
Assignment 2

Queuing System Simulation
Team Members:
● Ajinkya Tanksale (213050034)
● Arnav Mishra (213059002)

Outline
1. System Assumptions
2. Constants User inputs and Enums
3. Classes
4. Code Highlight
5. System Architecture
6. Simulation Experiments and Results

a. Comparison with Measurement data
b. Multithreaded web Server Simulation
c. Curiosity Experiment 1: Decreased Timeout Value
d. Curiosity Experiment 2: Context Switch Time Variation

7. Conclusion

System Assumptions
● System Type - Closed System
● Each user issues a fixed number of

requests.
● Number of cores: 4
● Number of Maximum Threads per core:

4
● Request Buffer Size: 500
● On time-out, requests are retried. There

is no limit for retries.
● Requests are dropped only if buffer is

empty. User retries for them after
timeout.

● Thread-to-Core Affinity

● Thread per request model

Constants User inputs and Enums

Constants-
- Max_buffer_Size
- Max_thread_count
- Conext_switch_time
- Max_Request_Generated

Users Inputs –
- Mean_interarrival,
- Mean_service
- Number_of_users

Scheduling Policy (Enum)
- FCFS (1)
- Round Robin (2)

Server Status (Enum)
- Idle (1)
- Busy (2)

Event Types (Enum)
- Arrival (1)
- Departure (2)
- Context_Switch_In (3)

Distribution Type (Enum)
- Exponential (1)
- Uniform (2)
- Constant (3)

Classes
Service_time
● Attributes:

○ typeOfDistribution(Enum Distribution type)
● Methods:

○ getServiceTime() /*Generation function{describes the
distribution}*/

Timeout
● Attributes:

○ constantTime (double)
○ typeOfDistribution(Enum Distribution type)

● Methods:
○ getTimeoutTime() /*Generation function{describes the

distribution}*/

Classes
Event
● Attributes:

○ arrival_time (double)
○ timeout(double)
○ serviceTime
○ core (int)
○ thread(int)
○ response_count

● Methods:
○ getRandomThinkTime()/*random value chosen in range

[4,10]*/
○ getRemainingServiceTime()

Classes
Core
● Attributes:

○ threads [Max Thread Count] (Event Object List)
○ status (int) {Server Status}
○ thread_busy_count (int)

● Methods:
○ GetCoreStatus()
○ setCoreStatus()
○ addToThread()
○ removeFromThread()
○ getBusyThreadCount()
○ setBusyThreadCount()

Classes
Scheduler

● Attributes:
○ Type (int) {Scheduling policy}
○ Context_switch_time (double)

Server
● Attributes:

○ Core Object [4];
○ service_time Object;
○ Scheduler Object;
○ {Waiting Buffer} Event Obj queue [Max buffer size] (shared among all

cores)
● Methods:

○ getNextEventFromBuffer()
○ getServerStatus()
○ setServerStatus()
○ getCoreObj()

Classes
Event Handler
● Attributes:

○ Server Obj
○ timing_next_event[Max_event_count] (a priority queue of

tuples <event_time, event obj> prioritized on event_time)
○ Timeout Obj

● Methods:
○ getNextEvent()
○ manageEvent()
○ Arrive()
○ Depart()
○ getServerObj()
○ setEvent()

System Architecture

C

C

Thread Queue

Thread Queue

Buffer

Users

.

.

.

Server

Code Highlights

Code Highlights
Server Log Output EventHandler ManageEvent

Simulation Experiments and Results

Experiments Performed

● The simulation was run multiple times for random values of service times,
timeout times, and think times with the same mean for the same number
of users.

● The mean of all the runs is considered.
● The above process was repeated for different number of users.
● Response times, CPU utilization, throughput, and request drops are

plotted.
● Confidence interval is also plotted for response time to get a clear idea.

Comparison With Measurement Data

System Configuration :

1. Number of Cores: 4

2. Number of Threads per Core: 1

3. Mean Service Time: Exponential (Mean: 0.2 sec)

4. Mean Timeout Time: 50 sec + Exponential (Mean : 5 sec)

5. Context Switch Time (Only for Round-Robin): 0.1 sec

6. Time Quantum (Only for Round-Robin): 0.5 sec

Experiments Performed

● To compare the simulation outputs with the real system, we plotted values obtained from

measurement analysis of the apache server and our simulation, for the same configurations.

● Response time, throughput, and CPU utilization were compared.

