fstat] sys_fstat,
[SYS_chdir] sys_chdir,
[SYS_dup] sys_dup,
[SYS_getpid] sys_getpid,
[SYS_sbrk] sys_sbrk,
[SYS_sleep] sys_sleep,
[SYS_uptime] sys_uptime,
[SYS_open] sys_open,
[SYS_write] sys_write,
[SYS_mknod] sys_mknod,
[SYS_unlink] sys_unlink,
[SYS_link] sys_link,
[SYS_mkdir] sys_mkdir,
[SYS_close] sys_close,
[SYS_helloWorld] sys_helloWorld,
[SYS_numOpenFiles] sys_numopenfiles,
[SYS_memAlloc] sys_memalloc,
[SYS_getprocesstimedetails] sys_getprocesstimedetails,
[SYS_psinfo] sys_psinfo,
};
void
syscall(void)
{
int num;
struct proc *curproc = myproc();
num = curproc->tf->eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {
curproc->tf->eax = syscalls[num]();
} else {
cprintf("%d %s: unknown sys call %d\n",
curproc->pid, curproc->name, num);
curproc->tf->eax = -1;
}
}
// System call numbers
#define SYS_fork 1
#define SYS_exit 2
#define SYS_wait 3
#define SYS_pipe 4
#define SYS_read 5
#define SYS_kill 6
#define SYS_exec 7
#define SYS_fstat 8
#define SYS_chdir 9
#define SYS_dup 10
#define SYS_getpid 11
#define SYS_sbrk 12
#define SYS_sleep 13
#define SYS_uptime 14
#define SYS_open 15
#define SYS_write 16
#define SYS_mknod 17
#define SYS_unlink 18
#define SYS_link 19
#define SYS_mkdir 20
#define SYS_close 21
#define SYS_helloWorld 22
#define SYS_numOpenFiles 23
#define SYS_memAlloc 24
#define SYS_getprocesstimedetails 25
#define SYS_psinfo 26
\ No newline at end of file
//
// File-system system calls.
// Mostly argument checking, since we don't trust
// user code, and calls into file.c and fs.c.
//
#include "types.h"
#include "defs.h"
#include "param.h"
#include "stat.h"
#include "mmu.h"
#include "proc.h"
#include "fs.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "file.h"
#include "fcntl.h"
// Fetch the nth word-sized system call argument as a file descriptor
// and return both the descriptor and the corresponding struct file.
static int
argfd(int n, int *pfd, struct file **pf)
{
int fd;
struct file *f;
if(argint(n, &fd) < 0)
return -1;
if(fd < 0 || fd >= NOFILE || (f=myproc()->ofile[fd]) == 0)
return -1;
if(pfd)
*pfd = fd;
if(pf)
*pf = f;
return 0;
}
// Allocate a file descriptor for the given file.
// Takes over file reference from caller on success.
static int
fdalloc(struct file *f)
{
int fd;
struct proc *curproc = myproc();
for(fd = 0; fd < NOFILE; fd++){
if(curproc->ofile[fd] == 0){
curproc->ofile[fd] = f;
return fd;
}
}
return -1;
}
int
sys_dup(void)
{
struct file *f;
int fd;
if(argfd(0, 0, &f) < 0)
return -1;
if((fd=fdalloc(f)) < 0)
return -1;
filedup(f);
return fd;
}
int
sys_read(void)
{
struct file *f;
int n;
char *p;
if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return -1;
return fileread(f, p, n);
}
int
sys_write(void)
{
struct file *f;
int n;
char *p;
if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return -1;
return filewrite(f, p, n);
}
int
sys_close(void)
{
int fd;
struct file *f;
if(argfd(0, &fd, &f) < 0)
return -1;
myproc()->ofile[fd] = 0;
fileclose(f);
return 0;
}
int
sys_fstat(void)
{
struct file *f;
struct stat *st;
if(argfd(0, 0, &f) < 0 || argptr(1, (void*)&st, sizeof(*st)) < 0)
return -1;
return filestat(f, st);
}
// Create the path new as a link to the same inode as old.
int
sys_link(void)
{
char name[DIRSIZ], *new, *old;
struct inode *dp, *ip;
if(argstr(0, &old) < 0 || argstr(1, &new) < 0)
return -1;
begin_op();
if((ip = namei(old)) == 0){
end_op();
return -1;
}
ilock(ip);
if(ip->type == T_DIR){
iunlockput(ip);
end_op();
return -1;
}
ip->nlink++;
iupdate(ip);
iunlock(ip);
if((dp = nameiparent(new, name)) == 0)
goto bad;
ilock(dp);
if(dp->dev != ip->dev || dirlink(dp, name, ip->inum) < 0){
iunlockput(dp);
goto bad;
}
iunlockput(dp);
iput(ip);
end_op();
return 0;
bad:
ilock(ip);
ip->nlink--;
iupdate(ip);
iunlockput(ip);
end_op();
return -1;
}
// Is the directory dp empty except for "." and ".." ?
static int
isdirempty(struct inode *dp)
{
int off;
struct dirent de;
for(off=2*sizeof(de); off<dp->size; off+=sizeof(de)){
if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
panic("isdirempty: readi");
if(de.inum != 0)
return 0;
}
return 1;
}
//PAGEBREAK!
int
sys_unlink(void)
{
struct inode *ip, *dp;
struct dirent de;
char name[DIRSIZ], *path;
uint off;
if(argstr(0, &path) < 0)
return -1;
begin_op();
if((dp = nameiparent(path, name)) == 0){
end_op();
return -1;
}
ilock(dp);
// Cannot unlink "." or "..".
if(namecmp(name, ".") == 0 || namecmp(name, "..") == 0)
goto bad;
if((ip = dirlookup(dp, name, &off)) == 0)
goto bad;
ilock(ip);
if(ip->nlink < 1)
panic("unlink: nlink < 1");
if(ip->type == T_DIR && !isdirempty(ip)){
iunlockput(ip);
goto bad;
}
memset(&de, 0, sizeof(de));
if(writei(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
panic("unlink: writei");
if(ip->type == T_DIR){
dp->nlink--;
iupdate(dp);
}
iunlockput(dp);
ip->nlink--;
iupdate(ip);
iunlockput(ip);
end_op();
return 0;
bad:
iunlockput(dp);
end_op();
return -1;
}
static struct inode*
create(char *path, short type, short major, short minor)
{
struct inode *ip, *dp;
char name[DIRSIZ];
if((dp = nameiparent(path, name)) == 0)
return 0;
ilock(dp);
if((ip = dirlookup(dp, name, 0)) != 0){
iunlockput(dp);
ilock(ip);
if(type == T_FILE && ip->type == T_FILE)
return ip;
iunlockput(ip);
return 0;
}
if((ip = ialloc(dp->dev, type)) == 0)
panic("create: ialloc");
ilock(ip);
ip->major = major;
ip->minor = minor;
ip->nlink = 1;
iupdate(ip);
if(type == T_DIR){ // Create . and .. entries.
dp->nlink++; // for ".."
iupdate(dp);
// No ip->nlink++ for ".": avoid cyclic ref count.
if(dirlink(ip, ".", ip->inum) < 0 || dirlink(ip, "..", dp->inum) < 0)
panic("create dots");
}
if(dirlink(dp, name, ip->inum) < 0)
panic("create: dirlink");
iunlockput(dp);
return ip;
}
int
sys_open(void)
{
char *path;
int fd, omode;
struct file *f;
struct inode *ip;
if(argstr(0, &path) < 0 || argint(1, &omode) < 0)
return -1;
begin_op();
if(omode & O_CREATE){
ip = create(path, T_FILE, 0, 0);
if(ip == 0){
end_op();
return -1;
}
} else {
if((ip = namei(path)) == 0){
end_op();
return -1;
}
ilock(ip);
if(ip->type == T_DIR && omode != O_RDONLY){
iunlockput(ip);
end_op();
return -1;
}
}
if((f = filealloc()) == 0 || (fd = fdalloc(f)) < 0){
if(f)
fileclose(f);
iunlockput(ip);
end_op();
return -1;
}
iunlock(ip);
end_op();
f->type = FD_INODE;
f->ip = ip;
f->off = 0;
f->readable = !(omode & O_WRONLY);
f->writable = (omode & O_WRONLY) || (omode & O_RDWR);
return fd;
}
int
sys_mkdir(void)
{
char *path;
struct inode *ip;
begin_op();
if(argstr(0, &path) < 0 || (ip = create(path, T_DIR, 0, 0)) == 0){
end_op();
return -1;
}
iunlockput(ip);
end_op();
return 0;
}
int
sys_mknod(void)
{
struct inode *ip;
char *path;
int major, minor;
begin_op();
if((argstr(0, &path)) < 0 ||
argint(1, &major) < 0 ||
argint(2, &minor) < 0 ||
(ip = create(path, T_DEV, major, minor)) == 0){
end_op();
return -1;
}
iunlockput(ip);
end_op();
return 0;
}
int
sys_chdir(void)
{
char *path;
struct inode *ip;
struct proc *curproc = myproc();
begin_op();
if(argstr(0, &path) < 0 || (ip = namei(path)) == 0){
end_op();
return -1;
}
ilock(ip);
if(ip->type != T_DIR){
iunlockput(ip);
end_op();
return -1;
}
iunlock(ip);
iput(curproc->cwd);
end_op();
curproc->cwd = ip;
return 0;
}
int
sys_exec(void)
{
char *path, *argv[MAXARG];
int i;
uint uargv, uarg;
if(argstr(0, &path) < 0 || argint(1, (int*)&uargv) < 0){
return -1;
}
memset(argv, 0, sizeof(argv));
for(i=0;; i++){
if(i >= NELEM(argv))
return -1;
if(fetchint(uargv+4*i, (int*)&uarg) < 0)
return -1;
if(uarg == 0){
argv[i] = 0;
break;
}
if(fetchstr(uarg, &argv[i]) < 0)
return -1;
}
return exec(path, argv);
}
int
sys_pipe(void)
{
int *fd;
struct file *rf, *wf;
int fd0, fd1;
if(argptr(0, (void*)&fd, 2*sizeof(fd[0])) < 0)
return -1;
if(pipealloc(&rf, &wf) < 0)
return -1;
fd0 = -1;
if((fd0 = fdalloc(rf)) < 0 || (fd1 = fdalloc(wf)) < 0){
if(fd0 >= 0)
myproc()->ofile[fd0] = 0;
fileclose(rf);
fileclose(wf);
return -1;
}
fd[0] = fd0;
fd[1] = fd1;
return 0;
}
#include "types.h"
#include "x86.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
int
sys_fork(void)
{
return fork();
}
int
sys_exit(void)
{
int status;
if(argint(0, &status) < 0){
return -1;
}
exit(status);
return 0; // not reached
}
int
sys_wait(void)
{
int *p;
if(argptr(0, (void*)&p, sizeof(int))<0){
return -1;
}
return wait(p);
}
int
sys_kill(void)
{
int pid;
if(argint(0, &pid) < 0)
return -1;
return kill(pid);
}
int
sys_getpid(void)
{
return myproc()->pid;
}
int
sys_sbrk(void)
{
int addr;
int n;
struct proc *curprocess = myproc();
if(argint(0, &n) < 0)
return -1;
curprocess->currentHeapMem += n;
addr = myproc()->sz;
if(growproc(n) < 0)
return -1;
return addr;
}
int
sys_sleep(void)
{
int n;
uint ticks0;
if(argint(0, &n) < 0)
return -1;
acquire(&tickslock);
ticks0 = ticks;
while(ticks - ticks0 < n){
if(myproc()->killed){
release(&tickslock);
return -1;
}
sleep(&ticks, &tickslock);
}
release(&tickslock);
return 0;
}
// return how many clock tick interrupts have occurred
// since start.
