
Outlab 5 : Build Tools & PyNetworking

Please refer to the general instructions and submission guidelines at the end of this document
before submitting.

P1. C you again

C was one the first human readable programming languages designed for people in all domains
(business and scientific community). C is an ​imperative​ ​procedural​ language created by ​Dennis
Ritchie​. Unix and linux kernels are built in C (and assembly) language. Due to this C code runs
faster than any other language. But still C was a very low level language, meaning that bigger
abstractions​ were not readily available in it.

To deal with this ​Bjarne Stroustrup​ created C++ with objectives of speed and abstraction in
mind. The core of his creation was something called a ​class.​ Thus C++ became one of the first
object oriented languages​.

C has a simple architecture and few paradigms which makes it simple to use. Remember the zen
of python (​There should be one—and preferably only one—obvious way to do it.​) But due to the
sheer flexibility of C++ (with several paradigms it posses) it became very difficult to maintain
standards in bigger C++ projects.

One of the biggest misconceptions in this area is that C and C++ are the same language. C is not
object oriented while C++ is. Acknowledge the difference.

Today we will learn about compiling & linking C/C++ code in various ways using raw
commands, Makefile and CMake. This is one of the ways to gain insights into how exactly
things work in C/C++ world.

Create a Makefile named ​rawmake ​(can be run using ​make -f rawmake​) and fill it up as
instructed in the below tasks. Source and Header files are provided in P1/ directory. Assume that
rawmake​ file will be placed directly under P1/ directory. The dir structure after creating
rawmake​ file will be as follows

P1/
├── helloworld.cpp

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://www.google.co.in/search?q=Dennis+Ritchie&stick=H4sIAAAAAAAAAOPgE-LQz9U3MCwxS1ICs4wsjY21DDLKrfST83NyUpNLMvPz9AuK8tOLEnNzM_PS43MS89JLE9NTi61SUosz0_NSUxSSKgGKF7GdSAAAAA&sa=X&ved=2ahUKEwiy9I681-rcAhWItY8KHRGdDTgQmxMoATAmegQICBAx
https://www.google.co.in/search?q=Dennis+Ritchie&stick=H4sIAAAAAAAAAOPgE-LQz9U3MCwxS1ICs4wsjY21DDLKrfST83NyUpNLMvPz9AuK8tOLEnNzM_PS43MS89JLE9NTi61SUosz0_NSUxSSKgGKF7GdSAAAAA&sa=X&ved=2ahUKEwiy9I681-rcAhWItY8KHRGdDTgQmxMoATAmegQICBAx
https://www.google.co.in/search?q=Bjarne+Stroustrup&stick=H4sIAAAAAAAAAOPgE-LQz9U3yEovTFcCswzNk1K0DDLKrfST83NyUpNLMvPz9AuK8tOLEnNzM_PS43MS89JLE9NTi61SUosz0_NSUxSSKgFKKuFISAAAAA&sa=X&ved=2ahUKEwiyk9a21ercAhUJ4o8KHY0WA_EQmxMoATAlegQIChAv
https://en.wikipedia.org/wiki/Object-oriented_programming

├── myengine
│ ├── myengine.cpp
│ └── myengine.hpp
├── mygame
│ └── mygame.cpp
├── rawmake
└── usespthread.cpp

Task 1
Add a rule to compile ​helloworld.cpp​ to form ​helloworld ​executable.
Command run while checking: ​make -f rawmake helloworld

Task 2
Add a rule to compile ​usespthread.cpp​ to form ​usespthread​ executable. This file uses pthread
library used to create and manage threads. You will be using this a lot in your Operating Systems
course.
In order to properly compile this file you need to special use a flag for g++.
Command run while checking: ​make -f rawmake usespthread

Task 3
In this task we build a library using files ​myengine.hpp​ and ​myengine.cpp.​ There are actually
two types of libraries categorized based on the way the library is linked to main file. Dynamic
and Static libraries. ​This​ and ​This​ are good reads on compiling static and dynamic libraries. ​This
is a good read which distinguishes one from the other.

Use the given resources to add rules to make dynamic and static libraries. Dynamic library
created should have name ​libMyEngineDynamic.so​ and similarly static ​libMyEngineStatic.a
Command run while checking: ​make -f rawmake libMyEngineDynamic.so
Command run while checking: ​make -f rawmake libMyEngineStatic.a

Task 4
In this task we try to install the above built libraries into the system (requires sudo permission).
Add a PHONY rule named ​installdynamic​ which installs dynamic version (.so file) to
/usr/local/lib/​ and corresponding headers to ​/usr/local/include/

Do the same for static version (.a file) by creating a rule ​installstatic
Command run while checking: ​make -f rawmake installstatic
Command run while checking: ​make -f rawmake installdynamic

https://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html
https://medium.com/@StueyGK/static-libraries-vs-dynamic-libraries-af78f0b5f1e4
https://stackoverflow.com/questions/1993390/static-linking-vs-dynamic-linking

These rules should have previously created libraries as dependencies, so that they are built first
(if not already built) and then installed.

