
Assignment 2
Queuing System Simulation

Team Members :
Ajinkya (213050034), Arnav (213059002)

Outline

1. System Assumptions
2. Constants , user Inputs and Enums
3. Classes
4. Basic Logic (FCFS)
5. Basic Logic (Round Robin)

System Assumptions

System Type - Closed system

Each User Issues a Fixed number of Requests

Number of cores - 4

Number of Maximum Threads per core - 4

Request Buffer Size - 100

Constants User inputs and Enums

Constants-
- Max_buffer_Size
- Max_thread_count
- Conext_switch_time
- Max_Request_Generated

Users Inputs –
- Mean_interarrival,
- Mean_service
- Number_of_users

Scheduling Policy (Enum)
- FCFS (1)
- Round Robin (2)

Server Status (Enum)
- Idle (1)
- Busy (2)

Event Types (Enum)
- Arrival (1)
- Departure (2)
- Context_Switch_In (3)

Distribution Type (Enum)
- Exponential (1)
- Uniform (2)
- Constant (3)

Classes

Service_time
● Attributes:

○ typeOfDistribution(Enum Distribution type)
● Methods:

○ getServiceTime() /*Generation function{describes the
distribution}*/

Timeout
● Attributes:

○ constantTime (double)
○ typeOfDistribution(Enum Distribution type)

● Methods:
○ getTimeoutTime() /*Generation function{describes the

distribution}*/

Classes

Event
● Attributes:

○ arrival_time (double)
○ timeout(double)
○ serviceTime
○ core (int)
○ thread(int)
○ response_count

● Methods:
○ getRandomThinkTime()/*random value chosen in range

[4,10]*/
○ getRemainingServiceTime()

Classes

Core
● Attributes:

○ threads [Max Thread Count] (Event Object List)
○ status (int) {Server Status}
○ thread_busy_count (int)

● Methods:
○ GetCoreStatus()
○ setCoreStatus()
○ addToThread()
○ removeFromThread()
○ getBusyThreadCount()
○ setBusyThreadCount()

Classes

Scheduler
● Attributes:

○ Type (int) {Scheduling policy}
○ Context_switch_time (double)

● Methods:
○ switching the threads ()

Server
● Attributes:

○ Core Object [4];
○ service_time Object;
○ Scheduler Object;
○ {Waiting Buffer} Event Obj queue [Max buffer size] (shared among all

cores)
● Methods:

○ getNextEventFromBuffer()
○ getServerStatus()
○ setServerStatus()
○ getCoreObj()

Classes

Event Handler
● Attributes:

○ Server Obj
○ timing_next_event[Max_event_count] (a priority queue of

tuples <event_time, event obj> prioritized on event_time)
○ Timeout Obj

● Methods:
○ getNextEvent()
○ manageEvent()
○ Arrive()
○ Depart()
○ getServerObj()
○ setEvent()

Base Logic (FCFS)

Main Function ()
{

read_input() // take user input
Initialize() //Initialize the simulation

Event_handler_Obj = new Event_Handler();

While (No requests < max Request count){
Event_handler_obj.Next event();
Event_handler_obj.manageEvent();

}
}

Base Logic (FCFS)

Function Arrival(Event X)
{

if(no of user < max user){
Create new EVENT obj and assign arrival time

}
if(server busy){

Put Event X in Event queue;
}
Else{

Set the departure time of the event X.
}

}

Base Logic (FCFS)

Function Departure (Event X)
{

if(Event queue empty){
Set status idle of the core belonging to the
event X that called up the departure

}
Else{

Remove event A from the waiting buffer
Set the departure time of the event A.

}
If Event X -> departure time < Event X -> timeout{

Event X -> Response_count++;
}
/*Get the Event Object Ready of next Request*/
Set think-time of event X randomly
Set the arrival time of event X based on the think-time

}

Base Logic (Round Robin)

Main Function ()
{

read_input() // take user input
Initialize() //Initalize the simulation

Event_handler_Obj = new Event_Handler();

While (No requests < max Request count){
Event_handler_obj.Next event();
Event_handler_obj.manageEvent();

}
}

Base Logic (Round Robin)

Function Arrival(Event X)
{

if(no of user < max user){
Create new EVENT obj and assign arrival time

}
if(server busy){

Put Event X in Event queue;
}
Else{

If Scheduler.timeQuantum > event X.remainingServiceTime()
Set contextinTime for Event X.

else
Set departureTime for Event X.

}
}

Base Logic (Round Robin)

Function Departure (Event X)
{

if(Event queue empty){
Set status idle of the core belonging to the
event X that called up the departure

}
Else{

Remove event A from the waiting buffer
If Scheduler.timeQuantum > event A.remainingServiceTime()

Set contextinTime for Event A.
else

Set departureTime for Event A.
}
If Event X -> departure time < Event X -> timeout{

Event X -> Response_count++;
}
/*Get the Event Object Ready of next Request*/
Set think-time of event X randomly
Set the arrival time of event X based on the think-time

}

Code Highlights
Server Log Output EventHandler’s ManageEvent

Results

● What will be the Average Response Time of the described system?
➢ To find out the average response time, we ran the simulation for 5 times with

randomly chosen Service Times, Timeouts and Think Time for particular
number of users. In every run we calculated the mean response time and
finally taken the average of these 5 means.

➢ The same experiment was repeated for variable number of users and the
average of 5 runs for every user is plotted as confidence interval in the graph
shown.

 Response Time Vs Users

Line Plot Shows Response time getting saturated
after MAX user reaches 100.

Confidence Plot shows increase of variation in
response time as the Number of User increases.

Results

● What will be the Throughput of the described system?
➢ To calculate find throughput, we first of all counted the number of requests

timed out and then completed in retries and number of requests completed
without any retries. From these two values, we calculated

Badput = number of requests timed out/total simulation time

Goodput = number of requests without timeouts/total simulation time

Throughput = Goodput + Badput

The corresponding graphs are shown below

Results

● What will be the Average Number of Request Drops of the described system?
➢ We counted the number of requests which got dropped due to lack of space

in request buffer and plotted the graph of number of requests dropped against
number of users. The graph is shown below.

Results

● What will be the Average Core Utilisation of the described system?
➢ For finding core utilization, we calculated the number of threads active at

every time step on each core and divided it by max number of threads on that
core. This gave us the utilization in that time span. To find Average utilisation
for each core we used following formula

Avg Core Utilization = difference between events * (Number of threads / Max
number of threads)

We calculated utilisation for each core and plotted it against number of users.

Conclusion

We successfully implemented simulation program for closed queuing system.

We ran some experiments to check and verify following metrics

● Average Response Time
● Throughput
● Average Request Dropped
● Average Core Utilization

The experimental values we got are nearer to the theoretical calculations.