int
sys_uptime(void)
{
uint xticks;
acquire(&tickslock);
xticks = ticks;
release(&tickslock);
return xticks;
}
int
sys_helloWorld(void)
{
cprintf("Hello World\n");
return 1;
}
int
sys_numopenfiles(void)
{
int pid;
if(argint(0, &pid) < 0){
return -1;
}
return numopenfiles(pid);
}
int
sys_memalloc(void)
{
int pid;
if(argint(0, &pid) < 0){
return -1;
}
return memalloc(pid);
}
int
sys_getprocesstimedetails(void)
{
int pid;
if(argint(0, &pid) < 0){
return -1;
}
return getprocesstimedetails(pid);
}
int
sys_psinfo(void) {
return psinfo();
}
\ No newline at end of file
#include "types.h"
#include "stat.h"
#include "user.h"
#include "fcntl.h"
int main() {
int i = fork();
if (i > 0){
wait(0);
printf(1, "Parent:====");
getprocesstimedetails(0);
}
else {
printf(1,"Child:====");
getprocesstimedetails(0);
}
exit(0);
}
\ No newline at end of file
#include "types.h"
#include "stat.h"
#include "user.h"
#include "fcntl.h"
int main(int argc, char *argv[])
{
printf(1,"Memory allocated till now: %d bytes\n", memAlloc(0));
sleep(10);
char* x = sbrk(1024);
printf(1,"Memory allocated till now: %d bytes\n", memAlloc(0));
//free(x);
char* y = sbrk(4096);
printf(1,"Memory allocated till now: %d bytes\n", memAlloc(0));
printf(1,"Memory allocated till now: %d bytes\n", memAlloc(0));
char* z = sbrk(-10);
printf(1,"Memory allocated till now: %d bytes\n", memAlloc(0));
char* a = sbrk(-20000);
printf(1,"Memory allocated till now: %d bytes\n", memAlloc(0));
free(x);
free(y);
free(z);
free(a);
exit(0);
}
\ No newline at end of file
#include "types.h"
#include "stat.h"
#include "user.h"
#include "fcntl.h"
int main(void)
{
printf(1, "Total Number of Open Files: %d\n", numOpenFiles(0));
int fd;
fd = open("backup", O_CREATE | O_RDWR);
printf(1, "Total Number of Open Files: %d\n", numOpenFiles(0));
close(fd);
printf(1, "Total Number of Open Files: %d\n", numOpenFiles(0));
exit(0);
}
The source listing is preceded by a cross-reference that lists every defined
constant, struct, global variable, and function in xv6. Each entry gives,
on the same line as the name, the line number (or, in a few cases, numbers)
where the name is defined. Successive lines in an entry list the line
numbers where the name is used. For example, this entry:
swtch 2658
0374 2428 2466 2657 2658
indicates that swtch is defined on line 2658 and is mentioned on five lines
on sheets 03, 24, and 26.
The numbers to the left of the file names in the table are sheet numbers.
The source code has been printed in a double column format with fifty
lines per column, giving one hundred lines per sheet (or page).
Thus there is a convenient relationship between line numbers and sheet numbers.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
#include "traps.h"
#include "spinlock.h"
// Interrupt descriptor table (shared by all CPUs).
struct gatedesc idt[256];
extern uint vectors[]; // in vectors.S: array of 256 entry pointers
struct spinlock tickslock;
uint ticks;
void
tvinit(void)
{
int i;
for(i = 0; i < 256; i++)
SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
initlock(&tickslock, "time");
}
void
idtinit(void)
{
lidt(idt, sizeof(idt));
}
//PAGEBREAK: 41
void
trap(struct trapframe *tf)
{
if(tf->trapno == T_SYSCALL){
if(myproc()->killed)
exit(-1);
myproc()->tf = tf;
syscall();
if(myproc()->killed)
exit(-1);
return;
}
switch(tf->trapno){
case T_IRQ0 + IRQ_TIMER:
if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);
}
lapiceoi();
break;
case T_IRQ0 + IRQ_IDE:
ideintr();
lapiceoi();
break;
case T_IRQ0 + IRQ_IDE+1:
// Bochs generates spurious IDE1 interrupts.
break;
case T_IRQ0 + IRQ_KBD:
kbdintr();
lapiceoi();
break;
case T_IRQ0 + IRQ_COM1:
uartintr();
lapiceoi();
break;
case T_IRQ0 + 7:
case T_IRQ0 + IRQ_SPURIOUS:
cprintf("cpu%d: spurious interrupt at %x:%x\n",
cpuid(), tf->cs, tf->eip);
lapiceoi();
break;
//PAGEBREAK: 13
default:
if(myproc() == 0 || (tf->cs&3) == 0){
// In kernel, it must be our mistake.
cprintf("unexpected trap %d from cpu %d eip %x (cr2=0x%x)\n",
tf->trapno, cpuid(), tf->eip, rcr2());
panic("trap");
}
// In user space, assume process misbehaved.
cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()->pid, myproc()->name, tf->trapno,
tf->err, cpuid(), tf->eip, rcr2());
myproc()->killed = 1;
}
// Force process exit if it has been killed and is in user space.
// (If it is still executing in the kernel, let it keep running
// until it gets to the regular system call return.)
if(myproc() && myproc()->killed && (tf->cs&3) == DPL_USER)
exit(-1);
// Force process to give up CPU on clock tick.
// If interrupts were on while locks held, would need to check nlock.
if(myproc() && myproc()->state == RUNNING &&
tf->trapno == T_IRQ0+IRQ_TIMER)
yield();
// Check if the process has been killed since we yielded
if(myproc() && myproc()->killed && (tf->cs&3) == DPL_USER)
exit(-1);
}
#include "mmu.h"
# vectors.S sends all traps here.
.globl alltraps
alltraps:
# Build trap frame.
pushl %ds
pushl %es
pushl %fs
pushl %gs
pushal
# Set up data segments.
movw $(SEG_KDATA<<3), %ax
movw %ax, %ds
movw %ax, %es
# Call trap(tf), where tf=%esp
pushl %esp
call trap
addl $4, %esp
# Return falls through to trapret...
.globl trapret
trapret:
popal
popl %gs
popl %fs
popl %es
popl %ds
addl $0x8, %esp # trapno and errcode
iret
// x86 trap and interrupt constants.
// Processor-defined:
#define T_DIVIDE 0 // divide error
#define T_DEBUG 1 // debug exception
#define T_NMI 2 // non-maskable interrupt
#define T_BRKPT 3 // breakpoint
#define T_OFLOW 4 // overflow
#define T_BOUND 5 // bounds check
#define T_ILLOP 6 // illegal opcode
#define T_DEVICE 7 // device not available
#define T_DBLFLT 8 // double fault
// #define T_COPROC 9 // reserved (not used since 486)
#define T_TSS 10 // invalid task switch segment
#define T_SEGNP 11 // segment not present
#define T_STACK 12 // stack exception
#define T_GPFLT 13 // general protection fault
#define T_PGFLT 14 // page fault
// #define T_RES 15 // reserved
#define T_FPERR 16 // floating point error
#define T_ALIGN 17 // aligment check
#define T_MCHK 18 // machine check
#define T_SIMDERR 19 // SIMD floating point error
// These are arbitrarily chosen, but with care not to overlap
// processor defined exceptions or interrupt vectors.
#define T_SYSCALL 64 // system call
#define T_DEFAULT 500 // catchall
#define T_IRQ0 32 // IRQ 0 corresponds to int T_IRQ
#define IRQ_TIMER 0
#define IRQ_KBD 1
#define IRQ_COM1 4
#define IRQ_IDE 14
#define IRQ_ERROR 19
#define IRQ_SPURIOUS 31
typedef unsigned int uint;
typedef unsigned short ushort;
typedef unsigned char uchar;
typedef uint pde_t;
// Intel 8250 serial port (UART).
#include "types.h"
#include "defs.h"
#include "param.h"
#include "traps.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "fs.h"
#include "file.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
#define COM1 0x3f8
static int uart; // is there a uart?
void
uartinit(void)
{
char *p;
// Turn off the FIFO
outb(COM1+2, 0);
// 9600 baud, 8 data bits, 1 stop bit, parity off.
outb(COM1+3, 0x80); // Unlock divisor
outb(COM1+0, 115200/9600);
outb(COM1+1, 0);
outb(COM1+3, 0x03); // Lock divisor, 8 data bits.
outb(COM1+4, 0);
outb(COM1+1, 0x01); // Enable receive interrupts.