● All the metrics showed great similarity in the apache server and our simulation.

Response Time Vs Number Of Users
● The graphs of measured values and

simulation values show very similar

trends.

● Although the response time with the

round-robin scheduling policy is more

than the FCFS policy for all user values.

● This happens because of the context

switching in the round-robin policy.

● The saturation number can be found

using the response time graph

● M* = c + c*(1/service time)*think time

● M* = 4 + 4*(1/0.2)*6 = 4 + 4*5*6 = 124

● From graphs, it is clear that the system saturates near 120 users.

● The response time of the measured value is a bit higher than the simulation values. The

reason behind this is, in practical systems, there are many more factors affecting the

response time that we haven’t modeled in the simulation.

Throughput Vs Number of Users

● The graphs of measured and

simulation values show similar trends.

● The throughput increases initially and

saturates at a value of 18 req/sec for

round robin and measured values.

● For FCFS system throughput reaches

19 req/sec.

● The system saturates around 125

users.

CPU Utilization Vs Number of Users

● The graphs of measured and

simulation values show similar

trends.

● The utilization reaches the

maximum value of 1, around 125

users.

● As context switch time is 0 in this

case, even in the case of the

round-robin, utilization reaches up

to 100%.

Multithreaded Web Server Simulation

System Configuration

1. Number of Cores: 4

2. Number of Threads per Core: 4

3. Mean Service Time: Exponential (Mean: 0.25 sec)

4. Mean Timeout Time: 50 sec + Exponential (Mean: 5sec)

5. Context Switch Time (Only for Round-Robin): 0.01sec

6. Time Quantum (Only for Round-Robin): 0.5 sec

Response Time Vs Number of Users

Confidence Interval Graph for Response Time

FCFS Round Robin

CPU Utilization Vs Number Of Users

Throughput Vs Number Of Users

Requests Drops Vs Number Of Users

Curiosity Experiment 1 : Decreased
Timeout Value

System Configuration :

1. Number of Cores: 4

2. Number of Threads per Core: 1

3. Mean Service Time: Exponential (Mean: 0.25 sec)

4. Mean Timeout Time: 5 sec + Exponential (Mean : 5 sec)

5. Context Switch Time (Only for Round-Robin): 0.01 sec

6. Time Quantum (Only for Round-Robin): 0.5 sec

Throughput, Goodput, Bad-put Comparison

● Experiments were conducted to check the

effect of timeout time.

● The graph highlights the effects on

throughput, goodput, and bad-put when

minimum timeout time is reduced.

● With the decrease in timeout time,

bad-put increased after a certain number

of users.

● This happens because more and more

requests timeout, increasing retries.

Curiosity Experiment 2 : Context
Switch Time Variation

System Configuration :

1. Number of Cores: 4

2. Number of Threads per Core: 4

3. Mean Service Time: Exponential (Mean: 0.25 sec)

4. Mean Timeout Time: 50 sec + Exponential (Mean : 5 sec)

5. Context Switch Time (Only for Round-Robin): 0.001sec, 0.01 sec , 0.1sec

6. Time Quantum (Only for Round-Robin): 0.5 sec

Response time
● The graph shows the effect of

context switch time on response

times.

● As the context switch time

increases, the response time also

increases.

● The context switch is an overhead

for the server. The increase in

context switch time increases the

overhead for each request,

increasing the response time.

Throughput

● Contrary to response time, throughput

decreases when context switch time

increases.

● The reason is the same. Context

switching is an overhead for the

server, so the time spent in context

switching is not a useful time. So,

because of more context switching

time, fewer overall requests are

processed in the same amount of time

resulting in less throughput.

Utilization
● Similar to throughput, utilization

also decreases with an increase in

context switch time.

● As we don’t consider the context

switching time to be useful, we

consider the CPU to be idle for

that time.

● Utilization is defined as the fraction

of time the CPU is busy.

● As context switching time

increases idle time of CPU. More

context switch time decreases

utilization.

Conclusion
● We implemented a web server simulation program and analysed it using the

metrics like throughput, response time, CPU utilization and request drops.
● We also compared the performance with measurements we got from apache

server analysis. The comparison showed great similarity in both the systems.
● We also performed some experiments to check the effect of timeouts and

context switch times on performance of the web server.
● On decreasing the minimum timeout value, the bad-put increased after some

number of users.
● On increasing the context switch time, response time increased while the

throughput and CPU utilisation decreased.

