Inlab § - Build Tools, PyNetworking

Do the inlab in groups. Though the inlab is un-graded, the outlab tasks may directly
extend the inlab tasks. Therefore you may want to do in-lab questions properly.

P1. C you again

C was one the first human readable programming languages designed for people in all domains

(business and scientific community). C is an imperative procedural language created by Dennis
Ritchie. Unix and linux kernels are built in C (and assembly) language. Due to this C code runs
faster than any other language. But still C was a very low level language, meaning that bigger
abstractions were not readily available in it.

To deal with this Bjarne Stroustrup created C++ with objectives of speed and abstraction in

mind. The core of his creation was something called a class. Thus C++ became one of the first
object oriented languages.

C has a simple architecture and few paradigms which makes it simple to use. Remember the zen
of python (There should be one—and preferably only one—obvious way to do it.) But due to the
sheer flexibility of C++ (with several paradigms it posses) it became very difficult to maintain
standards in bigger C++ projects.

One of the biggest misconceptions in this area is that C and C++ are the same language. C is not
object oriented while C++ is. Acknowledge the difference.

Today we will learn about compiling & linking C/C++ code in various ways using raw
commands, Makefile and CMake. This is one of the ways to gain insights into how exactly
things work in C/C++ world.

Create a Makefile named rawmake (can be run using make -f rawmake) and fill it up as
instructed in the below tasks

Task 1

Add a rule to compile helloworld.cpp to form helloworld executable

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://www.google.co.in/search?q=Dennis+Ritchie&stick=H4sIAAAAAAAAAOPgE-LQz9U3MCwxS1ICs4wsjY21DDLKrfST83NyUpNLMvPz9AuK8tOLEnNzM_PS43MS89JLE9NTi61SUosz0_NSUxSSKgGKF7GdSAAAAA&sa=X&ved=2ahUKEwiy9I681-rcAhWItY8KHRGdDTgQmxMoATAmegQICBAx
https://www.google.co.in/search?q=Dennis+Ritchie&stick=H4sIAAAAAAAAAOPgE-LQz9U3MCwxS1ICs4wsjY21DDLKrfST83NyUpNLMvPz9AuK8tOLEnNzM_PS43MS89JLE9NTi61SUosz0_NSUxSSKgGKF7GdSAAAAA&sa=X&ved=2ahUKEwiy9I681-rcAhWItY8KHRGdDTgQmxMoATAmegQICBAx
https://www.google.co.in/search?q=Bjarne+Stroustrup&stick=H4sIAAAAAAAAAOPgE-LQz9U3yEovTFcCswzNk1K0DDLKrfST83NyUpNLMvPz9AuK8tOLEnNzM_PS43MS89JLE9NTi61SUosz0_NSUxSSKgFKKuFISAAAAA&sa=X&ved=2ahUKEwiyk9a21ercAhUJ4o8KHY0WA_EQmxMoATAlegQIChAv
https://en.wikipedia.org/wiki/Object-oriented_programming

Task 2

Add a rule to compile usespthread.cpp to form usespthread executable. This file uses pthread
library used to create and manage threads. You will be using this a lot in your Operating Systems
course.

In order to properly compile this file you need to special use a flag for g++.

Task 3

In this task we build a library using files myengine.hpp and myengine.cpp. There are actually
two types of libraries categorized based on the way the library is linked to main file. Dynamic
and Static libraries. This and This are good readups on compiling static and dynamic libraries.
This is a good readup which says difference between them.

Use the given resources to add rules to make dynamic and static libraries. Dynamic library
created should have name libMyEngineDynamic.so and similarly static ibMyEngineStatic.a

Task 4

In this task we try to install the above built libraries into the system (requires sudo permission).
Add a PHONY rule named installdynamic which installs dynamic version (.so file) to
/usr/local/lib/ and corresponding headers to /usr/local/include/

Do the same for static version (.a file) by creating a rule installstatic

Task 5

Now finally we use the installed libraries in mygame.cpp

Add a rule to compile mygame.cpp with the static library installed in the previous task and
produce binary name mygamestatic.

Task 6

Add a rule to compile mygame.cpp with the dynamic library installed in the previous task and
produce binary name mygamedynamic.

Task 7
Also add a PHONY rule to clean all the generated intermediates and binaries (.o .a. .so and other
binaries)

https://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html
https://medium.com/@StueyGK/static-libraries-vs-dynamic-libraries-af78f0b5f1e4
https://stackoverflow.com/questions/1993390/static-linking-vs-dynamic-linking

P2. Request to Moodle

Task 1

Write a script moodle.py to login to your moodle account. Get the LDAP ID and Password from
stdin. Print the message whether the login is successful or not.

(Hint: requests, getpass, re)

Example 1:

>$python moodle.py
>Enter LDAP ID: xxxx
>Enter Password: xxxx
>Logged in successfully.

Example 2:

>$python moodle.py
>Enter LDAP ID: xxxx
>Enter Password: xxxx
>Failed to log in.