// If status is 0xFF, no serial port.
if(inb(COM1+5) == 0xFF)
return;
uart = 1;
// Acknowledge pre-existing interrupt conditions;
// enable interrupts.
inb(COM1+2);
inb(COM1+0);
ioapicenable(IRQ_COM1, 0);
// Announce that we're here.
for(p="xv6...\n"; *p; p++)
uartputc(*p);
}
void
uartputc(int c)
{
int i;
if(!uart)
return;
for(i = 0; i < 128 && !(inb(COM1+5) & 0x20); i++)
microdelay(10);
outb(COM1+0, c);
}
static int
uartgetc(void)
{
if(!uart)
return -1;
if(!(inb(COM1+5) & 0x01))
return -1;
return inb(COM1+0);
}
void
uartintr(void)
{
consoleintr(uartgetc);
}
#include "types.h"
#include "stat.h"
#include "fcntl.h"
#include "user.h"
#include "x86.h"
char*
strcpy(char *s, const char *t)
{
char *os;
os = s;
while((*s++ = *t++) != 0)
;
return os;
}
int
strcmp(const char *p, const char *q)
{
while(*p && *p == *q)
p++, q++;
return (uchar)*p - (uchar)*q;
}
uint
strlen(const char *s)
{
int n;
for(n = 0; s[n]; n++)
;
return n;
}
void*
memset(void *dst, int c, uint n)
{
stosb(dst, c, n);
return dst;
}
char*
strchr(const char *s, char c)
{
for(; *s; s++)
if(*s == c)
return (char*)s;
return 0;
}
char*
gets(char *buf, int max)
{
int i, cc;
char c;
for(i=0; i+1 < max; ){
cc = read(0, &c, 1);
if(cc < 1)
break;
buf[i++] = c;
if(c == '\n' || c == '\r')
break;
}
buf[i] = '\0';
return buf;
}
int
stat(const char *n, struct stat *st)
{
int fd;
int r;
fd = open(n, O_RDONLY);
if(fd < 0)
return -1;
r = fstat(fd, st);
close(fd);
return r;
}
int
atoi(const char *s)
{
int n;
n = 0;
while('0' <= *s && *s <= '9')
n = n*10 + *s++ - '0';
return n;
}
void*
memmove(void *vdst, const void *vsrc, int n)
{
char *dst;
const char *src;
dst = vdst;
src = vsrc;
while(n-- > 0)
*dst++ = *src++;
return vdst;
}
#include "types.h"
#include "stat.h"
#include "user.h"
#include "param.h"
// Memory allocator by Kernighan and Ritchie,
// The C programming Language, 2nd ed. Section 8.7.
typedef long Align;
union header {
struct {
union header *ptr;
uint size;
} s;
Align x;
};
typedef union header Header;
static Header base;
static Header *freep;
void
free(void *ap)
{
Header *bp, *p;
bp = (Header*)ap - 1;
for(p = freep; !(bp > p && bp < p->s.ptr); p = p->s.ptr)
if(p >= p->s.ptr && (bp > p || bp < p->s.ptr))
break;
if(bp + bp->s.size == p->s.ptr){
bp->s.size += p->s.ptr->s.size;
bp->s.ptr = p->s.ptr->s.ptr;
} else
bp->s.ptr = p->s.ptr;
if(p + p->s.size == bp){
p->s.size += bp->s.size;
p->s.ptr = bp->s.ptr;
} else
p->s.ptr = bp;
freep = p;
}
static Header*
morecore(uint nu)
{
char *p;
Header *hp;
if(nu < 4096)
nu = 4096;
p = sbrk(nu * sizeof(Header));
if(p == (char*)-1)
return 0;
hp = (Header*)p;
hp->s.size = nu;
free((void*)(hp + 1));
return freep;
}
void*
malloc(uint nbytes)
{
Header *p, *prevp;
uint nunits;
nunits = (nbytes + sizeof(Header) - 1)/sizeof(Header) + 1;
if((prevp = freep) == 0){
base.s.ptr = freep = prevp = &base;
base.s.size = 0;
}
for(p = prevp->s.ptr; ; prevp = p, p = p->s.ptr){
if(p->s.size >= nunits){
if(p->s.size == nunits)
prevp->s.ptr = p->s.ptr;
else {
p->s.size -= nunits;
p += p->s.size;
p->s.size = nunits;
}
freep = prevp;
return (void*)(p + 1);
}
if(p == freep)
if((p = morecore(nunits)) == 0)
return 0;
}
}
struct stat;
struct rtcdate;
// system calls
int fork(void);
int exit(int) __attribute__((noreturn));
int wait(int *);
int pipe(int*);
int write(int, const void*, int);
int read(int, void*, int);
int close(int);
int kill(int);
int exec(char*, char**);
int open(const char*, int);
int mknod(const char*, short, short);
int unlink(const char*);
int fstat(int fd, struct stat*);
int link(const char*, const char*);
int mkdir(const char*);
int chdir(const char*);
int dup(int);
int getpid(void);
char* sbrk(int);
int sleep(int);
int uptime(void);
int helloWorld(void);
int numOpenFiles(int pid);
int memAlloc(int pid);
int getprocesstimedetails(int pid);
int psinfo(void);
// ulib.c
int stat(const char*, struct stat*);
char* strcpy(char*, const char*);
void *memmove(void*, const void*, int);
char* strchr(const char*, char c);
int strcmp(const char*, const char*);
void printf(int, const char*, ...);
char* gets(char*, int max);
uint strlen(const char*);
void* memset(void*, int, uint);
void* malloc(uint);
void free(void*);
int atoi(const char*);
#include "param.h"
#include "types.h"
#include "stat.h"
#include "user.h"
#include "fs.h"
#include "fcntl.h"
#include "syscall.h"
#include "traps.h"
#include "memlayout.h"
char buf[8192];
char name[3];
char *echoargv[] = { "echo", "ALL", "TESTS", "PASSED", 0 };
int stdout = 1;
// does chdir() call iput(p->cwd) in a transaction?
void
iputtest(void)
{
printf(stdout, "iput test\n");
if(mkdir("iputdir") < 0){
printf(stdout, "mkdir failed\n");
exit(-1);
}
if(chdir("iputdir") < 0){
printf(stdout, "chdir iputdir failed\n");
exit(-1);
}
if(unlink("../iputdir") < 0){
printf(stdout, "unlink ../iputdir failed\n");
exit(-1);
}
if(chdir("/") < 0){
printf(stdout, "chdir / failed\n");
exit(-1);
}
printf(stdout, "iput test ok\n");
}
// does exit() call iput(p->cwd) in a transaction?
void
exitiputtest(void)
{
int pid;
printf(stdout, "exitiput test\n");
pid = fork();
if(pid < 0){
printf(stdout, "fork failed\n");
exit(-1);
}
if(pid == 0){
if(mkdir("iputdir") < 0){
printf(stdout, "mkdir failed\n");
exit(-1);
}
if(chdir("iputdir") < 0){
printf(stdout, "child chdir failed\n");
exit(-1);
}
if(unlink("../iputdir") < 0){
printf(stdout, "unlink ../iputdir failed\n");
exit(-1);
}
exit(0);
}
wait(0);
printf(stdout, "exitiput test ok\n");
}
// does the error path in open() for attempt to write a
// directory call iput() in a transaction?
// needs a hacked kernel that pauses just after the namei()
// call in sys_open():
// if((ip = namei(path)) == 0)
// return -1;
// {
// int i;
// for(i = 0; i < 10000; i++)
// yield();
// }
void
openiputtest(void)
{
int pid;
printf(stdout, "openiput test\n");
if(mkdir("oidir") < 0){
printf(stdout, "mkdir oidir failed\n");
exit(-1);
}
pid = fork();
if(pid < 0){
printf(stdout, "fork failed\n");
exit(-1);
}
if(pid == 0){
int fd = open("oidir", O_RDWR);
if(fd >= 0){
printf(stdout, "open directory for write succeeded\n");
exit(-1);
}
exit(0);
}
sleep(1);
if(unlink("oidir") != 0){
printf(stdout, "unlink failed\n");
exit(-1);
}
wait(0);
printf(stdout, "openiput test ok\n");
}
// simple file system tests
void
opentest(void)
{
int fd;
printf(stdout, "open test\n");
fd = open("echo", 0);
if(fd < 0){
printf(stdout, "open echo failed!\n");
exit(-1);
}
close(fd);
fd = open("doesnotexist", 0);
if(fd >= 0){
printf(stdout, "open doesnotexist succeeded!\n");
exit(-1);
}
printf(stdout, "open test ok\n");
}
void
writetest(void)
{
int fd;
int i;
printf(stdout, "small file test\n");
fd = open("small", O_CREATE|O_RDWR);
if(fd >= 0){
printf(stdout, "creat small succeeded; ok\n");
} else {
printf(stdout, "error: creat small failed!\n");
exit(-1);
}
for(i = 0; i < 100; i++){
if(write(fd, "aaaaaaaaaa", 10) != 10){
printf(stdout, "error: write aa %d new file failed\n", i);
exit(-1);
}
if(write(fd, "bbbbbbbbbb", 10) != 10){
printf(stdout, "error: write bb %d new file failed\n", i);
exit(-1);
}
}
printf(stdout, "writes ok\n");
close(fd);
fd = open("small", O_RDONLY);
if(fd >= 0){
printf(stdout, "open small succeeded ok\n");
} else {
printf(stdout, "error: open small failed!\n");
exit(-1);
}
i = read(fd, buf, 2000);
if(i == 2000){
printf(stdout, "read succeeded ok\n");