Task 5
Now we use the installed libraries in ​mygame.cpp
Add a rule to compile ​mygame.cpp​ with the static library installed in the previous task and
produce binary name ​mygamestatic​.
Command run while checking: ​make -f rawmake mygamestatic

Task 6
Add a rule to compile ​mygame.cpp​ with the dynamic library installed in the previous task and
produce binary name ​mygamedynamic​.
Command run while checking: ​make -f rawmake mygamedynamic

Task 7
Also add a PHONY rule to ​clean​ all the generated intermediates and binaries (.o .a. .so and other
binaries)
Command run while checking: ​make -f rawmake clean

Task 8
Now your job is to do the same tasks using CMake.
To do this you need to create a ​CMakeLists.txt​ file (directly under P1/ directory) which
generated Makefile to build and install the targets in the same manner as above tasks 1 - 4

1. helloworld​ binary from ​helloworld.cpp
2. usespthread ​binary from ​usespthread.cpp
3. libMyEngineDynamic.so​ and ​libMyEngineStatic.a​ libraries from ​myengine.hpp​ and

myengine.cpp
4. Instead of installing two types of libraries separately, it should now install both of the

libraries and the corresponding header file ​myengine.hpp​ to ​/usr/local/lib/​ and
corresponding headers to ​/usr/local/include/ ​respectively. The command used will be
sudo make install

5. Observe that the makefile that ​CMakeLists.txt​ creates already contains PHONY rule
clean which removes all the targets and intermediates generated

Command run while checking: (from P1 dir)
1. mkdir build
2. cd build
3. cmake ..
4. make ​(should create helloworld, usespthread, libMyEngineStatic.a,

libMyEngineDynamic.so)
5. sudo make install ​(should install libMyEngineStatic.a, libMyEngineDynamic.so and

header into specified paths appropriately)

Task 9
Now we want to do tasks 5 and 6 using CMake. To do this create a ​CMakeLists.txt​ file in
P1/mygame​ directory. This file should compile ​mygame.cpp​ with the static library installed in
the previous task and produce binary name ​mygamestatic​ and similarly compile ​mygame.cpp
with the dynamic library installed in the previous task and produce binary name
mygamedynamic

Command run while checking: (from mygame dir)

1. mkdir build
2. cd build
3. cmake ..
4. make ​(should create ​mygamestatic ​and​ mygamedynamic​)

The dir structure after creating ​rawmake​ file and two CMakeLists.txt files will be as follows
P1/
├── CMakeLists.txt (For task 8)
├── helloworld.cpp
├── myengine
│ ├── myengine.cpp
│ └── myengine.hpp
├── mygame4
│ ├── CMakeLists.txt (For task 9)
│ └── mygame.cpp
├── rawmake (For tasks 1-7)
└── usespthread.cpp

Make sure the directory structure like shown above and submit the entire P1/ directory during
submission.

P2. Counter

Task 1

Create ​count.py​ which does the following:

1. Fetches the content at the URL given below.
https://www.cse.iitb.ac.in/page222
The page shows the following content -

- B.Tech - I
- B.Tech - II
- B.Tech - III
- B.Tech - IV
- …

2. Opens each of the links and counts the number of students in each of the above
categories.
3. Stores the data to ​count.csv​ in the following format -

Category Name No. of students
B.Tech - I 0
B.Tech - II 127
… …

(Hint : Use requests, BeautifulSoup libraries)

Task 2

Create ​db.py​ which does the following:

1. Creates a database ​cse_students.sqlite and populate it with the above data by reading the
csv file, ​count.csv​. Let the column names in the database be same as the field names in
count.csv​.

2. Create returnCount(...) function which takes as argument the category name and returns
the corresponding count of students.
The name of the category is to be read from STDIN.

(Hint: Use sqlite3 library)

Task 3​:

https://www.cse.iitb.ac.in/page222

Create ​getloc.py​ which contains three functions:

1. Create function iss_location() which goes to the link mentioned below and returns current
latitude and longitude of the International Space Station(ISS) :
http://api.open-notify.org/iss-now.json
(Hint: Use request/response along with json)

2. Create function pass_time() which takes longitude and latitude as arguments and returns
duration(In minutes and seconds), and Date Time when the ISS passes over the given
longitude/latitude. Use the below link to get this data:
http://api.open-notify.org/iss-pass.json
(Hint: Use request/response with get/post to send/receive values and datetime module to
convert timestamp)
Use 1 example of longitude/latitude and print the result. Read the longitude and latitude
from STDIN.

