
Inlab 5 - Build Tools, PyNetworking

Do the inlab in groups. Though the inlab is un-graded, the outlab tasks may directly
extend the inlab tasks. Therefore you may want to do in-lab questions properly.

P1. C you again
C was one the first human readable programming languages designed for people in all domains
(business and scientific community). C is an ​imperative​ ​procedural​ language created by ​Dennis
Ritchie​. Unix and linux kernels are built in C (and assembly) language. Due to this C code runs
faster than any other language. But still C was a very low level language, meaning that bigger
abstractions​ were not readily available in it.

To deal with this ​Bjarne Stroustrup​ created C++ with objectives of speed and abstraction in
mind. The core of his creation was something called a ​class.​ Thus C++ became one of the first
object oriented languages​.

C has a simple architecture and few paradigms which makes it simple to use. Remember the zen
of python (​There should be one—and preferably only one—obvious way to do it.​) But due to the
sheer flexibility of C++ (with several paradigms it posses) it became very difficult to maintain
standards in bigger C++ projects.

One of the biggest misconceptions in this area is that C and C++ are the same language. C is not
object oriented while C++ is. Acknowledge the difference.

Today we will learn about compiling & linking C/C++ code in various ways using raw
commands, Makefile and CMake. This is one of the ways to gain insights into how exactly
things work in C/C++ world.

Create a Makefile named ​rawmake ​(can be run using ​make -f rawmake​) and fill it up as
instructed in the below tasks
Task 1
Add a rule to compile ​helloworld.cpp​ to form ​helloworld ​executable

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://www.google.co.in/search?q=Dennis+Ritchie&stick=H4sIAAAAAAAAAOPgE-LQz9U3MCwxS1ICs4wsjY21DDLKrfST83NyUpNLMvPz9AuK8tOLEnNzM_PS43MS89JLE9NTi61SUosz0_NSUxSSKgGKF7GdSAAAAA&sa=X&ved=2ahUKEwiy9I681-rcAhWItY8KHRGdDTgQmxMoATAmegQICBAx
https://www.google.co.in/search?q=Dennis+Ritchie&stick=H4sIAAAAAAAAAOPgE-LQz9U3MCwxS1ICs4wsjY21DDLKrfST83NyUpNLMvPz9AuK8tOLEnNzM_PS43MS89JLE9NTi61SUosz0_NSUxSSKgGKF7GdSAAAAA&sa=X&ved=2ahUKEwiy9I681-rcAhWItY8KHRGdDTgQmxMoATAmegQICBAx
https://www.google.co.in/search?q=Bjarne+Stroustrup&stick=H4sIAAAAAAAAAOPgE-LQz9U3yEovTFcCswzNk1K0DDLKrfST83NyUpNLMvPz9AuK8tOLEnNzM_PS43MS89JLE9NTi61SUosz0_NSUxSSKgFKKuFISAAAAA&sa=X&ved=2ahUKEwiyk9a21ercAhUJ4o8KHY0WA_EQmxMoATAlegQIChAv
https://en.wikipedia.org/wiki/Object-oriented_programming

Task 2
Add a rule to compile ​usespthread.cpp​ to form ​usespthread​ executable. This file uses pthread
library used to create and manage threads. You will be using this a lot in your Operating Systems
course.
In order to properly compile this file you need to special use a flag for g++.

Task 3
In this task we build a library using files ​myengine.hpp​ and ​myengine.cpp.​ There are actually
two types of libraries categorized based on the way the library is linked to main file. Dynamic
and Static libraries. ​This​ and ​This​ are good readups on compiling static and dynamic libraries.
This​ is a good readup which says difference between them.

Use the given resources to add rules to make dynamic and static libraries. Dynamic library
created should have name ​libMyEngineDynamic.so​ and similarly static ​libMyEngineStatic.a

Task 4
In this task we try to install the above built libraries into the system (requires sudo permission).
Add a PHONY rule named ​installdynamic​ which installs dynamic version (.so file) to
/usr/local/lib/​ and corresponding headers to ​/usr/local/include/

Do the same for static version (.a file) by creating a rule ​installstatic

Task 5
Now finally we use the installed libraries in ​mygame.cpp
Add a rule to compile ​mygame.cpp​ with the static library installed in the previous task and
produce binary name ​mygamestatic​.

Task 6
Add a rule to compile ​mygame.cpp​ with the dynamic library installed in the previous task and
produce binary name ​mygamedynamic​.

Task 7
Also add a PHONY rule to clean all the generated intermediates and binaries (.o .a. .so and other
binaries)

https://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html
https://medium.com/@StueyGK/static-libraries-vs-dynamic-libraries-af78f0b5f1e4
https://stackoverflow.com/questions/1993390/static-linking-vs-dynamic-linking

P2. Request to Moodle

Task 1
Write a script ​moodle.py​ to login to your moodle account. Get the LDAP ID and Password from
stdin. Print the message whether the login is successful or not.
(Hint: requests, getpass, re)

Example 1:
>$python moodle.py
>Enter LDAP ID: xxxx
>Enter Password: xxxx
>Logged in successfully.

Example 2:
>$python moodle.py
>Enter LDAP ID: xxxx
>Enter Password: xxxx
>Failed to log in.