} else {
printf(stdout, "read failed\n");
exit(-1);
}
close(fd);
if(unlink("small") < 0){
printf(stdout, "unlink small failed\n");
exit(-1);
}
printf(stdout, "small file test ok\n");
}
void
writetest1(void)
{
int i, fd, n;
printf(stdout, "big files test\n");
fd = open("big", O_CREATE|O_RDWR);
if(fd < 0){
printf(stdout, "error: creat big failed!\n");
exit(-1);
}
for(i = 0; i < MAXFILE; i++){
((int*)buf)[0] = i;
if(write(fd, buf, 512) != 512){
printf(stdout, "error: write big file failed\n", i);
exit(-1);
}
}
close(fd);
fd = open("big", O_RDONLY);
if(fd < 0){
printf(stdout, "error: open big failed!\n");
exit(-1);
}
n = 0;
for(;;){
i = read(fd, buf, 512);
if(i == 0){
if(n == MAXFILE - 1){
printf(stdout, "read only %d blocks from big", n);
exit(-1);
}
break;
} else if(i != 512){
printf(stdout, "read failed %d\n", i);
exit(-1);
}
if(((int*)buf)[0] != n){
printf(stdout, "read content of block %d is %d\n",
n, ((int*)buf)[0]);
exit(-1);
}
n++;
}
close(fd);
if(unlink("big") < 0){
printf(stdout, "unlink big failed\n");
exit(-1);
}
printf(stdout, "big files ok\n");
}
void
createtest(void)
{
int i, fd;
printf(stdout, "many creates, followed by unlink test\n");
name[0] = 'a';
name[2] = '\0';
for(i = 0; i < 52; i++){
name[1] = '0' + i;
fd = open(name, O_CREATE|O_RDWR);
close(fd);
}
name[0] = 'a';
name[2] = '\0';
for(i = 0; i < 52; i++){
name[1] = '0' + i;
unlink(name);
}
printf(stdout, "many creates, followed by unlink; ok\n");
}
void dirtest(void)
{
printf(stdout, "mkdir test\n");
if(mkdir("dir0") < 0){
printf(stdout, "mkdir failed\n");
exit(-1);
}
if(chdir("dir0") < 0){
printf(stdout, "chdir dir0 failed\n");
exit(-1);
}
if(chdir("..") < 0){
printf(stdout, "chdir .. failed\n");
exit(-1);
}
if(unlink("dir0") < 0){
printf(stdout, "unlink dir0 failed\n");
exit(-1);
}
printf(stdout, "mkdir test ok\n");
}
void
exectest(void)
{
printf(stdout, "exec test\n");
if(exec("echo", echoargv) < 0){
printf(stdout, "exec echo failed\n");
exit(-1);
}
}
// simple fork and pipe read/write
void
pipe1(void)
{
int fds[2], pid;
int seq, i, n, cc, total;
if(pipe(fds) != 0){
printf(1, "pipe() failed\n");
exit(-1);
}
pid = fork();
seq = 0;
if(pid == 0){
close(fds[0]);
for(n = 0; n < 5; n++){
for(i = 0; i < 1033; i++)
buf[i] = seq++;
if(write(fds[1], buf, 1033) != 1033){
printf(1, "pipe1 oops 1\n");
exit(-1);
}
}
exit(0);
} else if(pid > 0){
close(fds[1]);
total = 0;
cc = 1;
while((n = read(fds[0], buf, cc)) > 0){
for(i = 0; i < n; i++){
if((buf[i] & 0xff) != (seq++ & 0xff)){
printf(1, "pipe1 oops 2\n");
return;
}
}
total += n;
cc = cc * 2;
if(cc > sizeof(buf))
cc = sizeof(buf);
}
if(total != 5 * 1033){
printf(1, "pipe1 oops 3 total %d\n", total);
exit(-1);
}
close(fds[0]);
wait(0);
} else {
printf(1, "fork() failed\n");
exit(-1);
}
printf(1, "pipe1 ok\n");
}
// meant to be run w/ at most two CPUs
void
preempt(void)
{
int pid1, pid2, pid3;
int pfds[2];
printf(1, "preempt: ");
pid1 = fork();
if(pid1 == 0)
for(;;)
;
pid2 = fork();
if(pid2 == 0)
for(;;)
;
pipe(pfds);
pid3 = fork();
if(pid3 == 0){
close(pfds[0]);
if(write(pfds[1], "x", 1) != 1)
printf(1, "preempt write error");
close(pfds[1]);
for(;;)
;
}
close(pfds[1]);
if(read(pfds[0], buf, sizeof(buf)) != 1){
printf(1, "preempt read error");
return;
}
close(pfds[0]);
printf(1, "kill... ");
kill(pid1);
kill(pid2);
kill(pid3);
printf(1, "wait... ");
wait(0);
wait(0);
wait(0);
printf(1, "preempt ok\n");
}
// try to find any races between exit and wait
void
exitwait(void)
{
int i, pid;
for(i = 0; i < 100; i++){
pid = fork();
if(pid < 0){
printf(1, "fork failed\n");
return;
}
if(pid){
if(wait(0) != pid){
printf(1, "wait wrong pid\n");
return;
}
} else {
exit(0);
}
}
printf(1, "exitwait ok\n");
}
void
mem(void)
{
void *m1, *m2;
int pid, ppid;
printf(1, "mem test\n");
ppid = getpid();
if((pid = fork()) == 0){
m1 = 0;
while((m2 = malloc(10001)) != 0){
*(char**)m2 = m1;
m1 = m2;
}
while(m1){
m2 = *(char**)m1;
free(m1);
m1 = m2;
}
m1 = malloc(1024*20);
if(m1 == 0){
printf(1, "couldn't allocate mem?!!\n");
kill(ppid);
exit(-1);
}
free(m1);
printf(1, "mem ok\n");
exit(0);
} else {
wait(0);
}
}
// More file system tests
// two processes write to the same file descriptor
// is the offset shared? does inode locking work?
void
sharedfd(void)
{
int fd, pid, i, n, nc, np;
char buf[10];
printf(1, "sharedfd test\n");
unlink("sharedfd");
fd = open("sharedfd", O_CREATE|O_RDWR);
if(fd < 0){
printf(1, "fstests: cannot open sharedfd for writing");
return;
}
pid = fork();
memset(buf, pid==0?'c':'p', sizeof(buf));
for(i = 0; i < 1000; i++){
if(write(fd, buf, sizeof(buf)) != sizeof(buf)){
printf(1, "fstests: write sharedfd failed\n");
break;
}
}
if(pid == 0)
exit(-1);
else
wait(0);
close(fd);
fd = open("sharedfd", 0);
if(fd < 0){
printf(1, "fstests: cannot open sharedfd for reading\n");
return;
}
nc = np = 0;
while((n = read(fd, buf, sizeof(buf))) > 0){
for(i = 0; i < sizeof(buf); i++){
if(buf[i] == 'c')
nc++;
if(buf[i] == 'p')
np++;
}
}
close(fd);
unlink("sharedfd");
if(nc == 10000 && np == 10000){
printf(1, "sharedfd ok\n");
} else {
printf(1, "sharedfd oops %d %d\n", nc, np);
exit(0);
}
}
// four processes write different files at the same
// time, to test block allocation.
void
fourfiles(void)
{
int fd, pid, i, j, n, total, pi;
char *names[] = { "f0", "f1", "f2", "f3" };
char *fname;
printf(1, "fourfiles test\n");
for(pi = 0; pi < 4; pi++){
fname = names[pi];
unlink(fname);
pid = fork();
if(pid < 0){
printf(1, "fork failed\n");
exit(-1);
}
if(pid == 0){
fd = open(fname, O_CREATE | O_RDWR);
if(fd < 0){
printf(1, "create failed\n");
exit(-1);
}
memset(buf, '0'+pi, 512);
for(i = 0; i < 12; i++){
if((n = write(fd, buf, 500)) != 500){
printf(1, "write failed %d\n", n);
exit(-1);
}
}
exit(0);
}
}
for(pi = 0; pi < 4; pi++){
wait(0);
}
for(i = 0; i < 2; i++){
fname = names[i];
fd = open(fname, 0);
total = 0;
while((n = read(fd, buf, sizeof(buf))) > 0){
for(j = 0; j < n; j++){
if(buf[j] != '0'+i){
printf(1, "wrong char\n");
exit(-1);
}
}
total += n;
}
close(fd);
if(total != 12*500){
printf(1, "wrong length %d\n", total);
exit(-1);
}
unlink(fname);
}
printf(1, "fourfiles ok\n");
}
// four processes create and delete different files in same directory
void
createdelete(void)
{
enum { N = 20 };
int pid, i, fd, pi;
char name[32];
printf(1, "createdelete test\n");
for(pi = 0; pi < 4; pi++){
pid = fork();
if(pid < 0){
printf(1, "fork failed\n");
exit(-1);
}
if(pid == 0){
name[0] = 'p' + pi;
name[2] = '\0';
for(i = 0; i < N; i++){
name[1] = '0' + i;
fd = open(name, O_CREATE | O_RDWR);
if(fd < 0){
printf(1, "create failed\n");
exit(-1);
}
close(fd);
if(i > 0 && (i % 2 ) == 0){
name[1] = '0' + (i / 2);
if(unlink(name) < 0){
printf(1, "unlink failed\n");
exit(-1);
}
}
}
exit(0);
}
}
for(pi = 0; pi < 4; pi++){
wait(0);
}
name[0] = name[1] = name[2] = 0;
for(i = 0; i < N; i++){
for(pi = 0; pi < 4; pi++){
name[0] = 'p' + pi;
name[1] = '0' + i;
fd = open(name, 0);
if((i == 0 || i >= N/2) && fd < 0){
printf(1, "oops createdelete %s didn't exist\n", name);
exit(-1);
} else if((i >= 1 && i < N/2) && fd >= 0){
printf(1, "oops createdelete %s did exist\n", name);
exit(-1);
}
if(fd >= 0)
close(fd);
}
}
for(i = 0; i < N; i++){
for(pi = 0; pi < 4; pi++){
name[0] = 'p' + i;
name[1] = '0' + i;
unlink(name);
}
}
printf(1, "createdelete ok\n");
}
// can I unlink a file and still read it?