3. Create function people_info() which goes to the below link and returns the number and
names of the people currently in space: ​http://api.open-notify.org/astros.json

Example:
>$python getloc.py
>Current Location of ISS:
>Latitude : 1.4912
>Longitude : -50.2963
>Enter Details to know when ISS will pass over a location:
>Latitude : 45.0
>Longitude : -122.3
>Date : 31/02/2019
>Time : 14:20
>For : 3 minutes and 45 seconds
>People currently in space: 2
>1. Neil Armstrong
>2. Rakesh Sharma

P2/
├── count.py
├── count.csv
├── db.py

http://api.open-notify.org/iss-now.json
http://api.open-notify.org/iss-pass.json?lat=45.0&lon=-122.3
http://api.open-notify.org/astros.json

├── cse_students.sqlite
└── getloc.py

P3. Understanding Make

Task 1 - Tracking files

Build a code base structured as follows.

depend.h: declaration of a function
depend.cpp: implementation of the function
main.cpp: main function using the function

Write a makefile named ​Makefile for the above code base that produces an executable
main​ upon running ​make​ (exactly as shown in lecture on make on 14th Aug 2018).

Now add a comment to ​depend.h or ​touch it and run ​make​. The build process is rerun even
though it doesn’t really need to in this case.

To deal with the above problem, make has an inbuilt feature which just updates the timestamps
of all files that are to be rebuilt.
Write the command that does this in under a phony target ​skiprebuild​.

This method is valid in general to avoid rebuilds when any arbitrary file is modified, but it
heavily tampers the properties of the files.

In this particular situation we are only required to prevent rebuilds when the particular file,
depend.h is changed. We could optimize the solution. We know that a target is built when the
timestamps of its dependencies are earlier than that of the target.

Write a series of bash commands (or one) under a phony target ​skiprebuildh, that
inspects the timestamps of ​depend.o​, ​main.o and updates the timestamp of ​depend.h to
be ​any time​ prior to that of both the object files.

Verify that the script works as intended and only modifies the timestamp of ​depend.h and that it
does in fact avoid future involcations of ​make​.

Files to be submitted: depend.h, depend.cpp, main.cpp, Makefile

Task 2 - Rebuilding

Download the source code for bash-4.4 from ​this​ location.
Extract, configure and compile the code according to instructions in ​INSTALL file. Use the
default options. Install dependencies if necessary.

Bash is now available as an executable ​bash​.

We wish to change the source code now and study how the rebuilding process works.

The file ​execute_cmd.c contains the error message displayed when a command is not found by
bash (line number 5232). Change it to some other an appropriate message and save the file.
Now rebuild your code base.

Inspect what targets are executed and make a list of the files rebuilt (referred to as ‘tg’) in
the order they are built. Also mention the corresponding files (referred to as ‘dp’) that
changed and triggered the execution of a target which produced that particular file (tg).
Write this in a text file named ​execution​.

Format:
tg1: dp1 dp2 …
tg2: dp1 dp2 …
...

You can try to parse the Makefile yourself and keep track of the changing files, but do not do
this. Use features in ​make​.

Your list should contain an “execute_cmd.o: execute_cmd.c” for obvious reasons. Curiously
enough you won’t find such a line in the Makefile. Read about ​pattern rules​.

Additional Exercise: ​Implicit rules​ in make.

Task 3 - Parallelism

Clean the bash directory using ​make clean​.
Now time the execution of make.

http://mirror.rasanegar.com/gnu/bash/bash-4.4.tar.gz
https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html
https://www.gnu.org/software/make/manual/html_node/Implicit-Rules.html

Usage:​ time <command>

There is some inherent parallelism in the way make functions.
If there are two targets that depend on the same file, they can potentially be run in parallel if one
is not a dependency of the other.

Make implements this by creating multiple jobs using the option ​-j​.

Clean your directory and run ​make -j <nthreads>​. Try to not spawn too many threads. It might
lead to worse performance (stick to ~ncores).

Verify that the process has in fact completed faster and that multiple cores were used.

Report both (real) times in a text file ​execution_times​ as shown in the example.

Example:
make: 28s
make -j: 32s

General Instructions
● Make sure you know what you write, you might be asked to explain your code at a later

point in time
● Your code may be tested on hidden test cases
● Grading may be done automatically, so please make sure you stick to naming

conventions
● The deadline for this lab is ​Monday, 20th August, 06:00.

Submission Instructions
After creating your directory, package it into a tarball
<rollno1>-<rollno2>-<rollno3>-outlab5.tar.gz ​ ​in ascending order. Submit
once only per team from the moodle account of smallest roll number.
The directory structure should be as follows (nothing more nothing less)

<rollno1>-<rollno2>-<rollno3>-outlab5
├── P1
│ ├── CMakeLists.txt (For task 8)
│ ├── helloworld.cpp

│ ├── myengine
│ │ ├── myengine.cpp
│ │ └── myengine.hpp
│ ├── mygame
│ │ ├── CMakeLists.txt (For task 9)
│ │ └── mygame.cpp
│ ├── rawmake (For tasks 1-7)
│ └── usespthread.cpp
├── P2
│ ├── count.csv
│ ├── count.py
│ ├── cse_students.sqlite
│ ├── db.py
│ └── getloc.py
└── P3

├── depend.cpp
├── depend.h
├── execution
├── execution_times
├── main.cpp
└── Makefile