void
unlinkread(void)
{
int fd, fd1;
printf(1, "unlinkread test\n");
fd = open("unlinkread", O_CREATE | O_RDWR);
if(fd < 0){
printf(1, "create unlinkread failed\n");
exit(-1);
}
write(fd, "hello", 5);
close(fd);
fd = open("unlinkread", O_RDWR);
if(fd < 0){
printf(1, "open unlinkread failed\n");
exit(-1);
}
if(unlink("unlinkread") != 0){
printf(1, "unlink unlinkread failed\n");
exit(-1);
}
fd1 = open("unlinkread", O_CREATE | O_RDWR);
write(fd1, "yyy", 3);
close(fd1);
if(read(fd, buf, sizeof(buf)) != 5){
printf(1, "unlinkread read failed");
exit(-1);
}
if(buf[0] != 'h'){
printf(1, "unlinkread wrong data\n");
exit(-1);
}
if(write(fd, buf, 10) != 10){
printf(1, "unlinkread write failed\n");
exit(-1);
}
close(fd);
unlink("unlinkread");
printf(1, "unlinkread ok\n");
}
void
linktest(void)
{
int fd;
printf(1, "linktest\n");
unlink("lf1");
unlink("lf2");
fd = open("lf1", O_CREATE|O_RDWR);
if(fd < 0){
printf(1, "create lf1 failed\n");
exit(-1);
}
if(write(fd, "hello", 5) != 5){
printf(1, "write lf1 failed\n");
exit(-1);
}
close(fd);
if(link("lf1", "lf2") < 0){
printf(1, "link lf1 lf2 failed\n");
exit(-1);
}
unlink("lf1");
if(open("lf1", 0) >= 0){
printf(1, "unlinked lf1 but it is still there!\n");
exit(-1);
}
fd = open("lf2", 0);
if(fd < 0){
printf(1, "open lf2 failed\n");
exit(-1);
}
if(read(fd, buf, sizeof(buf)) != 5){
printf(1, "read lf2 failed\n");
exit(-1);
}
close(fd);
if(link("lf2", "lf2") >= 0){
printf(1, "link lf2 lf2 succeeded! oops\n");
exit(-1);
}
unlink("lf2");
if(link("lf2", "lf1") >= 0){
printf(1, "link non-existant succeeded! oops\n");
exit(-1);
}
if(link(".", "lf1") >= 0){
printf(1, "link . lf1 succeeded! oops\n");
exit(-1);
}
printf(1, "linktest ok\n");
}
// test concurrent create/link/unlink of the same file
void
concreate(void)
{
char file[3];
int i, pid, n, fd;
char fa[40];
struct {
ushort inum;
char name[14];
} de;
printf(1, "concreate test\n");
file[0] = 'C';
file[2] = '\0';
for(i = 0; i < 40; i++){
file[1] = '0' + i;
unlink(file);
pid = fork();
if(pid && (i % 3) == 1){
link("C0", file);
} else if(pid == 0 && (i % 5) == 1){
link("C0", file);
} else {
fd = open(file, O_CREATE | O_RDWR);
if(fd < 0){
printf(1, "concreate create %s failed\n", file);
exit(-1);
}
close(fd);
}
if(pid == 0)
exit(-1);
else
wait(0);
}
memset(fa, 0, sizeof(fa));
fd = open(".", 0);
n = 0;
while(read(fd, &de, sizeof(de)) > 0){
if(de.inum == 0)
continue;
if(de.name[0] == 'C' && de.name[2] == '\0'){
i = de.name[1] - '0';
if(i < 0 || i >= sizeof(fa)){
printf(1, "concreate weird file %s\n", de.name);
exit(0);
}
if(fa[i]){
printf(1, "concreate duplicate file %s\n", de.name);
exit(0);
}
fa[i] = 1;
n++;
}
}
close(fd);
if(n != 40){
printf(1, "concreate not enough files in directory listing\n");
exit(-1);
}
for(i = 0; i < 40; i++){
file[1] = '0' + i;
pid = fork();
if(pid < 0){
printf(1, "fork failed\n");
exit(-1);
}
if(((i % 3) == 0 && pid == 0) ||
((i % 3) == 1 && pid != 0)){
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
} else {
unlink(file);
unlink(file);
unlink(file);
unlink(file);
}
if(pid == 0)
exit(-1);
else
wait(0);
}
printf(1, "concreate ok\n");
}
// another concurrent link/unlink/create test,
// to look for deadlocks.
void
linkunlink()
{
int pid, i;
printf(1, "linkunlink test\n");
unlink("x");
pid = fork();
if(pid < 0){
printf(1, "fork failed\n");
exit(-1);
}
unsigned int x = (pid ? 1 : 97);
for(i = 0; i < 100; i++){
x = x * 1103515245 + 12345;
if((x % 3) == 0){
close(open("x", O_RDWR | O_CREATE));
} else if((x % 3) == 1){
link("cat", "x");
} else {
unlink("x");
}
}
if(pid)
wait(0);
else
exit(-1);
printf(1, "linkunlink ok\n");
}
// directory that uses indirect blocks
void
bigdir(void)
{
int i, fd;
char name[10];
printf(1, "bigdir test\n");
unlink("bd");
fd = open("bd", O_CREATE);
if(fd < 0){
printf(1, "bigdir create failed\n");
exit(-1);
}
close(fd);
for(i = 0; i < 500; i++){
name[0] = 'x';
name[1] = '0' + (i / 64);
name[2] = '0' + (i % 64);
name[3] = '\0';
if(link("bd", name) != 0){
printf(1, "bigdir link failed\n");
exit(-1);
}
}
unlink("bd");
for(i = 0; i < 500; i++){
name[0] = 'x';
name[1] = '0' + (i / 64);
name[2] = '0' + (i % 64);
name[3] = '\0';
if(unlink(name) != 0){
printf(1, "bigdir unlink failed");
exit(-1);
}
}
printf(1, "bigdir ok\n");
}
void
subdir(void)
{
int fd, cc;
printf(1, "subdir test\n");
unlink("ff");
if(mkdir("dd") != 0){
printf(1, "subdir mkdir dd failed\n");
exit(-1);
}
fd = open("dd/ff", O_CREATE | O_RDWR);
if(fd < 0){
printf(1, "create dd/ff failed\n");
exit(-1);
}
write(fd, "ff", 2);
close(fd);
if(unlink("dd") >= 0){
printf(1, "unlink dd (non-empty dir) succeeded!\n");
exit(-1);
}
if(mkdir("/dd/dd") != 0){
printf(1, "subdir mkdir dd/dd failed\n");
exit(-1);
}
fd = open("dd/dd/ff", O_CREATE | O_RDWR);
if(fd < 0){
printf(1, "create dd/dd/ff failed\n");
exit(-1);
}
write(fd, "FF", 2);
close(fd);
fd = open("dd/dd/../ff", 0);
if(fd < 0){
printf(1, "open dd/dd/../ff failed\n");
exit(-1);
}
cc = read(fd, buf, sizeof(buf));
if(cc != 2 || buf[0] != 'f'){
printf(1, "dd/dd/../ff wrong content\n");
exit(-1);
}
close(fd);
if(link("dd/dd/ff", "dd/dd/ffff") != 0){
printf(1, "link dd/dd/ff dd/dd/ffff failed\n");
exit(-1);
}
if(unlink("dd/dd/ff") != 0){
printf(1, "unlink dd/dd/ff failed\n");
exit(-1);
}
if(open("dd/dd/ff", O_RDONLY) >= 0){
printf(1, "open (unlinked) dd/dd/ff succeeded\n");
exit(-1);
}
if(chdir("dd") != 0){
printf(1, "chdir dd failed\n");
exit(-1);
}
if(chdir("dd/../../dd") != 0){
printf(1, "chdir dd/../../dd failed\n");
exit(-1);
}
if(chdir("dd/../../../dd") != 0){
printf(1, "chdir dd/../../dd failed\n");
exit(-1);
}
if(chdir("./..") != 0){
printf(1, "chdir ./.. failed\n");
exit(-1);
}
fd = open("dd/dd/ffff", 0);
if(fd < 0){
printf(1, "open dd/dd/ffff failed\n");
exit(-1);
}
if(read(fd, buf, sizeof(buf)) != 2){
printf(1, "read dd/dd/ffff wrong len\n");
exit(-1);
}
close(fd);
if(open("dd/dd/ff", O_RDONLY) >= 0){
printf(1, "open (unlinked) dd/dd/ff succeeded!\n");
exit(0);
}
if(open("dd/ff/ff", O_CREATE|O_RDWR) >= 0){
printf(1, "create dd/ff/ff succeeded!\n");
exit(0);
}
if(open("dd/xx/ff", O_CREATE|O_RDWR) >= 0){
printf(1, "create dd/xx/ff succeeded!\n");
exit(0);
}
if(open("dd", O_CREATE) >= 0){
printf(1, "create dd succeeded!\n");
exit(0);
}
if(open("dd", O_RDWR) >= 0){
printf(1, "open dd rdwr succeeded!\n");
exit(0);
}
if(open("dd", O_WRONLY) >= 0){
printf(1, "open dd wronly succeeded!\n");
exit(0);
}
if(link("dd/ff/ff", "dd/dd/xx") == 0){
printf(1, "link dd/ff/ff dd/dd/xx succeeded!\n");
exit(0);
}
if(link("dd/xx/ff", "dd/dd/xx") == 0){
printf(1, "link dd/xx/ff dd/dd/xx succeeded!\n");
exit(0);
}
if(link("dd/ff", "dd/dd/ffff") == 0){
printf(1, "link dd/ff dd/dd/ffff succeeded!\n");
exit(0);
}
if(mkdir("dd/ff/ff") == 0){
printf(1, "mkdir dd/ff/ff succeeded!\n");
exit(0);
}
if(mkdir("dd/xx/ff") == 0){
printf(1, "mkdir dd/xx/ff succeeded!\n");
exit(0);
}
if(mkdir("dd/dd/ffff") == 0){
printf(1, "mkdir dd/dd/ffff succeeded!\n");
exit(0);
}
if(unlink("dd/xx/ff") == 0){
printf(1, "unlink dd/xx/ff succeeded!\n");
exit(0);
}
if(unlink("dd/ff/ff") == 0){
printf(1, "unlink dd/ff/ff succeeded!\n");
exit(0);
}
if(chdir("dd/ff") == 0){
printf(1, "chdir dd/ff succeeded!\n");
exit(0);
}
if(chdir("dd/xx") == 0){
printf(1, "chdir dd/xx succeeded!\n");
exit(0);
}
if(unlink("dd/dd/ffff") != 0){
printf(1, "unlink dd/dd/ff failed\n");
exit(-1);
}
if(unlink("dd/ff") != 0){
printf(1, "unlink dd/ff failed\n");
exit(-1);
}
if(unlink("dd") == 0){
printf(1, "unlink non-empty dd succeeded!\n");
exit(0);
}
if(unlink("dd/dd") < 0){
printf(1, "unlink dd/dd failed\n");
exit(-1);
}
if(unlink("dd") < 0){
printf(1, "unlink dd failed\n");
exit(-1);
}
printf(1, "subdir ok\n");
}
// test writes that are larger than the log.
void
bigwrite(void)
{
int fd, sz;
printf(1, "bigwrite test\n");
unlink("bigwrite");
for(sz = 499; sz < 12*512; sz += 471){
fd = open("bigwrite", O_CREATE | O_RDWR);
if(fd < 0){
printf(1, "cannot create bigwrite\n");
exit(-1);
}
int i;
for(i = 0; i < 2; i++){
int cc = write(fd, buf, sz);
if(cc != sz){
printf(1, "write(%d) ret %d\n", sz, cc);
exit(0);
}
}
close(fd);
unlink("bigwrite");
}
printf(1, "bigwrite ok\n");
}
void
bigfile(void)
{
int fd, i, total, cc;
printf(1, "bigfile test\n");
unlink("bigfile");
fd = open("bigfile", O_CREATE | O_RDWR);
if(fd < 0){
printf(1, "cannot create bigfile");
exit(-1);
}
for(i = 0; i < 20; i++){
memset(buf, i, 600);
if(write(fd, buf, 600) != 600){
printf(1, "write bigfile failed\n");
exit(-1);
}
}
close(fd);
fd = open("bigfile", 0);
if(fd < 0){
printf(1, "cannot open bigfile\n");
exit(-1);
}
total = 0;
for(i = 0; ; i++){
cc = read(fd, buf, 300);
if(cc < 0){
printf(1, "read bigfile failed\n");
exit(-1);
}
if(cc == 0)
break;
if(cc != 300){
printf(1, "short read bigfile\n");
exit(-1);
}
if(buf[0] != i/2 || buf[299] != i/2){
printf(1, "read bigfile wrong data\n");
exit(-1);
}
total += cc;
}
close(fd);
if(total != 20*600){
printf(1, "read bigfile wrong total\n");
exit(-1);
}
unlink("bigfile");
printf(1, "bigfile test ok\n");
}
void
fourteen(void)
{
int fd;
// DIRSIZ is 14.
printf(1, "fourteen test\n");
if(mkdir("12345678901234") != 0){
printf(1, "mkdir 12345678901234 failed\n");
exit(-1);
}
if(mkdir("12345678901234/123456789012345") != 0){
printf(1, "mkdir 12345678901234/123456789012345 failed\n");
exit(-1);
}
fd = open("123456789012345/123456789012345/123456789012345", O_CREATE);
if(fd < 0){
printf(1, "create 123456789012345/123456789012345/123456789012345 failed\n");
exit(-1);
}
close(fd);
fd = open("12345678901234/12345678901234/12345678901234", 0);
if(fd < 0){
printf(1, "open 12345678901234/12345678901234/12345678901234 failed\n");
exit(-1);
}
close(fd);
if(mkdir("12345678901234/12345678901234") == 0){
printf(1, "mkdir 12345678901234/12345678901234 succeeded!\n");
exit(0);
}
if(mkdir("123456789012345/12345678901234") == 0){
printf(1, "mkdir 12345678901234/123456789012345 succeeded!\n");
exit(0);
}
printf(1, "fourteen ok\n");
}
void
rmdot(void)
{
printf(1, "rmdot test\n");
if(mkdir("dots") != 0){
printf(1, "mkdir dots failed\n");
exit(-1);
}
if(chdir("dots") != 0){
printf(1, "chdir dots failed\n");
exit(-1);
}
if(unlink(".") == 0){
printf(1, "rm . worked!\n");
exit(0);
}
if(unlink("..") == 0){
printf(1, "rm .. worked!\n");
exit(0);
}
if(chdir("/") != 0){
printf(1, "chdir / failed\n");
exit(-1);
}
if(unlink("dots/.") == 0){
printf(1, "unlink dots/. worked!\n");
exit(0);
}
if(unlink("dots/..") == 0){
printf(1, "unlink dots/.. worked!\n");
exit(0);
}
if(unlink("dots") != 0){
printf(1, "unlink dots failed!\n");
exit(-1);
}
printf(1, "rmdot ok\n");
}
void
dirfile(void)
{
int fd;
printf(1, "dir vs file\n");
fd = open("dirfile", O_CREATE);
if(fd < 0){
printf(1, "create dirfile failed\n");
exit(-1);
}
close(fd);
if(chdir("dirfile") == 0){
printf(1, "chdir dirfile succeeded!\n");
exit(0);
}
fd = open("dirfile/xx", 0);
if(fd >= 0){
printf(1, "create dirfile/xx succeeded!\n");
exit(0);
}
fd = open("dirfile/xx", O_CREATE);
if(fd >= 0){
printf(1, "create dirfile/xx succeeded!\n");
exit(0);
}
if(mkdir("dirfile/xx") == 0){
printf(1, "mkdir dirfile/xx succeeded!\n");
exit(0);
}
if(unlink("dirfile/xx") == 0){
printf(1, "unlink dirfile/xx succeeded!\n");
exit(0);
}
if(link("README", "dirfile/xx") == 0){
printf(1, "link to dirfile/xx succeeded!\n");
exit(0);
}
if(unlink("dirfile") != 0){
printf(1, "unlink dirfile failed!\n");
exit(-1);
}
fd = open(".", O_RDWR);
if(fd >= 0){
printf(1, "open . for writing succeeded!\n");
exit(0);
}
fd = open(".", 0);
if(write(fd, "x", 1) > 0){
printf(1, "write . succeeded!\n");
exit(0);
}
close(fd);
printf(1, "dir vs file OK\n");
}
// test that iput() is called at the end of _namei()
void
iref(void)
{
int i, fd;
printf(1, "empty file name\n");
// the 50 is NINODE
for(i = 0; i < 50 + 1; i++){
if(mkdir("irefd") != 0){
printf(1, "mkdir irefd failed\n");
exit(-1);
}
if(chdir("irefd") != 0){
printf(1, "chdir irefd failed\n");
exit(-1);
}
mkdir("");
link("README", "");
fd = open("", O_CREATE);
if(fd >= 0)
close(fd);
fd = open("xx", O_CREATE);
if(fd >= 0)
close(fd);
unlink("xx");
}
chdir("/");
printf(1, "empty file name OK\n");
}
// test that fork fails gracefully
// the forktest binary also does this, but it runs out of proc entries first.
// inside the bigger usertests binary, we run out of memory first.
void
forktest(void)
{
int n, pid;
printf(1, "fork test\n");
for(n=0; n<1000; n++){
pid = fork();
if(pid < 0)
break;
if(pid == 0)
exit(0);
}
if(n == 1000){
printf(1, "fork claimed to work 1000 times!\n");
exit(0);
}
for(; n > 0; n--){
if(wait(0) < 0){
printf(1, "wait stopped early\n");
exit(0);
}
}
if(wait(0) != -1){
printf(1, "wait got too many\n");
exit(-1);
}
printf(1, "fork test OK\n");
}
void
sbrktest(void)
{
int fds[2], pid, pids[10], ppid;
char *a, *b, *c, *lastaddr, *oldbrk, *p, scratch;
uint amt;
printf(stdout, "sbrk test\n");
oldbrk = sbrk(0);
// can one sbrk() less than a page?
a = sbrk(0);
int i;
for(i = 0; i < 5000; i++){
b = sbrk(1);
if(b != a){
printf(stdout, "sbrk test failed %d %x %x\n", i, a, b);
exit(-1);
}
*b = 1;
a = b + 1;
}
pid = fork();
if(pid < 0){
printf(stdout, "sbrk test fork failed\n");
exit(-1);
}
c = sbrk(1);
c = sbrk(1);
if(c != a + 1){
printf(stdout, "sbrk test failed post-fork\n");
exit(-1);
}
if(pid == 0)
exit(-1);
wait(0);
// can one grow address space to something big?
#define BIG (100*1024*1024)
a = sbrk(0);
amt = (BIG) - (uint)a;
p = sbrk(amt);
if (p != a) {
printf(stdout, "sbrk test failed to grow big address space; enough phys mem?\n");
exit(-1);
}
lastaddr = (char*) (BIG-1);
*lastaddr = 99;
// can one de-allocate?
a = sbrk(0);
c = sbrk(-4096);
if(c == (char*)0xffffffff){
printf(stdout, "sbrk could not deallocate\n");
exit(-1);
}
c = sbrk(0);
if(c != a - 4096){
printf(stdout, "sbrk deallocation produced wrong address, a %x c %x\n", a, c);
exit(-1);
}
// can one re-allocate that page?
a = sbrk(0);
c = sbrk(4096);
if(c != a || sbrk(0) != a + 4096){
printf(stdout, "sbrk re-allocation failed, a %x c %x\n", a, c);
exit(-1);
}
if(*lastaddr == 99){
// should be zero
printf(stdout, "sbrk de-allocation didn't really deallocate\n");
exit(-1);
}
a = sbrk(0);
c = sbrk(-(sbrk(0) - oldbrk));
if(c != a){
printf(stdout, "sbrk downsize failed, a %x c %x\n", a, c);
exit(-1);
}
// can we read the kernel's memory?
for(a = (char*)(KERNBASE); a < (char*) (KERNBASE+2000000); a += 50000){
ppid = getpid();
pid = fork();
if(pid < 0){
printf(stdout, "fork failed\n");
exit(-1);
}
if(pid == 0){
printf(stdout, "oops could read %x = %x\n", a, *a);
kill(ppid);
exit(-1);
}
wait(0);
}
// if we run the system out of memory, does it clean up the last
// failed allocation?
if(pipe(fds) != 0){
printf(1, "pipe() failed\n");
exit(-1);
}
for(i = 0; i < sizeof(pids)/sizeof(pids[0]); i++){
if((pids[i] = fork()) == 0){
// allocate a lot of memory
sbrk(BIG - (uint)sbrk(0));
write(fds[1], "x", 1);
// sit around until killed
for(;;) sleep(1000);
}
if(pids[i] != -1)
read(fds[0], &scratch, 1);
}
// if those failed allocations freed up the pages they did allocate,
// we'll be able to allocate here
c = sbrk(4096);
for(i = 0; i < sizeof(pids)/sizeof(pids[0]); i++){
if(pids[i] == -1)
continue;
kill(pids[i]);
wait(0);
}
if(c == (char*)0xffffffff){
printf(stdout, "failed sbrk leaked memory\n");
exit(-1);
}
if(sbrk(0) > oldbrk)
sbrk(-(sbrk(0) - oldbrk));
printf(stdout, "sbrk test OK\n");
}
void
validateint(int *p)
{
int res;
asm("mov %%esp, %%ebx\n\t"
"mov %3, %%esp\n\t"
"int %2\n\t"
"mov %%ebx, %%esp" :
"=a" (res) :
"a" (SYS_sleep), "n" (T_SYSCALL), "c" (p) :
"ebx");
}
void
validatetest(void)
{
int hi, pid;
uint p;
printf(stdout, "validate test\n");
hi = 1100*1024;
for(p = 0; p <= (uint)hi; p += 4096){
if((pid = fork()) == 0){
// try to crash the kernel by passing in a badly placed integer
validateint((int*)p);
exit(0);
}
sleep(0);
sleep(0);
kill(pid);
wait(0);
// try to crash the kernel by passing in a bad string pointer
if(link("nosuchfile", (char*)p) != -1){
printf(stdout, "link should not succeed\n");
exit(-1);
}
}
printf(stdout, "validate ok\n");
}
// does unintialized data start out zero?
char uninit[10000];
void
bsstest(void)
{
int i;
printf(stdout, "bss test\n");
for(i = 0; i < sizeof(uninit); i++){
if(uninit[i] != '\0'){
printf(stdout, "bss test failed\n");
exit(-1);
}
}
printf(stdout, "bss test ok\n");
}
// does exec return an error if the arguments
// are larger than a page? or does it write
// below the stack and wreck the instructions/data?
void
bigargtest(void)
{
int pid, fd;
unlink("bigarg-ok");
pid = fork();
if(pid == 0){
static char *args[MAXARG];
int i;
for(i = 0; i < MAXARG-1; i++)
args[i] = "bigargs test: failed\n ";
args[MAXARG-1] = 0;
printf(stdout, "bigarg test\n");
exec("echo", args);
printf(stdout, "bigarg test ok\n");
fd = open("bigarg-ok", O_CREATE);
close(fd);
exit(0);
} else if(pid < 0){
printf(stdout, "bigargtest: fork failed\n");
exit(-1);
}
wait(0);
fd = open("bigarg-ok", 0);
if(fd < 0){
printf(stdout, "bigarg test failed!\n");
exit(-1);
}
close(fd);
unlink("bigarg-ok");
}
// what happens when the file system runs out of blocks?
// answer: balloc panics, so this test is not useful.
void
fsfull()
{
int nfiles;
int fsblocks = 0;
printf(1, "fsfull test\n");
for(nfiles = 0; ; nfiles++){
char name[64];
name[0] = 'f';
name[1] = '0' + nfiles / 1000;
name[2] = '0' + (nfiles % 1000) / 100;
name[3] = '0' + (nfiles % 100) / 10;
name[4] = '0' + (nfiles % 10);
name[5] = '\0';
printf(1, "writing %s\n", name);
int fd = open(name, O_CREATE|O_RDWR);
if(fd < 0){
printf(1, "open %s failed\n", name);
break;
}
int total = 0;
while(1){
int cc = write(fd, buf, 512);
if(cc < 512)
break;
total += cc;
fsblocks++;
}
printf(1, "wrote %d bytes\n", total);
close(fd);
if(total == 0)
break;
}
while(nfiles >= 0){
char name[64];
name[0] = 'f';
name[1] = '0' + nfiles / 1000;
name[2] = '0' + (nfiles % 1000) / 100;
name[3] = '0' + (nfiles % 100) / 10;
name[4] = '0' + (nfiles % 10);
name[5] = '\0';
unlink(name);
nfiles--;
}
printf(1, "fsfull test finished\n");
}
void
uio()
{
#define RTC_ADDR 0x70
#define RTC_DATA 0x71
ushort port = 0;
uchar val = 0;
int pid;
printf(1, "uio test\n");
pid = fork();
if(pid == 0){
port = RTC_ADDR;
val = 0x09; /* year */
/* http://wiki.osdev.org/Inline_Assembly/Examples */
asm volatile("outb %0,%1"::"a"(val), "d" (port));
port = RTC_DATA;
asm volatile("inb %1,%0" : "=a" (val) : "d" (port));
printf(1, "uio: uio succeeded; test FAILED\n");
exit(-1);
} else if(pid < 0){
printf (1, "fork failed\n");
exit(-1);
}
wait(0);
printf(1, "uio test done\n");
}
void argptest()
{
int fd;
fd = open("init", O_RDONLY);
if (fd < 0) {
printf(2, "open failed\n");
exit(-1);
}
read(fd, sbrk(0) - 1, -1);
close(fd);
printf(1, "arg test passed\n");
}
unsigned long randstate = 1;
unsigned int
rand()
{
randstate = randstate * 1664525 + 1013904223;
return randstate;
}
int
main(int argc, char *argv[])
{
printf(1, "usertests starting\n");
if(open("usertests.ran", 0) >= 0){
printf(1, "already ran user tests -- rebuild fs.img\n");
exit(-1);
}
close(open("usertests.ran", O_CREATE));
argptest();
createdelete();
linkunlink();
concreate();
fourfiles();
sharedfd();
bigargtest();
bigwrite();
bigargtest();
bsstest();
sbrktest();
validatetest();
opentest();
writetest();
writetest1();
createtest();
openiputtest();
exitiputtest();
iputtest();
mem();
pipe1();
preempt();
exitwait();
rmdot();
fourteen();
bigfile();
subdir();
linktest();
unlinkread();
dirfile();
iref();
forktest();
bigdir(); // slow
uio();
exectest();
exit(0);
}
#include "syscall.h"
#include "traps.h"
#define SYSCALL(name) \
.globl name; \
name: \
movl $SYS_ ## name, %eax; \
int $T_SYSCALL; \
ret
SYSCALL(fork)
SYSCALL(exit)
SYSCALL(wait)
SYSCALL(pipe)
SYSCALL(read)
SYSCALL(write)
SYSCALL(close)
SYSCALL(kill)
SYSCALL(exec)
SYSCALL(open)
SYSCALL(mknod)
SYSCALL(unlink)
SYSCALL(fstat)
SYSCALL(link)
SYSCALL(mkdir)
SYSCALL(chdir)
SYSCALL(dup)
SYSCALL(getpid)
SYSCALL(sbrk)
SYSCALL(sleep)
SYSCALL(uptime)
SYSCALL(helloWorld)
SYSCALL(numOpenFiles)
SYSCALL(memAlloc)
SYSCALL(getprocesstimedetails)
SYSCALL(psinfo)
\ No newline at end of file
#!/usr/bin/perl -w
# Generate vectors.S, the trap/interrupt entry points.
# There has to be one entry point per interrupt number
# since otherwise there's no way for trap() to discover
# the interrupt number.
print "# generated by vectors.pl - do not edit\n";
print "# handlers\n";
print ".globl alltraps\n";
for(my $i = 0; $i < 256; $i++){
print ".globl vector$i\n";
print "vector$i:\n";
if(!($i == 8 || ($i >= 10 && $i <= 14) || $i == 17)){
print " pushl \$0\n";
}
print " pushl \$$i\n";
print " jmp alltraps\n";
}
print "\n# vector table\n";
print ".data\n";
print ".globl vectors\n";
print "vectors:\n";
for(my $i = 0; $i < 256; $i++){
print " .long vector$i\n";
}
# sample output:
# # handlers
# .globl alltraps
# .globl vector0
# vector0:
# pushl $0
# pushl $0
# jmp alltraps
# ...
#
# # vector table
# .data
# .globl vectors
# vectors:
# .long vector0
# .long vector1
# .long vector2
# ...
#include "param.h"
#include "types.h"
#include "defs.h"
#include "x86.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "elf.h"
extern char data[]; // defined by kernel.ld
pde_t *kpgdir; // for use in scheduler()
// Set up CPU's kernel segment descriptors.
// Run once on entry on each CPU.
void
seginit(void)
{
struct cpu *c;
// Map "logical" addresses to virtual addresses using identity map.
// Cannot share a CODE descriptor for both kernel and user
// because it would have to have DPL_USR, but the CPU forbids
// an interrupt from CPL=0 to DPL=3.
c = &cpus[cpuid()];
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
lgdt(c->gdt, sizeof(c->gdt));
}
// Return the address of the PTE in page table pgdir
// that corresponds to virtual address va. If alloc!=0,
// create any required page table pages.
static pte_t *
walkpgdir(pde_t *pgdir, const void *va, int alloc)
{
pde_t *pde;
pte_t *pgtab;
pde = &pgdir[PDX(va)];
if(*pde & PTE_P){
pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
} else {
if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
return 0;
// Make sure all those PTE_P bits are zero.
memset(pgtab, 0, PGSIZE);
// The permissions here are overly generous, but they can
// be further restricted by the permissions in the page table
// entries, if necessary.
*pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
}
return &pgtab[PTX(va)];
}
// Create PTEs for virtual addresses starting at va that refer to
// physical addresses starting at pa. va and size might not
// be page-aligned.
static int
mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
{
char *a, *last;
pte_t *pte;
a = (char*)PGROUNDDOWN((uint)va);
last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
for(;;){
if((pte = walkpgdir(pgdir, a, 1)) == 0)
return -1;
if(*pte & PTE_P)
panic("remap");
*pte = pa | perm | PTE_P;
if(a == last)
break;
a += PGSIZE;
pa += PGSIZE;
}
return 0;
}
// There is one page table per process, plus one that's used when
// a CPU is not running any process (kpgdir). The kernel uses the
// current process's page table during system calls and interrupts;
// page protection bits prevent user code from using the kernel's
// mappings.
//
// setupkvm() and exec() set up every page table like this:
//
// 0..KERNBASE: user memory (text+data+stack+heap), mapped to
// phys memory allocated by the kernel
// KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
// KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
// for the kernel's instructions and r/o data
// data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
// rw data + free physical memory
// 0xfe000000..0: mapped direct (devices such as ioapic)
//
// The kernel allocates physical memory for its heap and for user memory
// between V2P(end) and the end of physical memory (PHYSTOP)
// (directly addressable from end..P2V(PHYSTOP)).
// This table defines the kernel's mappings, which are present in
// every process's page table.
static struct kmap {
void *virt;
uint phys_start;
uint phys_end;
int perm;
} kmap[] = {
{ (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
{ (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
{ (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
{ (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices
};
// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;
if((pgdir = (pde_t*)kalloc()) == 0)
return 0;
memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");
for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
(uint)k->phys_start, k->perm) < 0) {
freevm(pgdir);
return 0;
}
return pgdir;
}
// Allocate one page table for the machine for the kernel address
// space for scheduler processes.
void
kvmalloc(void)
{
kpgdir = setupkvm();
switchkvm();
}
// Switch h/w page table register to the kernel-only page table,
// for when no process is running.
void
switchkvm(void)
{
lcr3(V2P(kpgdir)); // switch to the kernel page table
}
// Switch TSS and h/w page table to correspond to process p.
void
switchuvm(struct proc *p)
{
if(p == 0)
panic("switchuvm: no process");
if(p->kstack == 0)
panic("switchuvm: no kstack");
if(p->pgdir == 0)
panic("switchuvm: no pgdir");
pushcli();
mycpu()->gdt[SEG_TSS] = SEG16(STS_T32A, &mycpu()->ts,
sizeof(mycpu()->ts)-1, 0);
mycpu()->gdt[SEG_TSS].s = 0;
mycpu()->ts.ss0 = SEG_KDATA << 3;
mycpu()->ts.esp0 = (uint)p->kstack + KSTACKSIZE;
// setting IOPL=0 in eflags *and* iomb beyond the tss segment limit
// forbids I/O instructions (e.g., inb and outb) from user space
mycpu()->ts.iomb = (ushort) 0xFFFF;
ltr(SEG_TSS << 3);
lcr3(V2P(p->pgdir)); // switch to process's address space
popcli();
}
// Load the initcode into address 0 of pgdir.
// sz must be less than a page.
void
inituvm(pde_t *pgdir, char *init, uint sz)
{
char *mem;
if(sz >= PGSIZE)
panic("inituvm: more than a page");
mem = kalloc();
memset(mem, 0, PGSIZE);
mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U);
memmove(mem, init, sz);
}
// Load a program segment into pgdir. addr must be page-aligned
// and the pages from addr to addr+sz must already be mapped.
int
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
uint i, pa, n;
pte_t *pte;
if((uint) addr % PGSIZE != 0)
panic("loaduvm: addr must be page aligned");
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz - i < PGSIZE)
n = sz - i;
else
n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)
return -1;
}
return 0;
}
// Allocate page tables and physical memory to grow process from oldsz to
// newsz, which need not be page aligned. Returns new size or 0 on error.
int
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
char *mem;
uint a;
if(newsz >= KERNBASE)
return 0;
if(newsz < oldsz)
return oldsz;
a = PGROUNDUP(oldsz);
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){
cprintf("allocuvm out of memory\n");
deallocuvm(pgdir, newsz, oldsz);
return 0;
}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
cprintf("allocuvm out of memory (2)\n");
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;
}
}
return newsz;
}
// Deallocate user pages to bring the process size from oldsz to
// newsz. oldsz and newsz need not be page-aligned, nor does newsz
// need to be less than oldsz. oldsz can be larger than the actual
// process size. Returns the new process size.
int
deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
pte_t *pte;
uint a, pa;
if(newsz >= oldsz)
return oldsz;
a = PGROUNDUP(newsz);
for(; a < oldsz; a += PGSIZE){
pte = walkpgdir(pgdir, (char*)a, 0);
if(!pte)
a = PGADDR(PDX(a) + 1, 0, 0) - PGSIZE;
else if((*pte & PTE_P) != 0){
pa = PTE_ADDR(*pte);
if(pa == 0)
panic("kfree");
char *v = P2V(pa);
kfree(v);
*pte = 0;
}
}
return newsz;
}
// Free a page table and all the physical memory pages
// in the user part.
void
freevm(pde_t *pgdir)
{
uint i;
if(pgdir == 0)
panic("freevm: no pgdir");
deallocuvm(pgdir, KERNBASE, 0);
for(i = 0; i < NPDENTRIES; i++){
if(pgdir[i] & PTE_P){
char * v = P2V(PTE_ADDR(pgdir[i]));
kfree(v);
}
}
kfree((char*)pgdir);
}
// Clear PTE_U on a page. Used to create an inaccessible
// page beneath the user stack.
void
clearpteu(pde_t *pgdir, char *uva)
{
pte_t *pte;
pte = walkpgdir(pgdir, uva, 0);
if(pte == 0)
panic("clearpteu");
*pte &= ~PTE_U;
}
// Given a parent process's page table, create a copy
// of it for a child.
pde_t*
copyuvm(pde_t *pgdir, uint sz)
{
pde_t *d;
pte_t *pte;
uint pa, i, flags;
char *mem;
if((d = setupkvm()) == 0)
return 0;
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
panic("copyuvm: pte should exist");
if(!(*pte & PTE_P))
panic("copyuvm: page not present");
pa = PTE_ADDR(*pte);
flags = PTE_FLAGS(*pte);
if((mem = kalloc()) == 0)
goto bad;
memmove(mem, (char*)P2V(pa), PGSIZE);
if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0) {
kfree(mem);
goto bad;
}
}
return d;
bad:
freevm(d);
return 0;
}
//PAGEBREAK!
// Map user virtual address to kernel address.
char*
uva2ka(pde_t *pgdir, char *uva)
{
pte_t *pte;
pte = walkpgdir(pgdir, uva, 0);
if((*pte & PTE_P) == 0)
return 0;
if((*pte & PTE_U) == 0)
return 0;
return (char*)P2V(PTE_ADDR(*pte));
}
// Copy len bytes from p to user address va in page table pgdir.
// Most useful when pgdir is not the current page table.
// uva2ka ensures this only works for PTE_U pages.
int
copyout(pde_t *pgdir, uint va, void *p, uint len)
{
char *buf, *pa0;
uint n, va0;
buf = (char*)p;
while(len > 0){
va0 = (uint)PGROUNDDOWN(va);
pa0 = uva2ka(pgdir, (char*)va0);
if(pa0 == 0)
return -1;
n = PGSIZE - (va - va0);
if(n > len)
n = len;
memmove(pa0 + (va - va0), buf, n);
len -= n;
buf += n;
va = va0 + PGSIZE;
}
return 0;
}
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.
#include "types.h"
#include "stat.h"
#include "user.h"
char buf[512];
void
wc(int fd, char *name)
{
int i, n;
int l, w, c, inword;
l = w = c = 0;
inword = 0;
while((n = read(fd, buf, sizeof(buf))) > 0){
for(i=0; i<n; i++){
c++;
if(buf[i] == '\n')
l++;
if(strchr(" \r\t\n\v", buf[i]))
inword = 0;
else if(!inword){
w++;
inword = 1;
}
}
}
if(n < 0){
printf(1, "wc: read error\n");
exit(-1);
}
printf(1, "%d %d %d %s\n", l, w, c, name);
}
int
main(int argc, char *argv[])
{
int fd, i;
if(argc <= 1){
wc(0, "");
exit(0);
}
for(i = 1; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){
printf(1, "wc: cannot open %s\n", argv[i]);
exit(-1);
}
wc(fd, argv[i]);
close(fd);
}
exit(0);
}
// Routines to let C code use special x86 instructions.
static inline uchar
inb(ushort port)
{
uchar data;
asm volatile("in %1,%0" : "=a" (data) : "d" (port));
return data;
}
static inline void
insl(int port, void *addr, int cnt)
{
asm volatile("cld; rep insl" :
"=D" (addr), "=c" (cnt) :
"d" (port), "0" (addr), "1" (cnt) :
"memory", "cc");
}
static inline void
outb(ushort port, uchar data)
{
asm volatile("out %0,%1" : : "a" (data), "d" (port));
}
static inline void
outw(ushort port, ushort data)
{
asm volatile("out %0,%1" : : "a" (data), "d" (port));
}
static inline void
outsl(int port, const void *addr, int cnt)
{
asm volatile("cld; rep outsl" :
"=S" (addr), "=c" (cnt) :
"d" (port), "0" (addr), "1" (cnt) :
"cc");
}
static inline void
stosb(void *addr, int data, int cnt)
{
asm volatile("cld; rep stosb" :
"=D" (addr), "=c" (cnt) :
"0" (addr), "1" (cnt), "a" (data) :
"memory", "cc");
}
static inline void
stosl(void *addr, int data, int cnt)
{
asm volatile("cld; rep stosl" :
"=D" (addr), "=c" (cnt) :
"0" (addr), "1" (cnt), "a" (data) :
"memory", "cc");
}
struct segdesc;
static inline void
lgdt(struct segdesc *p, int size)
{
volatile ushort pd[3];
pd[0] = size-1;
pd[1] = (uint)p;
pd[2] = (uint)p >> 16;
asm volatile("lgdt (%0)" : : "r" (pd));
}
struct gatedesc;
static inline void
lidt(struct gatedesc *p, int size)
{
volatile ushort pd[3];
pd[0] = size-1;
pd[1] = (uint)p;
pd[2] = (uint)p >> 16;
asm volatile("lidt (%0)" : : "r" (pd));
}
static inline void
ltr(ushort sel)
{
asm volatile("ltr %0" : : "r" (sel));
}
static inline uint
readeflags(void)
{
uint eflags;
asm volatile("pushfl; popl %0" : "=r" (eflags));
return eflags;
}
static inline void
loadgs(ushort v)
{
asm volatile("movw %0, %%gs" : : "r" (v));
}
static inline void
cli(void)
{
asm volatile("cli");
}
static inline void
sti(void)
{
asm volatile("sti");
}
static inline uint
xchg(volatile uint *addr, uint newval)
{
uint result;
// The + in "+m" denotes a read-modify-write operand.
asm volatile("lock; xchgl %0, %1" :
"+m" (*addr), "=a" (result) :
"1" (newval) :
"cc");
return result;
}
static inline uint
rcr2(void)
{
uint val;
asm volatile("movl %%cr2,%0" : "=r" (val));
return val;
}
static inline void
lcr3(uint val)
{
asm volatile("movl %0,%%cr3" : : "r" (val));
}
//PAGEBREAK: 36
// Layout of the trap frame built on the stack by the
// hardware and by trapasm.S, and passed to trap().
struct trapframe {
// registers as pushed by pusha
uint edi;
uint esi;
uint ebp;
uint oesp; // useless & ignored
uint ebx;
uint edx;
uint ecx;
uint eax;
// rest of trap frame
ushort gs;
ushort padding1;
ushort fs;
ushort padding2;
ushort es;
ushort padding3;
ushort ds;
ushort padding4;
uint trapno;
// below here defined by x86 hardware
uint err;
uint eip;
ushort cs;
ushort padding5;
uint eflags;
// below here only when crossing rings, such as from user to kernel
uint esp;
ushort ss;
ushort padding6;
};
// Create a zombie process that
// must be reparented at exit.
#include "types.h"
#include "stat.h"
#include "user.h"
int
main(void)
{
if(fork() > 0)
sleep(5); // Let child exit before parent.
exit(0);
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment